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Abstract: Microalgae are used to produce renewable biofuels (biodiesel, bioethanol, biogas, and
biohydrogen) and high-value-added products, as well as in bioremediation and CO2 sequestration
tasks. In the case of anaerobic digestion of microalgae, biogas can be produced from mainly proteins
and carbohydrates. Anaerobic digestion is a complex process that involves several stages and is
susceptible to operational instability due to various factors. Robust controllers with simple structure
and design are necessary for practical implementation purposes and to achieve a proper process
operation despite process variabilities, uncertainties, and complex interactions. This paper presents
the application of a control design based on the modeling error compensation technique for the
anaerobic digestion of microalgae. The control design departs from a low-order input–output model
by enhancement with uncertainty estimation. The results show that achieving desired organic
pollution levels and methanogenic biomass concentrations as well as minimizing the effect of external
perturbations on a benchmark case study of the anaerobic digestion of microalgae is possible with
the proposed control design.
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1. Introduction

The world’s rising energy demand, the depletion of fossil fuel resources, and environ-
mental concerns about climate change are major drivers to research biofuels [1,2]. Indeed,
biofuels could be a long-term replacement for fossil fuels. Microalgae produce renewable
and sustainable biofuels (biodiesel, bioethanol, biogas, and biohydrogen), pharmacological
products, and food ingredients [3–5]. Microalgae has several advantages against other
renewable biomass sources. For instance, fast growth rate, high oil yield, the use of non-
arable land for algae cultivation, growth in various water sources, and carbon dioxide
(CO2) mitigation [6].

Microalgae can be used to produce usable energy via multiple routes. Biodiesel can
be produced through transesterification between algal oil (the triacylglycerol (TAG)) and
alcohol with a catalyst [7]. Bioethanol and biogas can be made from the saccharides in
microalgal biomass via fermentation or anaerobic digestion (AD) [5,8,9]. The starch degra-
dation from microalgae can also be used to produce biohydrogen [5,10,11]. Furthermore,
the residue is considered waste after extracting the lipid for biodiesel production and
other components for cosmetic and pharmaceutical purposes. The valorization of this
microalgae residue can also be used for biogas production via AD [12]. Thus, the digestion
of microalgae to provide an additional source of biofuel is an attractive possibility. Indeed,
recent advances in AD for biogas production using as a feedstock both microalgae and
macroalgae have been reviewed and described by several authors [13–16].
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AD has a high capacity to degrade concentrated and difficult substrates (plant residues,
animal wastes, food industry wastewater, and so forth), produces very little sludge, requires
little energy, and, in some cases, it can even recover energy using methane combustion [17,18].
Challenges in the optimization and control of AD include limited process knowledge,
nonlinearities, unmodeled dynamics, unknown internal and external noises, environmental
influences, and time-varying parameters [19]. Another issue is the feed of the digester,
which is primarily waste; consequently, a constant and nonpolluted inflow in the digester
cannot always be guaranteed [20].

The coupling of AD and microalgae cultivation has been proposed as a viable option
to produce renewable biofuel [21,22]. This process not only recovers the energy stored in
the microalgae biomass but also leads to ammonium and phosphate release, which can be
a source of nutrients for the microalgae culture [16]. Furthermore, the generation of CO2 in
AD can be used to grow photoheterotrophic microalgae populations in conjunction with
either artificial or solar light as a source of energy [23].

Microalgae AD’s main process objectives are reducing the organic pollution level
and biogas production [24,25]. After lipid extraction for biodiesel production and other
valuable products such as amino acids, the microalgae residue contains cellulose, lignin,
lipid, and protein. In the first case, the microalgae residue requires appropriate treatment
for its final disposal. In the second case, the organic residue can be used as a resource for
biogas production to enhance the biofuel production obtained from the microalgae.

Nevertheless, due to their inherent complexity, the control and optimization of such
coupled microalgae cultivation–anaerobic digester systems present many challenges [22].
For instance, operational issues of the AD of microalgae include possible process instability
caused by the inhibition effects of inorganic nitrogen and volatile fatty acids, which can
give rise to the disappearance of the methanogenic bacteria or even the so-called washout
state of the process [25–27]. Hence, the complexity and operational instability of the AD
due to variations in the process operating conditions have probably inhibited the industrial
AD processing of plant residues, including macro and microalgae residues.

Thus, control designs are required to achieve the main objectives of microalgae AD. To
the author’s knowledge, the control design of microalgae AD has been scarcely addressed
in the literature. One aspect motivating the design of control schemes for AD of microalgae
is the development of valuable and reliable mathematical models of the primary process
variables [28–30]. In particular, Mairet et al. [28] introduced a model for AD of microalgae
(named the “MAD model”), which was validated on experimental data. The proposed
model has allowed the derivation of ideal values for operating parameters, studied these
parameters’ influence on the process’s qualitative behavior, and designed a model-based
controller.

This paper addresses the robust control design of AD of microalgae using a simple,
versatile and practical approach via modeling error compensation (MEC) ideas [31,32].
Two control problems in the AD of microalgae are addressed: (i) regulation of the organic
pollution level and (ii) regulation of the methanogenic biomass concentration. Although
the control literature on AD is vast, to the best of the author’s knowledge, the proposed
controller has not previously been used for microalgae AD in the addressed control prob-
lems. Furthermore, it has been pointed out that it is necessary to develop and apply reliable,
practical, and robust controllers in bioprocesses and advanced control strategies to renew-
able fuel production and CO2 sequestration applications [33–36]. Numerical simulations
show that the proposed controller may achieve robust regulation of the organic pollution
level and the methanogenic biomass concentration. Thus, our paper’s main contribution is
the introduction of a robust and practical controller for the continuous AD of microalgae
that achieves good closed-loop performance despite model uncertainties and external
perturbations.

This work is organized as follows: In Section 2, the benchmark MAD model is de-
scribed, as well as the main ideas of the robust controller. Section 3 presents the closed-loop
performance of the proposed controller for two control tasks: (i) regulation of the organic
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pollution level and (ii) regulation of the methanogenic biomass concentration. In Section 4,
the discussion and practical implications of the results are presented. Finally, in Section 5,
some concluding remarks are presented.

2. Materials and Methods

This section first presents the benchmark MAD model and the general methodology
of the proposed controller based on MEC ideas.

2.1. AD of Microalgae

The AD process is performed by a community of four groups of bacteria (hydrolytic,
fermentative, acetogenic, and methanogenic) that decompose the organic matter in four
steps: hydrolysis, acidogenesis, acetogenesis, and methanogenesis [17,18]. Hydrolysis of
polymeric compounds such as carbohydrates, proteins, and fats is the first step in anaerobic
digestion. Fermentative and acetogenic bacteria metabolize simpler organic molecules
produced via hydrolysis to hydrogen, acetate, formate, and carbon dioxide, which are
transformed into methane by the methanogenic bacteria. In particular, acetate is a key
intermediate contributing to a significant part of the produced methane [37]. In microalgae
AD, proteins are hydrolyzed to amino acids by extracellular enzymes. Then, amino acid
fermentation is performed by anaerobic and facultative anaerobic bacteria. Methanogenesis
converts the hydrogen and acetic acid to methane gas and carbon dioxide via archaea,
which are more sensitive to toxic compounds and exhibit lower growth rates [38].

Since the seminal study of Golueke et al. [27], several authors have considered the
anaerobic digestion of algal biomass, which were reviewed by Ward et al. [16], Uggetti
et al. [9], and Milledge et al. [25]. These studies pointed out some features in the anaerobic
digestion of microalgae: (i) difficult digestibility, mainly due to the cell walls composition
of some microalgae; (ii) low carbon-to-nitrogen (C/N) ratios associated with high nitrogen
content in the microalgae; and (iii) the protein degradation of the biomass microalgae
results in the formation of ammonia, which can be inhibitory.

Indeed, when protein-rich microalgae are subjected to AD, the bioprocess can be
affected mainly by the hydrolysis and methanogenesis steps due to the high amount of
nitrogen released in the form of ammonium. Furthermore, some features of microalgae
cultivation, including its intracellular and cell wall composition, lead to strain-specific
microalgae AD efficiency [39].

The above operational issues have motivated different studies to improve the tech-
nology and operational performance of AD of microalgae. These studies include chemical
and thermal pretreatment of algal biomass [16], coupling AD with microalgae cultivation
systems [21], co-digestion with substrates with a high C/N [40], and modeling approaches
to improve the process prediction, set optimal conditions, and develop and apply different
control designs [28,41–43].

2.2. MAD Model

Based on principal component analysis (PCA), as well as the available liquid-phase
measurements (total COD, inorganic nitrogen, and VFA concentrations) and the methane
flow rate measurements, Mairet et al. [28] set a three biochemical reaction scheme to derive
a model of the microalgae anaerobic digestion. The proposed model was developed and
calibrated for the AD of Chlorella vulgaris, a microalgae species commonly used for biofuel
production. Experimental arrangement and conditions were characterized and described
by Mairet et al. [28].

The main model assumptions are [28]: (i) The microalgae biomass is divided into three
substrates, S1 (sugar and lipids excluding nitrogen), S2 (proteins), and SI (inert substrate).
(ii) S1 and S2 are degraded to VFAs (S3) via hydrolysis–acidogenesis–acetogenesis by
the bacterial populations X1 and X2, respectively. (iii) S3 is converted to methane by
methanogenic population X3. (iv) The specific growth rates for the hydrolysis–acidogenesis–
acetogenesis reactions are modeled as Contois functions. (v) The methanogenesis-specific
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growth rate is modeled with a Haldane function with a multiplicative ammonia inhibition
term. (vi) pH values for the AD of C. vulgaris are in the range of 6.0 < pH < 7.5. (vii) The total
inorganic carbon concentration (C) is the sum of the dissolved carbon dioxide concentration
CO2 and the bicarbonate concentration HCO3. (viii) The total inorganic nitrogen (N) is
the sum of free ammonium and ammonium ions. Ammonium ions are consumed in the
hydrolysis–acidogenesis–acetogenesis of S1 and the methanogenesis of VFAs. (ix) The
anaerobic digester is a 1-L (Vliq) continuous perfectly stirred reactor with 0.1-L headspace
(Vgas). (x) The microalgae fed is composed by fractions of sugars-lipids β1, proteins β2,
and inerts βI. (xi) The operation temperature (Top) is maintained constant. (xii) All of the
produced methane is transferred to the headspace.

The mathematical model is calculated as follows [28]:

dS1
dt = D(β1Sin − S1)− α1µ1X1

dS2
dt = D(β2Sin − S2)− α5µ2X2

dSI
dt = D(β ISin − SI)

dS3
dt = −DS3 + α3µ1X1 + α6µ2X2 − α9µ3X3

dX1
dt = −DX1 + µ1X1

dX2
dt = −DX2 + µ2X2

dX3
dt = −DX3 + µ3X3

dN
dt = D(Nin − N)− α2µ1X1 + α7µ2X2 − α10µ3X3

dC
dt = D(Cin − C) + α4µ1X1 + α8µ2X2 + α12µ3X3 − ρCO2

dPCO2
dt = − qgas

Vgas
PCO2 +

VliqRTop
Vgas

ρCO2

dPCH4
dt = − qgas

Vgas
PCH4 +

VliqRTop
Vgas

ρCH4

dz
dt = D(zin − z)

With
µ1 = µ1,max

S1
ks1X1+S1

µ2 = µ2,max
S2

ks2X2+S2

µ3 = µ3,max
S3

ks3+S3+
S3

2
kI

KINH3
KINH3+NH3

NH3 = KN
KN+h N, h = 10−pH

ρCO2 = kLa
(

h
kC+h C − KH,CO2 PCO2

)
ρCH4 = α11µ3X3

where D is the dilution rate, αi are the stoichiometric parameters (i = 1,..., 12). Sin, Nin, Cin,
and zin are the input concentrations of organic matter, inorganic nitrogen, inorganic carbon,
and alkalinity, respectively. PCO2 and PCH4 are the partial pressures of CO2 and CH4, and
ρCO2 and ρCH4 are their liquid–gas transfer rates.

The biogas flow rate is calculated by

qgas = max
(
0, kv

(
PCO2 + PCH4 − Patm

))
With kv as the pipe resistance coefficient and P as the atmospheric pressure.
For control design purposes, the state vector is shown as x = [x1, x2, x3, x4, x5,

x6, x7, x8, x9, x10, x11, x12]T = [S1, S2, SI, S3, X1, X2, X3, N, C, PCO2, PCH4, z]T. The
control input is the dilution rate, i.e., u = D. The nominal operation is simulated with
the following parameter values [28]: Sin = 29.5 gCOD/L, β1 = 0.3, β2 = 0.4, βI = 0.3,
µ1,max = 0.3 d−1, ks1 = 2.11 gCOD/L, µ2,max = 0.053 d−1, ks2 = 0.056 gCOD/L, µ3,max =
0.14 d−1, ks3 = 0.02 gCOD/L, kI3 = 16.4 gCOD/L, kN = 1.1 × 10−9, kINH3 = 1.1 × 10−9,
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α1 = 12.5, α2 = 0.0062, α3 = 11.5, α4 = 0.03, α5 = 9.1, α6 = 8.1, α7 = 0.054, α8 = 0.03, α9 = 20,
α10 = 0.062, α11 = 0.3, α12 = 0.2, kLa = 5 d−1, kv = 5e4 L/d bar, R = 8.314 × 10−2 bar/M K,
Top = 308.15 K, pH = 7, Patm = 1.01325 bar, Vliq = 1 L, Vgas = 0.1 L, Nin = 0.011 M, Cin = 0.019,
zin = 0.017.

The steady-state shown by [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]* = [ 0.289, 1.097,
8.85, 0.065, 0.6848, 1.176, 0.8668, 0.0648, 0.0748, 0.405, 0.608, 0.017] is obtained with the
above parameter values, and a dilution value base of u = 0.05 d−1. It can be noted that the
nominal biomass productivity (i.e., u·x6) is around 0.0433 gCOD L−1 d−1. Figure 1 shows
the effect of a step change on the dilution rate at t = 500 d. It is noted that a smooth response
is obtained for both methanogenic biomass and the organic pollution level, defined as
the sum of the microalgae organic components S1 and S2 and the S3 produced in the
microalgae AD. On the other hand, an initial inverse response is observed for both the VFA
concentration and the biogas flow.
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Figure 1. Base numerical simulations of two main MAD model variables (VFA and X3 concentrations
in gCOD/L), biogas flow (L/d), and organic pollution level (gCOD/L), including the effect of a step
change in the dilution rate at t = 500 d.

2.3. Robust Control Design Based on MEC

Robust control involves quantifying the uncertainties in a nominal process model and
designing a controller that copes with these uncertainties to achieve specified performance
over the range of operating conditions [44,45]. An approach to developing practicable
robust model-based controllers is the MEC approach. The MEC design is based on linear
or nonlinear models with lumped bounded uncertainties, which are estimated and com-
pensated with inverse dynamics controllers. The MEC approach was first introduced by
Sun et al. [46]. Alvarez-Ramirez [31] extends the original ideas to nonlinear feedback lin-
earizable systems. Rodriguez-Jara et al. [32] present a more straightforward MEC approach
to derive practical, robust controllers departing from input–output low-order transfer
functions. The MEC approach has been extensively applied and accepted as an effective
technique for robustly controlling uncertain nonlinear systems in complex (bio)-chemical
processes [47–49].

The control design departs from an input–output first-order model obtained from step
response [32], i.e.,

Gp(s) =
Y(s)
U(s)

=
kp

τ0s + 1

where kp and τ0 are the steady-state process gain and the process time constant. The
corresponding first-order input–output model in the time domain is enhanced with lumped
model uncertainties η(t), including structural uncertainties with bounded variation due to
the model reduction ξ(y(t)), and constant or persistent external perturbations π(t), i.e.,

dy(t)
dt

= − 1
τ0

y(t) +
kp

τ0
u(t) + η(t)
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The lumped uncertain term is estimated with a reduced-order observer [31,32],

dη̃(t)
dt

=
1
τe
(η(t)− η̃(t))

where η̃(t) is the estimated modeling error term, and τe is an observer parameter, denoted
as the estimation time constant, that modulates the convergence rate of the estimation of the
real uncertain term. After algebraic manipulations, the reduced observer can be written as

dw(t)
dt = 1

τ0
y(t)− kp

τ0
u(t)− 1

τe
(w(t) + y(t))

w(0) = −y(0)

η̃(t) = 1
τe
(w(t) + y(t))

The controller is proposed based on the model inversion to assign an asymptotic
first-order closed-loop behavior and the cancelation of the estimated uncertain term η̃(t),

u(t) =
τ0

kp

(
1
τ0

y(t)− η̃(t)− 1
τc

e(t) +
dyre f

dt

)
where yref (t) is the desired set-point, e(t) = y(t) − yref (t), is the regulation or tracking error,
and τc is a controller parameter, denoted as the closed-time constant, that modulates the
closed-loop convergence rate to the desired set-point. Based on the process time constant,
τ0, tuning of parameters τc and τe follows the rule [31,32,47]: 0 < τe < τc < τ0.

In this paper, the MEC approach is applied to the MAD benchmark model under the
following additional assumptions:

Assumption 1. The dilution rate is the control input, i.e., u = D.

Assumption 2. The control input is subjected to a saturation nonlinearity, i.e., umin ≤ u ≤ umax.

Assumption 3. The controlled variable is available for control design purposes.

The following comments are in order:

A. For optimization and control purposes of AD processes, usually in practice, only a
relatively limited number of control actions are possible. These are mostly restricted to
the input flow rate or the input of a particular substrate in the feed [19,20]. Therefore,
this paper selects the dilution rate (directly related to the input flow rate) as the control
input variable.

B. The minimum and maximum control inputs are selected following previous studies
on the operational behavior of the MAD model [30]. The maximum input flow rate
must be chosen to prevent the washout condition.

3. Results

In this section, the above-described robust control approach is applied to the bench-
mark MAD model for two control problems: (i) The regulation of the organic pollution
level and (ii) the regulation of the methanogenic biomass. The performance of the MEC
controller is evaluated for a set-point yref change at t = 1000 d and an external perturbation
of +20% on the input substrate feed Sin at t = 1500 d.

To set the references for both control problems, screening on the dilution rate was per-
formed between the minimum and maximum values of the decision variable. Figure 2 shows
the results. It is noted that both low organic pollution levels and higher methanogenic
biomass concentration are achieved at low dilution values, which corresponds to high
hydraulic retention times (HRT). Thus, the proposed references are selected to achieve
an organic pollution level around or below 2 gCOD/L, and a methanogenic biomass
concentration of around 9 gCOD/L.
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3.1. Control of the Organic Pollution Level
3.1.1. Control Problem

The control problem is set as the regulation of the organic pollution level to the desired
reference by manipulating the dilution rate. Recently, many laws and regulations have
been issued to decrease pollution related to industrial and urban water effluents [50]. In
the case of the AD of microalgae, the analogous problem is related to the disposal of the
microalgae biomass residues [21,22]. Microalgae residues are generated after extracting
valuable products such as amino acids and lipids. Hence, the main goal is to obtain a
minimal quantity of output pollutants defined as the sum of the nondegraded organic
components in the microalgae S1, S2, and the produced VFAs S3.

3.1.2. Numerical Results

The initial step in the design of the MEC controller is to derive the input–output
transfer function model between the dilution rate and the organic pollution level. Based on
the input–output response shown in Figure 1, the first-order transfer function parameters
are provided as kp = 515 and τ0 = 75.

Figure 3 shows the closed-loop performance of the MEC controller for three sets
of controller parameters. The performance of the MEC controller is compared against a
conventional PI controller using IMC tuning rules [51].
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Figure 3. Closed-loop performance of the MEC controller for the organic pollution control problem.

It is noted from Figure 3 that the MEC controller can regulate the organic pollution
level to the desired references, as well as minimize the effect of the external perturbation.
The observed control input adjustment is the following: (i) Initially, the control input is set
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at the base value of 0.05 d−1, which leads to a steady-state value of 2.16 gCOD/L and a
methanogenic biomass concentration of 0.86 gCOD/L. (ii) Once the controller is activated
at t = 500 d, to achieve the desired reference of the organic pollution level of 2 gCOD/L, a
slight decrease in the dilution rate to 0.0495 d−1 is performed to increase the degradation
of the organic pollution level via an increase in the HRT. (iii) At t = 1000 d, the dilution rate
is further decreased to around 0.0457 d−1 to achieve the desired reference of 1.5 gCOD/L.
(iv) Finally, at t = 1500 d, when the disturbance in the substrate input occurs, dilution is
also decreased because high HRT is required to degrade the increase of the input substrate.
It is also noted that the methanogenic biomass concentration significantly increases due to
the additional substrate input.

3.2. Control of the Methanogenic Biomass Concentration
3.2.1. Control Problem

In this case, the control problem is set as the regulation of the methanogenic biomass
concentration (which is proportional to the methane production) to the desired reference by
manipulating the dilution rate. It is noted that besides the energy recovery from microalgae
biomass after lipid extraction in a bio-refinery concept, when the cell lipid content does not
exceed 40%, AD of the whole biomass is an attractive alternative for the energetic recovery
of cell biomass via biogas generation [12,16,25].

3.2.2. Numerical Results

For this control problem, the first-order transfer function parameters are kp = −22.72
and τ0 = 75, which are computed based on the input–output response shown in Figure 1.
Figure 4 shows the closed-loop performance of the MEC controller for three sets of controller
parameters, as well as the comparison against a conventional PI controller tuned with
IMC rules.
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Figure 4. Closed-loop performance of the MEC controller for the methanogenic biomass concentration
control problem.

As in the organic pollution level control problem, the MEC controller allows the regu-
lation of the methanogenic biomass concentration to the desired references and the rejection
of the external perturbation. Once the controller is activated at t = 500 d, the sequence of
control inputs is as follows: (i) The first desired reference of 0.9 gCOD/L is achieved with a
decrease of the nominal value of the dilution rate from 0.05 to 0.045 d−1, to allow the in-
crease of the methanogenic biomass concentration from the nominal value of 0.866 gCOD/L
to 0.9 gCOD/L. (ii) The second set-point associated with a lower methanogenic biomass
concentration is achieved with an increase in the dilution rate to 0.0518 d−1. (iii) Finally,
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when the disturbance in the substrate input occurs, dilution is slightly increased because
less HRT is required to maintain the same desired microalgae biomass concentration.

Regarding the comparison of the proposed controller with the classical PI controller it
is observed the following in both control problems: (i) When the controller is activated, the
computed control input with the PI control is more aggressive than the MEC controller such
that the minimum dilution value is achieved, which degrades the closed-loop behavior.
(ii) The PI controller shows acceptable behavior for rejecting the external perturbation in
the substrate input.

4. Discussion

Based on the numerical simulations of the proposed control scheme, the following
comments are in order:

• Dilution and Sin values: The AD operation is markedly influenced by the dilution rate
and the substrate feed [19,20]. The observed values in the base and controlled process
numerical simulation correspond to the region of lower organic pollution level and
higher methanogenic biomass concentration according to the in-depth study presented
by Khedim et al. [30] for the selected parameter values. As the substrate input feed
increases and the dilution rate decreases, an increase in the methanogenic biomass
concentration can achieve, as is shown in Figure 3 when the external perturbation
is applied. Khedim et al. [30] suggest that the optimum yield of the MAD model in
terms of biogas production was obtained for the following ranges [0.001–0.05] d−1,
[0.03–30] gCOD/L of D, and Sin, respectively. Low dilution rates correspond to high
HRT, allowing the active biomass population to remain in the reactor and not limiting
the hydrolysis step.

• MEC closed-loop performance: The numerical results of the proposed controller on
the benchmark MAD model demonstrate the capabilities and versatility of the MEC
control approach when controlling the complex operation of AD. It is also noted that
only two papers have addressed control designs for the AD of microalgae for the
organic pollution level control problem [22,43]. In both cases, considering a possible
error in that references in the time units (from hours to days) and sight differences
between the values of some variables, the magnitude of the computed dilution rate
is similar to the numerical assessment of two proposed nonlinear controllers based
on feedback linearization and robust adaptive controllers. However, since both con-
tributions include state and uncertain kinetic estimators, a fair comparison is not
possible.

5. Conclusions

This paper addressed two control problems in the anaerobic digestion of microalgae:
(i) the regulation of the organic pollution level and (ii) the regulation of the methanogenic
biomass concentration. In the first case, the control problem is aimed at the final disposal of
the residual microalgae biomass by reducing its organic components. In the second case, the
control problem seeks to enhance energy recovery from residual biomass or microalgae with
low lipid content. Aside from its efficiency and good robustness properties, the proposed
controller is also characterized by simplicity, being thus appropriate for implementation
in real-life systems. Another significant advantage is its generality. This technique may
be applied to similar and more complex anaerobic digestion processes where a low-order
input–output model can be obtained. Although the proposed controller was evaluated on
a benchmark validated model of the microalgae anaerobic digestion, the effect of relevant
operation variables, such as the accumulation of VFAs, must be considered. Future research
can focus on applying the proposed robust controller to real and possible multiple input–
multiple output scenarios.
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