Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microorganisms and Medium
2.3. Plate Counting
2.4. Fermentation and Fermentation Broth Freeze Drying
2.5. DPPH Scavenging Activity
2.6. ABTS Activity
2.7. Preparation of Fermented Taiwan Djulis Functional Dairy Products
2.7.1. pH and Titratable Acidity Determination
- V: Titration of NaOH solution (mL);
- N: Normality of NaOH solution (N);
- F: potency of NaOH solution;
- B: Gram equivalents of organic acids, lactic acid is 90;
- W: sample weight (g).
2.7.2. Extraction and Determination of Total Phenols and Total Flavonoids
2.7.3. Extraction and Analysis of Free Phenol, Bound Phenol, and Total Phenol
2.7.4. Extraction and Determination of Total Flavonoids
2.8. Sensory Evaluation
2.9. GABA (γ-Aminobutyric Acid) Content
2.10. Analysis of Amino Acid Composition
2.11. Analysis of Phytic Acid
2.12. Analysis of Saponin
2.13. Cell Experiment
2.14. Glucose Utilization Test
2.15. Statistical Analysis
3. Results and Discussion
3.1. Optimal Lactobacillus Screening of Fermented Taiwan Djulis
3.2. Optimization of Conditions for Fermenting Taiwan Djulis
3.3. Antioxidant Capacity of Fermented Taiwan Djulis
3.4. Evaluation of Functional Components in Fermented Taiwan Djulis
3.4.1. Content of Free Phenol, Bound Phenol, Total Phenol, and Total Flavonoids in Fermented Taiwan Djulis
3.4.2. Content of Isoflavones in Fermented Taiwan Djulis
3.4.3. GABA Content in Fermented Taiwan Djulis
3.4.4. Content of Antinutritional Factor (Phytic Acid and Saponin) in Fermented Taiwan Djulis
3.4.5. Component Analysis of Fermented Taiwan Djulis in Comparison with Commercially Available Fermented Milk
3.4.6. Analysis of Amino Acid Content in Fermented Taiwan Djulis
3.5. Sensory Evaluation of Fermented Taiwan Djulis
3.6. Analysis of the Glucose Utilization-Promoting Activity of Fermented Taiwan Djulis in a Cellular Model
3.6.1. Cell Viability
3.6.2. Effects of Ethanol Extracts from Fermented Dairy Products and Taiwan Djulis Fermented Dairy Products on Glucose Utilization in Mice FL83B Hepatocyte Cells
3.6.3. Effects of Ethanol Extracts from Fermented Dairy Products and Taiwan Djulis Fermented Dairy Products on the Expression of Glucose Transporters in Mice FL83B Hepatocyte Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, C.-C.; Chen, S.-Y.; Chyau, C.-C.; Wang, S.-C.; Chu, H.-L.; Duh, P.-D. Djulis (Chenopodium formosanum) and Its Bioactive Compounds Protect Human Lung Epithelial A549 Cells from Oxidative Injury Induced by Particulate Matter via Nrf2 Signaling Pathway. Molecules 2021, 27, 253. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-C.; Chen, S.-Y.; Chyau, C.-C.; Fu, Z.-H.; Liu, C.-C.; Duh, P.-D. Protective Effect of Djulis (Chenopodium formosanum) and Its Bioactive Compounds against Carbon Tetrachloride-Induced Liver Injury, in Vivo. J. Funct. Foods 2016, 26, 585–597. [Google Scholar] [CrossRef]
- International Year of Quinoa, 2013: Resolution/. Available online: https://www.fao.org/quinoa-2013/mobile/home/en/ (accessed on 17 July 2022).
- Tsai, P.-J.; Sheu, C.-H.; Wu, P.-H.; Sun, Y.-F. Thermal and PH Stability of Betacyanin Pigment of Djulis (Chenopodium formosanum) in Taiwan and Their Relation to Antioxidant Activity. J. Agric. Food Chem. 2010, 58, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Jiao, J.; Zhang, W.; Xu, J.; Wan, Z.; Zhang, W.; Gao, X.; Qin, L. Dietary Fiber Prevents Obesity-Related Liver Lipotoxicity by Modulating Sterol-Regulatory Element Binding Protein Pathway in C57BL/6J Mice Fed a High-Fat/Cholesterol Diet. Sci. Rep. 2015, 5, 15256. [Google Scholar] [CrossRef]
- Yao, Y.; Suo, T.; Andersson, R.; Cao, Y.; Wang, C.; Lu, J.; Chui, E. Dietary Fibre for the Prevention of Recurrent Colorectal Adenomas and Carcinomas. Cochrane Database Syst. Rev. 2017, 2017, CD003430. [Google Scholar] [CrossRef]
- Chen, S.H.; Chu, C.-C.; Lin, Y.-C.; Duh, P.-D. Djulis (Chenopodium Formosanum) and Its Bioactive Compounds for Management of Hyperlipidemia and Hyperglycemia in High-Fat Diet-Fed Mice. J. Food Nutr. Res 2019, 7, 452–457. [Google Scholar] [CrossRef]
- Chyau, C.-C.; Chu, C.-C.; Chen, S.-Y.; Duh, P.-D. The Inhibitory Effects of Djulis (Chenopodium formosanum) and Its Bioactive Compounds on Adipogenesis in 3T3-L1 Adipocytes. Molecules 2018, 23, 1780. [Google Scholar] [CrossRef]
- Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin Ameliorates Cyclophosphamide Induced Oxidative Stress and Inflammation in Wistar Rats: Role of NFκB/MAPK Pathway. Chem. Biol. Interact. 2015, 231, 98–107. [Google Scholar] [CrossRef]
- Sikder, K.; Kesh, S.B.; Das, N.; Manna, K.; Dey, S. The High Antioxidative Power of Quercetin (Aglycone Flavonoid) and Its Glycone (Rutin) Avert High Cholesterol Diet Induced Hepatotoxicity and Inflammation in Swiss Albino Mice. Food Funct. 2014, 5, 1294–1303. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Nam, S.-Y.; Hong, S.-W.; Kim, M.-J.; Jeong, H.-J.; Kim, H.-M. Protective Effects of Rutin through Regulation of Vascular Endothelial Growth Factor in Allergic Rhinitis. Am. J. Rhinol. Allergy 2015, 29, e87–e94. [Google Scholar] [CrossRef]
- Hafez, M.M.; Al-Harbi, N.O.; Al-Hoshani, A.R.; Al-Hosaini, K.A.; AlShrari, S.D.; AlRejaie, S.S.; Sayed-Ahmed, M.M.; Al-Shabanah, O.A. Hepato-Protective Effect of Rutin via IL-6/STAT3 Pathway in CCl4-Induced Hepatotoxicity in Rats. Biol. Res. 2015, 48, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, R.; Bajpai, V.K.; Baek, K.-H. Production of Gaba (γ-Aminobutyric Acid) by Microorganisms: A Review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar] [CrossRef]
- Rashmi, D.; Zanan, R.; John, S.; Khandagale, K.; Nadaf, A. Chapter 13-γ-Aminobutyric Acid (GABA): Biosynthesis, Role, Commercial Production, and Applications. Stud. Nat. Prod. Chem. 2018, 57, 413–452. [Google Scholar]
- Diana, M.; Quílez, J.; Rafecas, M. Gamma-Aminobutyric Acid as a Bioactive Compound in Foods: A Review. J. Funct. Foods 2014, 10, 407–420. [Google Scholar] [CrossRef]
- Hu, G.; Zheng, Y.; Liu, Z.; Xiao, Y.; Deng, Y.; Zhao, Y. Effects of High Hydrostatic Pressure, Ultraviolet Light-C, and Far-Infrared Treatments on the Digestibility, Antioxidant and Antihypertensive Activity of α-Casein. Food Chem. 2017, 221, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Chen, Y.-W.; Hou, C.-Y. Antioxidant and Antibacterial Activity of Seven Predominant Terpenoids. Int. J. Food Prop. 2019, 22, 230–238. [Google Scholar] [CrossRef]
- Shih, M.-K.; Lai, Y.-H.; Lin, C.-M.; Chen, Y.-W.; Hou, Z.-T.; Hou, C.-Y. A Novel Application of Terpene Compound α-Pinene for Alternative Use of Sulfur Dioxide-Free White Wine. Int. J. Food Prop. 2020, 23, 520–532. [Google Scholar] [CrossRef]
- Hur, J.; Nguyen, T.T.H.; Park, N.; Kim, J.; Kim, D. Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. AMB Express 2018, 8, 143. [Google Scholar] [CrossRef]
- Wang, Y.H.; Kuo, C.H.; Lee, C.L.; Kuo, W.C.; Tsai, M.L.; Sun, P.P. Enzyme-assisted aqueous extraction of cobia liver oil and protein hydrolysates with antioxidant activity. Catalysts 2020, 10, 1323. [Google Scholar] [CrossRef]
- Gnanou, J.; Srinivas, S.; Kurpad, A. Automated derivatization with o-phthalaldehyde for the estimation of amino acids in plasma using reversed-phase high performance liquid chromatography. Indian J. Biochem. Biophys. 2004, 41, 322–325. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, C.; Maroof, M.S.; Biyashev, R.M.; Grabau, E.A.; Kwanyuen, P.; Burton, W.J.; Buss, G.R. A modified colorimetric method for phytic acid analysis in soybean. Crop Sci. 2007, 47, 1797–1803. [Google Scholar] [CrossRef] [Green Version]
- Bondoc, K.G.V.; Lee, H.; Cruz, L.J.; Lebrilla, C.B.; Juinio-Meñez, M.A. Chemical fingerprinting and phylogenetic mapping of saponin congeners from three tropical holothurian sea cucumbers. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2013, 166, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Wang, Y.C.; Hsieh, C.C.; Lu, H.C.; Chiang, W.D. Guava (Psidium guajava Linn.) leaf extract promotes glucose uptake and glycogen accumulation by modulating the insulin signaling pathway in high-glucose-induced insulin-resistant mouse FL83B cells. Process Biochem. 2015, 50, 1128–1135. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Kwong, H.K.; Chen, H.-Y.; Hsu, H.-Y.; Yu, S.-H.; Hsieh, C.-W.; Lin, H.-W.; Chu, Y.-L.; Cheng, K.-C. Enhanced Antioxidant Activity of Chenopodium formosanum Koidz. by Lactic Acid Bacteria: Optimization of Fermentation Conditions. PLoS ONE 2021, 16, e0249250. [Google Scholar] [CrossRef]
- Xu, L.-N.; Guo, S.; Zhang, S. Effects of Solid-State Fermentation with Three Higher Fungi on the Total Phenol Contents and Antioxidant Properties of Diverse Cereal Grains. FEMS Microbiol. Lett. 2018, 365, fny163. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- María, E.-T.; María, L.J.; Inés, R.; Laura, S.; de las Rivas, B.; Rosario, M. A Lactobacillus Plantarum Esterase Active on a Broad Range of Phenolic Esters. Appl. Environ. Microbiol. 2015, 81, 3235–3242. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food Phenolics and Lactic Acid Bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef]
- Faulds, C.B. What Can Feruloyl Esterases Do for Us? Phytochem. Rev. 2010, 9, 121–132. [Google Scholar] [CrossRef]
- Campanella, D.; Rizzello, C.G.; Fasciano, C.; Gambacorta, G.; Pinto, D.; Marzani, B.; Scarano, N.; DeAngelis, M.; Gobbetti, M. Exploitation of Grape Marc as Functional Substrate for Lactic Acid Bacteria and Bifidobacteria Growth and Enhanced Antioxidant Activity. Food Microbiol. 2017, 65, 25–35. [Google Scholar] [CrossRef]
- Shah, P.; Modi, H.A. Comparative Study of DPPH, ABTS and FRAP Assays for Determination of Antioxidant Activity. Int. J. Res. Appl. Sci. Eng. Technol. 2015, 3, 636–641. [Google Scholar]
- Matejekov, Z.; Liptkov, D.; Spodniakov, S.; Valk, u. Characterization of the Growth of in Milk in Dependence on Temperature. Acta Chim. Slovaca 2016, 9, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Aryana, K.J.; Olson, D.W. A 100-Year Review: Yogurt and Other Cultured Dairy Products. J. Dairy Sci. 2017, 100, 9987–10013. [Google Scholar] [CrossRef] [PubMed]
- Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; Shanmugam, K.; Münch, G.; Wu, M.J.; et al. Antioxidant and Anti-Inflammatory Activities of Selected Chinese Medicinal Plants and Their Relation with Antioxidant Content. BMC Complement. Altern. Med. 2012, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-W.; Cheng, M.-C.; Chen, B.-Y.; Wang, C.-Y. Effects of High Pressure Extraction on the Extraction Yield, Phenolic Compounds, Antioxidant and Anti-Tyrosinase Activity of Djulis Hull. J. Food Sci. Technol. 2019, 56, 4016–4024. [Google Scholar] [CrossRef]
- Zhang, Q.; Xing, B.; Sun, M.; Zhou, B.; Ren, G.; Qin, P. Changes in Bio-Accessibility, Polyphenol Profile and Antioxidants of Quinoa and Djulis Sprouts during in Vitro Simulated Gastrointestinal Digestion. Food Sci. Nutr. 2020, 8, 4232–4241. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V. Impact of Fermentation on Phenolic Compounds and Antioxidant Capacity of Quinoa. Fermentation 2021, 7, 20. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, H.; Hao, S.; Pan, D.; Wang, G.; Yu, W. Evaluation of Phenolic Composition and Antioxidant Properties of Different Varieties of Chinese Citrus. Food Chem. 2021, 364, 130413. [Google Scholar] [CrossRef]
- Hsiao, Y.-H.; Ho, C.-T.; Pan, M.-H. Bioavailability and Health Benefits of Major Isoflavone Aglycones and Their Metabolites. J. Funct. Foods 2020, 74, 104164. [Google Scholar] [CrossRef]
- Shang, X.; Dou, Y.; Zhang, Y.; Tan, J.-N.; Liu, X.; Zhang, Z. Tailor-Made Natural Deep Eutectic Solvents for Green Extraction of Isoflavones from Chickpea (Cicer Arietinum L.) Sprouts. Ind. Crops Prod. 2019, 140, 111724. [Google Scholar] [CrossRef]
- Oh, S.-H.; Moon, Y.-J.; Oh, C.-H. γ-Aminobutyric Acid (GABA) Content of Selected Uncooked Foods. Prev. Nutr. Food Sci. 2003, 8, 75–78. [Google Scholar] [CrossRef]
- Oh, C.-H.; Oh, S.-H. Effects of Germinated Brown Rice Extracts with Enhanced Levels of GABA on Cancer Cell Proliferation and Apoptosis. J. Med. Food 2004, 7, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, A.; Sato, K.; Park, E.Y.; Nakamura, Y.; Ohtsuki, K. Control of Amylase and Protease Activities in a Phytase Preparation by Ampholyte-Free Preparative Isoelectric Focusing for Unrefined Cereal-Containing Bread. J. Funct. Foods 2012, 4, 513–519. [Google Scholar] [CrossRef]
- Oh, S.-H.; Soh, J.-R.; Cha, Y.-S. Germinated Brown Rice Extract Shows a Nutraceutical Effect in the Recovery of Chronic Alcohol-Related Symptoms. J. Med. Food 2003, 6, 115–121. [Google Scholar] [CrossRef]
- Yu, L.; Han, X.; Cen, S.; Duan, H.; Feng, S.; Xue, Y.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; et al. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiol. Res. 2020, 233, 126409. [Google Scholar] [CrossRef]
- Mohan, V.R.; Tresina, P.S.; Daffodil, E.D. Antinutritional Factors in Legume Seeds: Characteristics and Determination. Agric. Sci. 2016, 211–220. [Google Scholar] [CrossRef]
- Khattab, R.Y.; Arntfield, S.D. Nutritional Quality of Legume Seeds as Affected by Some Physical Treatments 2. Antinutritional Factors. LWT Food Sci. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Lim, J.G.; Park, H.-M.; Yoon, K.S. Analysis of Saponin Composition and Comparison of the Antioxidant Activity of Various Parts of the Quinoa Plant (Chenopodium Quinoa Willd.). Food Sci. Nutr. 2020, 8, 694–702. [Google Scholar] [CrossRef] [Green Version]
Fermented Dairy Products | Taiwan Djulis Fermented Dairy Products | |
---|---|---|
Antioxidant capacity | ||
DPPH (Unit: μg g−1 solids content) | 331.89 ± 21.44 b | 752.35 ± 29.29 a |
ABTS (Unit: μg g−1 solids content) | 396.08 ± 1.67 b | 771.52 ± 3.79 a |
Phenolic compounds | ||
bound phenol (Unit: mg GAE g−1 solids content) | 107.45 ± 2.6 | 92.78 ± 0.88 |
free phenol (Unit: mg GAE g−1 solids content) | 69.17 ± 2.03 b | 169.90 ± 14.59 a |
total phenols (Unit: mg GAE g−1 solids content) | 176.62 ± 3.40 b | 262.68 ± 14.17 a |
total flavonoids (Unit: mg QE g−1 solids content) | 0.63 ± 0.09 b | 3.04 ± 0.03 a |
Isoflavones (Unit: µg g−1 solids content) | ||
Daidzin | 0.07 ± 0.10 | 0.77 ± 1.09 |
Daidzein | N.D. | 0.46 ± 0.65 |
Genistin | 15.82 ± 22.37 b | 69.73 ± 6.03 a |
Genistein | 12.55 ± 1.22 | 11.18 ± 0.77 |
Non-protein amino acids | ||
γ-aminobutyric acid (Unit: mg g−1 solids content) | 3.52 ± 0.91 | 3.07 ± 0.94 |
Antinutritional factor | ||
Phytic acid (Unit: µg g−1 solids content) | N.D. | 2.96 ± 1.39 |
Saponin (Unit: µg g−1 solids content) | N.D. | 0.29 ± 0.27 |
Component Analysis | ||
moisture (%) | 3.04 | 4.48 |
Ash (%) | 5.74 | 4.57 |
crude protein (%) | 13.75 | 11.94 |
crude fat (%) | 26.73 | 17.79 |
crude fiber (%) | N.D. | 0.28 |
Amino Acids (mg/g) | Fermented Dairy Products | Taiwan Djulis Fermented Dairy Products |
---|---|---|
Cysteine (Cys) | 19.99 | N.D. |
Lysine (Lys) | 8.84 | 2.1 |
Histidine (His) | N.D. | 51.02 |
Arginine (Arg) | 10.78 | N.D. |
Glycine (Gly) | 0.48 | N.D. |
Threonine (Thr) | 2.83 | 28.98 |
Alanine (Ala) | 7.14 | 5.7 |
Tyrosine (Tyr) | N.D. | N.D. |
Tryptophan (Trp) | N.D. | N.D. |
Methionine (Met) | N.D. | N.D. |
Valine (Val) | N.D. | N.D. |
Phenylalanine (Phe) | 21.59 | 13.66 |
Isoleucine (Ile) | 5.34 | 3.35 |
Leucine (Leu) | 10.91 | 5.78 |
Proline (Pro) | 44.68 | 21.9 |
Total content | 132.58 | 132.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, C.-Y.; Hsieh, C.-C.; Huang, Y.-C.; Kuo, C.-H.; Chen, M.-H.; Hsieh, C.-W.; Cheng, K.-C. Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. Fermentation 2022, 8, 423. https://doi.org/10.3390/fermentation8090423
Hou C-Y, Hsieh C-C, Huang Y-C, Kuo C-H, Chen M-H, Hsieh C-W, Cheng K-C. Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. Fermentation. 2022; 8(9):423. https://doi.org/10.3390/fermentation8090423
Chicago/Turabian StyleHou, Chih-Yao, Chen-Che Hsieh, Ying-Chi Huang, Chia-Hung Kuo, Min-Hung Chen, Chang-Wei Hsieh, and Kuan-Chen Cheng. 2022. "Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization" Fermentation 8, no. 9: 423. https://doi.org/10.3390/fermentation8090423
APA StyleHou, C. -Y., Hsieh, C. -C., Huang, Y. -C., Kuo, C. -H., Chen, M. -H., Hsieh, C. -W., & Cheng, K. -C. (2022). Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. Fermentation, 8(9), 423. https://doi.org/10.3390/fermentation8090423