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Abstract: In this experiment, B. subtilis was added to pelletized straw-based total mixed ration, and
the rumen microbial diversity of house-fed Duhan hybrid sheep was compared. Ten 3-month-old
weaned Duhan hybrid lambs were separated into two groups and fattened for 80 days using a
single-factor trial design. During the fattening period, the control and the experiment groups were
fed with the same ration, except that the experiment group was supplemented with B. subtilis. The
results showed that the addition of B. subtilis could significantly increase the daily weight gain, total
weight gain, rumen microbial abundance, and rumen microbial diversity of the Duhan lamb. Among
them, the proportion of microbial flora such as Bacteroidetes was significantly increased, producing
more acetate, iso-butyrate, and butyrate, obtaining higher energy efficiency.
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1. Introduction

The use of natural alternatives in the livestock industry is rapidly increasing due to
the global ban of the use of in-feed antibiotics as growth promoting agents, which include
probiotics, prebiotics, enzymes, and plant nutraceuticals [1–3]. Direct-fed microbials (DFM)
are products that contain live (viable) probiotic microorganisms (bacteria and fungi) with
the primary goal of enhancing animal health and improving production in ruminants, and
therefore has led to increasing interest in the animal industry. However, the efficacy of
DFM in promoting animal health and production performance varies greatly owning to
the different microbial species compositions of the DFM products, animal species and diets,
and feeding conditions [4–6].

Bacterial DFM for ruminants mostly consist of propionate-forming bacteria and lactic
acid-producing bacteria from a range of genera. Recently, interest in the use of Bacillus
species as DFM in ruminants has been increasing owing to their specific properties, e.g.,
heat stability and ability to survive the low pH of the digestive tract. Bacillus subtilis (BS)
is one of the species from genus Bacillus with strong environmental adaptability [7] that
produces polymyxin, nystatin, gramicidin, and other active substances such as enzymes
(alpha-amylase, protease, lipase, cellulase, etc.) and vitamins during growth. These active
substances possess strong inhibitory effects on pathogens and the subsequent infection as
well as favorably modulating nutrient metabolism and immune function [8,9]. B. subtilis
rapidly consumes free oxygen in the intestine, resulting in hypoxia, which promotes the
growth of beneficial anaerobic bacteria while preventing the growth of harmful bacteria.
Therefore, BS could be a promising DFM for ruminants. Several strains of BS (e.g., BS
natto, BS PB6, BS 10071, and BS C-3102) have been assessed in cattle and in vitro for their
effects on rumen fermentation and productive performance [10–15]. However, there is
scarce information about the effects of BS on the rumen microbiome that is crucial for
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elucidating the mechanism by which BS improves rumen metabolism, animal health, and
productive performance.

The objectives of this study were to evaluate the effects of the supplementation of BS
on the rumen metabolism and growth performance of lambs and to determine its effects on
the rumen bacterial microbiome.

2. Materials and Methods
2.1. Experimental Design, Animals, and Diet Preparation

Ten (five male and five female) lambs (3 months old) with an initial body weight (BW)
of 24 ± 1.01 kg were randomly divided into two groups stratified by gender, and were
randomly allocated to two dietary treatments. The treatments were basal diet only (Control;
C) and basal diet supplemented with B. subtilis C-3102, B. subtilis at the concentration of
300 g/ton; 3 × 108 CFU/kg (experimental group; BS) [16]. The basal diet was a corn,
corn stalk, and DDG-based total mixed ration (TMR) that was formulated to meet the
nutrient requirements of growing sheep (NRC; 2012) for two growing stages (Table 1).
The ingredients of the TMR were mixed thoroughly, tempered at 90 ◦C for 45 s, and then
pelletized at 60 ◦C to an average size of 0.5 × 5 cm pellets using a YPM508E Granulator
(Jiangsu Yongli Machinery Co., Ltd., Liyang City, Jiangsu Province, China). The B. subtilis
product was obtained from Calpis Trading Co., Ltd. of Japan Asahi Group (Shanghai,
China) that contained minimum 1 × 109 CFU/g of viable cells and was mixed with other
dietary ingredients prior to pelleting. All diets were made in one batch at the beginning of
the experiment and stored in covered containers for the entire experiment period.

Table 1. Ingredients and nutrient composition of the diet fed to the lambs.

Raw Material
Control (C) Group Bacillus subtilis (BS) Group

First Stages Later Stages First Stages Later Stages

Corn (%) 45.00 53.08 45.00 53.08
DDGS (%) 23.00 19.54 23.00 19.54

Soybean meal (%) 4.28 1.67 4.28 1.67
1% additive (%) 0.76 0.76 0.76 0.76

Stone powder (%) 1.00 1.00 1.00 1.00
NH4Cl (%) 0.42 0.42 0.42 0.42
NaCl (%) 0.50 0.50 0.50 0.50

NaHCO3 (%) 0.42 0.42 0.42 0.42
Bacteria preparation (%) 0 0 0.03 0.03

Soybean hulls (%) 6.93 2.79 6.90 2.76
Corn stalks (%) 17.69 19.82 17.69 19.82

Total (%) 100 100 100 100
Nutrient content

Digestive energy (MJ/kg) 89.13 88.27 88.63 87.98
Ash (%) 6.15 6.11 6.24 6.10
CP (%) 14.91 13.86 14.67 13.80
EE (%) 5.09 3.63 5.02 3.83

NDF (%) 29.89 25.72 28.17 25.40
DNF (%) 15.24 12.14 15.19 12.03
ADF (%) 3.51 2.95 3.68 2.88
Ca (%) 0.51 0.42 0.60 0.48
P (%) 0.40 0.35 0.45 0.35

2.2. Experimental Procedure and Sampling

A total of 87 d feeding experiment was conducted with a 7 d adaptation followed by
an 80 d data collection period. The lambs were individually fed twice daily for ad libitum
intake throughout the adaptation and experimental periods. The lambs were fed the Stage
1 diet for the first 35 d followed by the Stage 2 diet for the remaining experimental period.
The orts were weighed weekly for measuring dry matter intake (DMI). The lambs were
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weighed twice after overnight fast at the beginning and at the end of the experiment, and
weekly between. The animals had free access to water during the entire experimental
period. The animal care protocol was approved by the Animal Care Committee, Inner
Mongolia Autonomous Region Academy of Agriculture and Animal Husbandry, Hohhot,
Inner Mongolia, China.

At the end of the experiment (d 87), all lambs were slaughtered after being fasted for
18 h using the procedure described by Geng et al. [12]. The carcass characteristics including
carcass weight, carcass ratio, and weights of the heart, liver, lung, spleen, kidney, rumen,
reticulum, ovum, true stomach, and intestines were determined using the procedures
described by Geng et al. [17].

The rumen was opened immediately upon removal and the rumen content was
strained through four layers of cheesecloth to obtain the rumen fluid. The rumen fluid from
each lamb was divided into two portions, one being stored at −20 ◦C in 50 mL centrifuge
tubes for the determination of the total volatile fatty acids (VFA), microbial protein, and
ammonia nitrogen and the other being stored at −80 ◦C in 5 mL cryopreservation tubes for
DNA extraction and high-throughput sequencing analysis.

2.3. Laboratory Analyses
2.3.1. Determinations of Rumen Ammonia Nitrogen (NH3-N), VFA, and Microbial Protein

The rumen fluid samples were processed and analyzed for NH3-N as described by
Feng et al. [18], microbial protein using procedures described by Bradford [19], and for
VFA using gas chromatography [20].

2.3.2. Determination of Microbial Compositions by Sequencing

Genomic DNA was extracted from the rumen fluid samples using the CTAB method
described by Rogers et al. [21]. The purity and concentration of the extracted DNA were
determined by agarose gel electrophoresis, as described by Lee et al. [22]. The extracted ru-
men microbial DNA was diluted to 1 ng/µL and the genome sequencing was conducted by
Nuohe Zhiyuan Technology Co., Ltd. (Beijing, China). Then, 16S rRNA genes of the distinct
regions V3-V4 were amplified using a specific primer (341F 5′-CCTAYGGGRBGCASCAG-
3′; 806R5′-GGACTACNNGGGTATCTAAT–3′) with the barcode. All PCR reactions were
carried out in a 30 µL reaction system with 15 µL of Phusion® High-Fidelity PCR Master
Mix (New England Biolabs), 0.2 µmol of forward and reverse primers, and 10 ng of DNA.
The thermal cycling consisted of initial denaturation at 98 ◦C for 1 min, followed by 30 cy-
cles of denaturation at 98 ◦C for 10 s, annealing at 50 ◦C for 30 s, and elongation at 72 ◦C
for 30 s.

The PCR product obtained from the above procedure was then mixed with the same
amount of buffer containing SYB green and was electrophoresed on 2% agarose gel and
purified with a Gene JETTM Gel Extraction Kit (Thermo Scientific, Waltham, MA, USA).

Sequencing libraries were generated using an Ion Plus Fragment Library Kit 48 rxns
(Thermo Scientific, Waltham, MA, USA) following the manufacturer’s recommendations.
The library quality was assessed on the Qubit@ 2.0 Fluorometer (Thermo Scientific). The
library was sequenced on an Ion S5 TM XL platform and 400 bp/600 bp single-end reads
were generated.

2.4. Calculation and Statistical Analysis

The operational taxonomic unit (OTU) database single-end reads were assigned to
samples based on their unique barcode and truncated by cutting off the barcode and
primer sequence. Quality filtering on the raw reads was performed under specific filtering
conditions to obtain the high-quality clean reads according to the Cutadapt quality control
process [23]. The reads were compared with the reference database using the UCHIME
algorithm (UCHIME Algorithm, http://www.drive5.com/usearch/manual/uchime_algo.
html accessed on 20 December 2022) [24] to identify chimera sequences. The clean reads
were obtained after the removal of the chimera sequences [25]. Sequence analysis was
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performed by Uparse software (Uparse v7.0.1001, http://drive5.com/uparse/ accessed on
20 December 2022) [26]. Sequences with ≥97% similarity were assigned to the same OTUs.
Representative sequences from each OTU were screened by Chao1, observed species, and
Shannon’s index to obtain α diversity. QIIME was employed to calculate both weighted and
unweighted UniFrac to obtain beta diversity. Unweighted UniFrac was used for principal
coordinate analysis (PCoA).

The data were analyzed by analysis of variance using the PROC MIXED procedure
of SAS with the individual animal as a statistical unit. Differences were determined using
the PDIFF option in SAS 9.4. Significance was declared at p < 0.05 and the tendency of
significant differences was described at p values between 0.05 and 0.1.

3. Results
3.1. Growth Performance and Carcass Characteristics

Lambs had similar BW (kg) at the beginning of the experiment (25.3 ± 2.07 kg
vs. 25.9 ± 2.11 kg; p = 0.140). Dietary supplementation of B. subtilis had no effects on
DMI (1.52 ± 0.15 kg vs. 1.53 ± 0.20 kg; p = 0.830), but increased average daily gain
(255.8 ± 56.22 g vs. 284.3 ± 58.78 g; p < 0.02) of the lambs, resulting in significantly heavier
(48.7 ± 5.82 vs. 45.7 ± 5.53 kg; p < 0.05) lambs in the BS than in the C group at the end of
the experiment.

All lambs had similar carcass weight, carcass ratio, and weights of heart, liver, lung,
spleen, kidney, rumen, reticulum, ovum, true stomach, and small intestine (p > 0.05).
However, the large intestine was significantly heavier (p < 0.05) for the BS (265.1 ± 11.12 g)-
supplemented group than for the C group (224.9 ± 32.61 g) lambs. The total weight of the
digestive tract of the lambs in the BS group (2.4 ± 0.14 kg) was also significantly higher
(p < 0.05) than that in the C group (2.2 ± 0.16 kg).

3.2. Rumen Metabolites

The dietary supplementation of B. subtilis did not affect (p > 0.05) ruminal pH or
concentrations of NH3-N and total VFA, but increased (p ≤ 0.05) the concentration of
microbial protein (Tables 1 and 2). The concentrations of acetate, iso-butyrate, and butyrate
were higher (p < 0.01), but that of propionate was lower (p < 0.01) for the BS group than for
the C group, resulting in a higher ratio of acetate to propionate (p < 0.01) for BS than for
C lambs.

Table 2. pH and concentrations (mean ± SE; n = 5) of ammonia-N (NH3-N), volatile fatty acids
(VFA), and microbial protein in the rumen fluid of lambs fed basal diet only (Control; C) or basal diet
supplemented with Bacillus subtilis at the concentration of 3 × 108 CFU/kg DM (BS).

Index C BS p-Value

pH 6.6 ± 0.31 6.7 ± 0.32 0.164
NH3-N; mg/100 mL 13.2 ± 0.98 11.6 ± 0.81 0.133

Microbial protein; mg/L 3.9 ± 0.64 5.8 ± 0.36 0.050
Total VFA; mmol/L 27.1 ± 7.48 23.9 ± 3.85 0.450

Acetate; % 70.9 ± 2.77 74.2 ± 1.87 <0.001
Propionate; % 21.4 ± 2.96 14.7 ± 4.97 <0.001

Iso-butyrate; % 2.5 ± 0.90 4.8 ± 2.31 0.011
Butyrate; % 5.1 ± 1.15 6.4 ± 1.20 0.010

Acetate/propionate 3.4 ± 0.51 5.6 ± 1.89 <0.001

3.3. Bacterial Microbiome of the Rumen Fluid
Effects of B. Subtilis on Rumen Microbiota

An average of 56,934 clean read sequences with an average length of 417 bp were
obtained from all 10 rumen fluid samples, which sufficiently covered the bacterial commu-
nities in these samples (Figure 1). There were 17 phyla and 27 genera (eight unidentified
families) among these samples. Overall, Firmicutes was the most dominant phylum for the

http://drive5.com/uparse/
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rumen fluid from both the BS group (49.9%) and the C group (57.7%), and at the genus
level, Succiniclasticum was relatively the most abundant genus, although on average, 86.1%
of sequences could not be classified to a particular genus.
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Figure 1. Horizontal axis is the sample size; vertical axis is the number of OTUs after sampling.

The alpha diversity analysis showed that the OTUs, Chao1, ACE, PD whole tree, and
Shannon indices of BS group were significantly higher (p < 0.01) than that of the C group
(Tables 1 and 3).

Table 3. Alpha indices (mean ± SE; n = 5) of observed species, Shannon, Chao1, ACE, and PD whole
tree in the rumen fluid of lambs fed basal diet only (Control; C) or basal diet supplemented with
Bacillus subtilis at the concentration of 3 × 108 CFU/kg DM (BS).

Indices C BS p-Value

Observed species 397.6 ± 155.89 1215.6 ± 67.60 <0.001
Shannon 5.0 ± 0.56 8.0 ± 0.54 <0.001

Chao1 484.6 ± 36.15 1279.4 ± 82.33 <0.001
ACE 498.1 ± 41.92 1282.4 ± 79.94 <0.001

PD whole tree 39.7 ± 10.30 88.6 ± 3.39 <0.001

The Venn diagram (Figure 2) revealed significant differences in the OTUs between the
C group and the BS group. The two groups shared 660 OTUs, but the C group had 184,
whilst the BS group had 862 unique OTUs, respectively.
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At the phylum level, the abundances of Firmicutes, Actinobacteria, Oxyphotobacteria, and
Proteobacteria in the BS group were significantly lower than the C group (p < 0.05), whereas
the abundances of Bacteroidetes and Tenericutes were higher (p < 0.05) for the BS group than
for the C group of sheep. Other taxonomies less than 1% and those not annotated only
accounted for 1.6% and 2.2% for the C and BS groups, respectively (Tables 1 and 4). The heat
map of the phylum-level classification also showed the same trend (Figure 3). Firmicutes
and Bacteroidetes were the most abundant phylum in both group of sheep, although the
abundance of microorganisms in each phylum varied between the two groups (Figure 4).
The total abundances of Firmicutes and Bacteroidetes were 94.9% in the BS group and 84.6%
in the C group. Interestingly, the Firmicutes/Bacteroidetes (F/B) ratios were 1.11 and 2.14 for
the BS and C groups, respectively.

Table 4. Abundance (mean ± SE; n = 5; >1%) at phylum level of bacteria in the rumen fluid of lambs
fed basal diet only (Control; C) or basal diet supplemented with Bacillus subtilis at the concentration
of 3 × 108 CFU/kg DM (BS).

Taxonomy C BS p-Value

Firmicutes 57.7 ± 14.20 49.9 ± 8.76 0.322
Bacteroidetes 26.9 ± 10.10 45.0 ± 8.67 0.016
Proteobacteria 10.8 ± 9.45 1.3 ± 0.37 0.052
Actinobacteria 2.8 ± 2.61 0.0 ± 0.01 0.071

Tenericutes 0.1 ± 0.035 1.1 ± 0.13 <0.001
Others 1.6 ± 1.34 2.2 ± 0.13 0.241

At the genus level, the abundances of unidentified Lachnospiraceae, Rikenellaceae
and Bacteroidales, and Saccharofermentans were higher (p < 0.05), but the abundances
of Succiniclasticum, Succinivibrio, Dialister, Syntrophococcus, and Shuttleworthia were
lower (p < 0.05) in the rumen fluid of the BS lambs than that of the C group lambs. The
abundances of Ruminococcaceae, Pseudoscardovia, Roseburia, Selenomonas, and unidenti-
fied Prevotellaceae and Clostridiales were similar between the two groups (Tables 1 and 5).
The taxonomy accounting for less than 1% of the abundance with no annotation was
higher (p < 0.05) for the BS than for the C group of lambs. The heat map of the genus-level
classification also showed the same trend (Figure 5).
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Table 5. Abundance (mean ± SE; n = 5; >1%) at genus level of bacteria in the rumen fluid of lambs
fed basal diet only (Control; C) or basal diet supplemented with Bacillus subtilis at the concentration
of 3 × 108 CFU/kg DM (BS).

Index C BS p-Value

unidentified_Ruminococcaceae 6.5 ± 3.02 9.9 ± 2.63 0.092
unidentified_Lachnospiraceae 2.2 ± 1.72 4.8 ± 1.46 0.036

unidentified_Rikenellaceae 0.1 ± 0.13 2.7 ± 0.75 <0.001
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Table 5. Cont.

Index C BS p-Value

unidentified_Prevotellaceae 6.2 ± 5.60 2.1 ± 0.41 0.138
unidentified_Bacteroidales 0.1 ± 0.03 1.6 ± 0.31 <0.001

Saccharofermentans 0.0 ± 0.02 1.50 ± 0.51 0.003
Succiniclasticum 7.7 ± 5.44 1.0 ± 0.33 0.025

Succinivibrio 7.8 ± 6.86 0.0 ± 0.04 0.035
Dialister 6.2 ± 2.97 0.0 ± 0.01 0.004

Pseudoscardovia 2.0 ± 2.45 0.0 ± 0.00 0.23
unidentified_Clostridiales 1.9 ± 1.95 0.58 ± 0.16 0.176

Syntrophococcus 1.7 ± 1.42 0.1 ± 0.035 0.036
Roseburia 1.4 ± 1.66 0.0 ± 0.01 0.108

Selenomonas 1.4 ± 0.88 0.0 ± 0.00 0.095
Shuttleworthia 1.3 ± 0.73 0.1 ± 0.03 0.005

Others 53.50 ± 0.64 75.62 ± 5.27 0.002
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Figure 5. Heat map of genus-level classification.

The evolutionary cladogram revealed that the species playing an important role were
Rikenellaceae, Bacteroidales, Bacteroidia, Bacteroidetes, Christensenellaceae, and Ruminococcaceae
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in the BS group, whereas these were Bifidobacteriaceae, Bifidobacteriales, Actinobacter, Aci-
daminococcaceae, Veillonellaceae, Selenomonadales, Negativicutes, and Lachnospiraceae for the
C group (Figure 6). The other taxonomies that accounted for less than 1% in both groups
were excluded.
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4. Discussion
4.1. Effects of BS Supplementation on Ruminal Fermentation

Although feed intake was not affected, the ADG and final body weight were increased
by B. subtilis, indicating that the supplementation of B. subtilis increased the growth rate
and the feed efficiency of the lambs in this study. It needs to be pointed out that only five
lambs were used in each group because this study focused on the effects of treatment on
the rumen microbiome. The animal replicate number was relatively small compared with a
typical growth performance study. Therefore, this part of the results was only indicative,
and a large-scale feeding experiment needs to be conducted to confirm the findings of this
study. Nevertheless, our previous study also showed that supplementation of the same
B. subtilis product promoted the growth and development and increased the feed intake
of Duhan hybrid sheep [27]. The higher growth rate of the lambs supplemented with B.
subtilis might due to the greater microbial protein synthesis, as indicated by its higher
microbial protein concentration in the rumen than that of the C group lambs. This is also
consistent with the microbiome analysis results that showed that bacterial populations,
diversity, and abundance were all increased by B. subtilis supplementation. Although the
total VFA concentration was not affected, the lambs supplemented with B. subtilis had
higher concentrations of acetate and butyrate than those in the C group. This may indicate
that B. subtilis increased the fiber digestion because it is known that the digestion of fiber is
prone to produce acetate and butyrate [28]. It has been shown that short-chain fatty acids
are an important source of energy for ruminants, with up to 70% of the energy requirements
of adult animals being absorbed as short-chain fatty acids through the stratified squamous
epithelium of the rumen [29]. It has been shown that at the same nutritional level, feeding
B. subtilis could improve energy efficiency and increase the butyric acid content [30], which
is consistent with the observations in this study.

4.2. Effects of BS Supplementation on Bacterial Diversity

The bacterial microbiome analysis showed that the OTU number in the BS group was
more than two times higher (p < 0.01) than that in the C group, demonstrating that more
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bacterial species were observed in the BS group lambs than the C group lambs. Higher
Shannon index and PD whole tree values were observed for the B. subtilis-supplemented
lambs (BS group) than for the C group lambs. Shannon and PD whole tree are positively
correlated with bacterial diversity, demonstrating that the supplementation of B. subtilis
under the conditions of this study increased the bacterial phylogenetic diversity. Increased
bacterial diversity by BS supplementation was also observed for cattle and broilers [31].
It has been shown that B. subtilis could produce a variety of secondary metabolites that
inhibit and kill pathogenic bacteria such as Staphylococcus aureus, Candida albicans, Listeria
monocytogenes, Escherichia coli, and Enterococcus when it was supplemented to sheep and
lambs [32]. This suggested that the supplementation of B. subtilis has the potential to
promote intestinal health via the modification of the microbiome in the digestive tract [33].
Research has shown that rumen microbial diversity is positively correlated with the re-
sistance of animals to environmental influences [34]. Therefore, the increased bacterial
diversity achieved by BS supplementation may have partially contributed to the enhanced
growth performance of the lambs observed in this study. Zhang et al. also reported a
similar relationship between rumen bacterial diversity and animal growth performance in
cattle [35].

4.3. Effects of BS Supplementation on Bacterial Abundances

Chao1 and ACE are positively correlated with bacterial abundances. The higher
values of Chao1 and ACE observed for the B. subtilis-supplemented lambs than for the C
group lambs indicated that the supplementation of B. subtilis increased rumen bacterial
abundance under the conditions of this study. This study showed that Firmicutes and
Bacteroidetes were the two most dominant phyla regardless of the treatment, which is
consistent with the observations of other studies [35], indicating that these two phyla play
a key role in rumen metabolism. It has been suggested that the F/B ratio in the gut impacts
intestinal homeostasis and the energy metabolism of the body [36]. This study found that
the supplementation of BS decreased the F/B ratio mainly due to its effect on increasing the
abundance of Bacteroidetes. A literature review showed that the dietary supplementation
of probiotics affected the F/B ratio depending on the specific probiotics [37]. The phylum
Bacteroidetes includes approximately 7000 different species of Gram-negative bacteria that
are predominantly from the genera Bacteroides, Alistipes, Parabacteroides, and Prevotella.
Bacteroidetes express a relatively large number of genes encoding carbohydrate active
enzymes, thus promoting the breakdown of rumen structural polysaccharides. They can
also ferment amino acids into acetate [35]. These are consistent with the increased acetate
proportion by BS supplementation in this study.

Although the decrease of the abundances of the phyla Proteobacteria and Actinobacteria
by BS supplementation did not reach statistical difference, the large scale of the reduction
and its potentially biological implications still need to be noted. Further analysis showed
that the genera Succinivibrio and Pseudoscardovia accounted for more than 70% of the
genera in the phyla Proteobacteria and Actinobacteria for the C group of lambs, whereas it
decreased to less than 1% for the BS group of lambs, indicating that the negative effect
of BS supplementation on the phyla Proteobacteria and Actinobacteria was mainly due to
its effects on decreasing the abundance of the genera Succinivibrio and Pseudoscardovia,
respectively. Both Succinivibrio and Pseudoscardovia are opportunistic pathogens possessing
health implications to animals [35,38]. Tenericutes were significantly higher (p < 0.05) for
the BS group than for the C group. It is one of the inhabitants of the gastrointestinal tract;
many studies have focused on pathogenic species, but recent studies found that Tenericutes
expressed more carbon metabolism genes. Sugars such as xylose, galactose, and fructose
might be fermented to lactate, formate, and acetate. These are consistent with the increased
acetate proportion by BS supplementation in this study [39].

Within the phylum Firmicutes, the abundances of unidentified Ruminococcaceae, uniden-
tified Lachnospiraceae, and Succiniclasticum each accounted for more than 1% of the total
bacterial populations. In both groups, the abundances of Dialister, unidentified Clostridiales,
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Syntrophococcus, Roseburia, Selenomonas, and Shuttleworthia each exceeded 1% of the total
bacterial populations for the C group of lambs only. On the contrary, the abundance of
Saccharofermentans was greater than 1% in the BS group only. This study found that the sup-
plementation of BS increased the abundances of unidentified Lachnospiraceae, unidentified
Lachnospiraceae, and Saccharofermentans, but decreased the abundances of Dialister, unidenti-
fied Clostridiales, Syntrophococcus, Roseburia, Selenomonas, and Shuttleworthia. Unidentified
Ruminococcaceae and unidentified Lachnospiraceae belong to the genera Ruminococcaceae
and Lachnospiraceae, respectively, that have been shown to be positively correlated to gut
health [40,41] and Saccharofermentans was reported to be positively correlated with feed
efficiency [40]. In contrast, Syntrophococcus, Shuttleworthia, unidentified Clostridiales, and
Roseburia have been suggested to be positively correlated with diseases. Therefore, the in-
creased abundances of the beneficial bacteria that promote animal health and feed efficiency
and decrease the abundances of those disease-causing bacteria by BS supplementation
would have promoted the overall health status and production efficiency of the lambs,
thereby contributing to the enhanced growth performance of the BS-supplemented lambs
in this study.

Within the phylum Bacteroidetes, BS supplementation increased the abundances of
unidentified Rikenellaceae and unidentified Bacteroidales. Unidentified Rikenellaceae belongs
to Rikenellaceae that has been shown to possess immune-improving effects [42]. Unidenti-
fied Bacteroidales belongs to Bacteroidales that possess unique and powerful carbohydrate-
utilization systems, and Bacteroidales species are considered potential probiotics [43].

5. Conclusions

The supplementation of BS at the dietary concentration of 3 × 108 CFU/kg enhanced
the lamb growth rate and feed efficiency via increasing ruminal microbial protein synthesis
and VFA, and favorably modulating the rumen microbiota under the conditions of this
study. Both rumen bacterial diversity and the abundances of microflora that are positively
related to rumen metabolism and health condition (probiotic populations) were increased,
whereas the abundances of those bacteria that are negatively correlated with health con-
ditions were decreased by the BS supplementation. Overall, this study showed that B.
subtilis has potential as a direct-fed microbial to enhance the sheep production efficiency
and requires further evaluation under the commercial production situation.
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