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Abstract: Biogas production involves various types of intricate microbial populations in an anaerobic
digester (AD). To understand the anaerobic digestion system better, a broad-based study must be
conducted on the microbial population. Deep understanding of the complete metagenomics including
microbial structure, functional gene form, similarity/differences, and relationships between metabolic
pathways and product formation, could aid in optimization and enhancement of AD processes. With
advancements in technologies for metagenomic sequencing, for example, next generation sequencing
and high-throughput sequencing, have revolutionized the study of microbial dynamics in anaerobic
digestion. This review includes a brief introduction to the basic process of metagenomics research
and includes a detailed summary of the various bioinformatics approaches, viz., total investigation
of data obtained from microbial communities using bioinformatics methods to expose metagenomics
characterization. This includes (1) methods of DNA isolation and sequencing, (2) investigation of
anaerobic microbial communities using bioinformatics techniques, (3) application of the analysis
of anaerobic microbial community and biogas production, and (4) restriction and prediction of
bioinformatics analysis on microbial metagenomics. The review has been concluded, giving a
summarized insight into bioinformatic tools and also promoting the future prospects of integrating
humungous data with artificial intelligence and neural network software.

Keywords: microbial metagenomics; anaerobic digestion; bioinformatics techniques; metabolomics

1. Introduction

With the increase in energy demand and rise in fuel prices in recent years, renewable
sources of energy have caught much attention lately. Environmental pollution caused
by burning fossil fuels is reduced by extensive use of renewable energy sources. Envi-
ronment protection and reducing the energy crisis simultaneously could be attained by
using and upgrading various feedstocks such as food waste, agricultural residues, solid
waste, algae, etc. Feedstock-based anaerobic digesters produce biogas and are an efficient
way to overcome the problems related to fossil fuel burning. Biogas containing diverse
microbial communities in digesters is critical in maintaining stable activities and the effi-
cient development of methane [1–5]. Figure 1 shows the process and microbial community
involved in anaerobic digestion. Biogas engendered from anaerobically digested biological
wastes by metabolism of wide-ranging anaerobically active microbes, especially bacteria
and methanogenic archaea, is one of the striking energy carriers that is sustainable and
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renewable and for which substantial research is the need of the hour. The monitoring
methods of standard operational parameters, such as temperature, pH, gas composition,
alkalinity and volatile fatty acid (VFA) concentration, has enhanced the bio-methanation
process and expanded AD systems at the industrial scale [6–9]. These parameters reveal
the present condition of the process, but the exact dynamics, composition, metabolism, or
activity of the anaerobic system is still a mystery to be revealed. [10,11].
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Figure 1. A schematic of the anaerobic digestion process and microbes involved.

Anaerobic digestion is divided into four phases, of which the first three phases, i.e.,
hydrolysis, acidogenesis, and acetogenesis, are carried out by bacterial populations and
the last phase, i.e., methanogenesis, occurs by a specific group of archaea. An AD process
is a complex metabolic system where different types of microbial flora interact with each
other to give a different kind of end-product at different levels. This kind of interaction is
called syntropic interaction with specific anaerobic functionality and has been explored
using several molecular biology tools [12]. The functional group genes were targeted by
designing a primer for the 16S rRNA gene. Using these primers as a phylogenetic marker,
distinct functional group genes were targeted, and analyses were conducted on that basis.
By means of molecular techniques it was evident that microbial flora in anaerobic digesters
is unexplored, so deeper studies must be carried out using bioinformatics and molecular
tools [13]. The efficiency of gas production depends on the steady operation of the anaerobic
digester henceforth maintained by the intricate microbial population [1,2]. Methane produc-
tion can be increased through the strategic enrichment of hydrolytic bacteria, fermentation
bacteria, and advantageous methanogens through functional separation at various time
points [14]. It is possible to inhibit the development of harmful metabolites and promote
the production of chemicals essential for the continuity of anaerobic cell membranes with
the help of micro-oxygen, which improves the overall performance of AD [15]. With respect
to taxonomic arrangements, interaction systems, metabolic links, species similarity, and
diversity, the microbial consortia must be evaluated so that the anaerobic digestion of the
organic waste can produce a high amount of biogas. In the last ten years, the advancement
of high-performance sequencing technologies and cost-reduction has rendered it possible
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to use bioinformatic techniques in aerobic fermentation tanks to analyze metagenomic
data in microbial communities. Many techniques from the field of bioinformatics, which
are based on statistics, data mining, and artificial intelligence, such as Genovo, MG-RAST,
MetaVelvet, etc, [16–18], have been used to enhance knowledge of microbial populations
in anaerobic digesters working under different operational systems. Luo et al. reported
that anaerobic microbial populations in biogas digesters show a strong link between func-
tional gene form and taxonomic pattern [19]. Zhang J et al. revealed that with the help
of functional genes, analysed by network-based techniques and metagenomic studies,
many metabolic pathways can be estimated. Similar findings were reported by Ye L et al.,
who showed the overall microbial metabolic pathways of anaerobes in biogas producing
digesters [20,21]. In addition, it has been found that operational parameters such as organic
loading rate, type of feedstock, temperature, design of digester, alkalinity, concentration of
free ammonia, and hydraulic retention time; influence both functional genes and taxonomic
patterns [22–24]. Efficient analysis of the fundamental biological systems of anaerobic
populations, viz., bacteria and archaea, in anaerobic bioreactors through wide-ranging
sequenced data and also using these data to enhance the production of biomethane, is
still a herculean task. Unavailability of accurate gene-sequencing technology, presence of
very complex microbial populations in anaerobic tanks, operational errors during analysis
of microbial dynamics, disintegrated analysis of microbial population data, and the high
cost of metagenomic analysis, make the overall study of microbial communities a major
challenge [25,26]. Metagenomic study of microbial populations is not only conducted for
anaerobic digesters but also it has been conducted for numerous other habitats such as con-
taminated sites, sea, soil hydrocarbon contaminated sites, and biohydrogen reactors [27–30].
Many researchers have been investigating microbial populations in anaerobic digesters at
different operational parameters. It has been found that although much research is being
conducted in the field of metagenomics, the data generated are not consolidated and are
very diverse and scattered. Therefore, a suitable review in this domain will help to build
a consolidated knowledge. This review has been designed to provide overall informa-
tion of the bioinformatic tools and approaches used for metagenomic studies of microbial
communities in anaerobic digesters. The paper has been divided into various sections.
Section 2 summarises the metagenomic studies conducted so far in anaerobic digesters with
different kinds of feedstock. This section further presents methods of DNA isolation and
DNA sequencing. Figure 2 shows the basic flow chart of the metagenomic analysis process.
Zhang et al. [20] reported that metagenomic studies are conducted in terms of operational
parameters, country of origin, and type of feedstock on which the anaerobic digester is
working. Countries, for example, Singapore, UK, USA, Korea, China, Germany, Denmark,
etc., have been working towards metagenomic studies of anaerobic digesters. Most of the
microbial community analysis has been conducted on food waste as feedstock, followed by
sludge, manure, and horticultural and agricultural residue. Moreover, mesophilic digesters
are more explored than thermophilic digesters for microbial population analysis [31]. With
high temperature, thermophilic AD is more advantageous than mesophilic as frothing
in the digester is reduced and also due to high temperature, degradability of complex
polymers is enhanced. Due to this, enhanced biomethane is obtained and organic loading
rate is also increased [32–34].
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2. Methods of DNA Isolation and DNA Sequencing

Isolation of DNA is the first and most important step in studying the microbial
community. DNA isolation is complex process and to isolate purified DNA is a major task
as it depends on many factors such as sampling method. Therefore, selection of the correct
sampling method is very important and hence the designing of an experiment is conducted
on the basis of sampling for DNA isolation. Repeatability of the experiment is needed to
get more precise results and experimental errors are also reduced. The sampling method
should be kept constant throughout the experiment to reduce errors [35]. Digestate is
mostly collected at a fixed interval of days so that a complete consortium of microorganism
can be analysed. The sample should be pre-treated to remove impurities that could create
errors in the DNA isolation and PCR processes. Pre-treatment of the digestate should be
carried out by rinsing it with phosphate buffer [36]. A general method for isolation of DNA
is followed by centrifuging the digestate and collecting the supernatants. The step-by-step
method of precipitation of DNA using phenol chloroform is followed. Although most
of the DNA-isolation process is carried out using commercially available DNA kits, Bin
dong et al. reported that the most efficient method of DNA isolation is the enzymatic
disruption method. Table 1 lists the DNA extraction processes utilized by anaerobic
digesters in microbial cultures. OMEGA, Precision System Science, MP Biomedicals, Intron
Technology, and MOBio Laboratories are some of the leading companies that provide
commercial DNA-isolation kits. After DNA isolation is completed, the quality of the DNA
is checked through Agarose Gel electrophoresis. The quantity and purity of the DNA
could be checked by measuring the absorbance at 260 and 280 nm, respectively, using
both an UV spectrophotometer and NanoDrop [37]. Purified DNA is stored at −20 ◦C in
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Tris-EDTA for further use. Typically, Pure DNA shows approx. 1.9 absorbance at 260 nm
and 50 ng/nL concentration [38]. Microbial community analysis of anaerobic digesters on
the basis of quality and quantity is conducted rapidly with the help of next-generation
sequencing methods. Sun et al. reported that pyrosequencing programs such as Roche
GS FLX 454 is the most frequently used platform for microbial community analysis of
anaerobic digesters [39]. Some of the frequently used platforms, such as ABI SOLiD™
and reagents for ABI analysis, are platforms for short-read DNA sequencing, upon which
next-generation sequencing depends. Few NGS methods are based on platforms such as
the Illumina (Solexa) sequencing platform and sequencing kit (Ion PGM™ Hi-Q™) coupled
with a sequencer (Ion PGM™), which is controlled by software, namely Torrent Suite™ [40].
A new generation of sensing technology uses nanopores—nano-scale holes—embedded
in high-tech electronics, to perform comprehensive molecular analyses. Sequencing at
the sample source using portable MinION and Flongle devices use inbuilt EPI2ME data-
analysis workflows for real-time species ID and AMR profiling. However, it is used much
less frequently than Illumina to analyse the microbial community of AD and is most often
used as an adjunct to Illumina [41–43]. Although there are various methods of DNA
sequencing, there are various errors that must be addressed. For example, by removing
the error from the de-novo genome assembly, convolutions of the downstream estimations
will be reduced. Many error-correction tools are under development and are being used to
reduce the complexity of the metagenomic analysis process [12].

Table 1. Commonly used DNA-isolation kits.

Brand Name Country Name DNA Isolation Kit Usage Percentage Reference

Clontech USA PCR reaction mix 2% [40]

Zymo Research USA ZR soil microbe DNA kit 2% [44]

Felix bio-tech USA DNA extraction kit 2% [45]
Intron biotechnology Korea I-genomic BYF DNA extraction kit 2% [46]

Magtration System 6GC,
Precision System Science Japan Automated nucleic acid kit 6% [38,47,48]

Macherey-Nagel Germany NucleoSpin Tissue kit+NucleoSpin soil kit 6% [49]

OMEGA USA E.Z.N.A Soil DNA kit 6% [10,50]

Q-Bio gene Australia, Carlsbad,
CA, USA Fast DNA SPIN kit for soil 25%

[51]

MP Biomedicals Illkirch, France, Australia,
Germany, USA [52]

MoBio Laboratories USA MoBio PowerSoil DNA extraction kit 43% [53,54]

- -
CTAB (cetyltrimethylammonium
bromide) based DNA extraction

method
6% [37,55–59]

3. Analysis of Anaerobic Microbial Communities Using Bioinformatic Tools

Metagenomic data are analysed through various bioinformatic tools, which are dif-
ferent for different steps involved in the whole procedure of metagenomic data analysis.
The overall analysis of microbial populations involves different facets of analysis. First of
all, raw sequences are pre-treated using several bioinformatics softwares. The pre-treated
sequences are now sequentially analysed on different levels. As shown in Figure 3, the pre-
treated sequences undergo different analyses. Operational taxonomic unit-clustering analy-
sis, taxonomical compositional analysis, analysis of alpha diversity, analysis of similarity
and difference in the microbial community, functional gene analysis, and statistical analysis
are different attributes which require conforming techniques and platforms. Chowdhary
and Kumar [29] described various software for metagenome data analysis with attached
web functions and links. Similarly, Ju and Zhang [35] focused on frameworks and com-
putational resources available for metagenomic bioinformatics analysis, covering several
data-processing functions, including pre-treatment, binning, annotation, and assembly.
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Nevertheless, these reported computer software and platforms [21,44] have not been fully
applied to anaerobic microbial metagenomics in biogas-producing digesters as the samples
were extracted from various microbial habitats such as soil, ocean, sewage, biofilms, and
bioreactors, etc.
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3.1. Pre-Processing of Raw Sequences

Upon the collection of metagenome data (direct NGS reads), fresh sequence pre-
treatment is quite a crucial move for achieving high-quality readings for the downstream
analysis. A sequenced pre-treatment usually includes (i) removal of linkers and adapters,
(ii) chimera’s exclusion and its replication, and (iii) demultiplexing of barcoded samples
and quality control. There are various software tools (Table 2) which have been used in
last ten years for this purpose. The software tools and bioinformatics platforms include
UCHIME [10,50,60], RDP tools [61], ACE Pyrotag Pipeline (APP) [52], HMMER [62], MG-
RAST [63], Chimera Slayer [64], and Trimmomatic software [65]. MOTHUR and QIIME
(http:/qiime.org/, accessed on 13 November 2022) are the two most-used platforms for
deactivating metagenome data, while UCHIME is the most popular tool for eliminating and
verifying chimaeras from raw sequences. The sequencing reads are organised by barcode
and then all primers and barcodes are cleared after primary processing is complete. The
barcoding is generally carried out using the Nextera XT Index Kit v.2 (Illumina, San Diego,
CA, USA) [66]. Quality control must be carried out for further analysis. For example, all
sequences under 150 bp are disregarded by the RDP Pyrosequencing Pipeline’s quality
control methodology, and samples containing more than one unknown nucleotide, forward
primer mismatches, or have poor base quality ratings (Phred quality scores less than 25)
require additional investigation [61]. In addition, the pre-cluster method is typically used
to combine sequences with 1 bp difference.

http:/qiime.org/
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Table 2. Different analysis type and the common software used.

Analysis Type Name of Software Reference

Measurement and analysis of performance, systemic
metabolic processes, annotation of genomes, study of

principal coordinates, statistics based on canonical
correspondence, data from filtered pyrosequencing runs.

MG-RAST [65]

Removing chimaera sequences, ensuring high quality, the
assessment of variety, richness, and abundance of base

coverage, study of principal coordinates, analysing Good’s
scope of coverage, Alignment and quality control of

sequences, sample size normalisation

MOTHUR [52]

Shortening of reads Trimmomatic software [62]
Shortening and aligning reads HMMER [67]

Identified sequence reads ARB rRNA database [67]
Assembling of genome CLC Genomics workbench [57,62,63]

Combination of end-pair reads FLASH [17,68]
Analysis of microbial population relation MetaMIS [17,65,68]

Interaction network topology analysis Gephi [17]

CLUSTAL_X Iterative sequence alignments; gap
editing [17]

PAST Illustration of beta-diversity metrics [57,62]
mPUMA and Trinity Assembly and processing sequences [65]

Chimera Slayer Chromosome complexes elimination. [69]
ClustalW Alignment of sequences [49]

INFERNAL aligner Alignment of various clean sequences [10,49,70]
SAMS Evaluation of the quality of sequences [70]

GenDB genome annotation system Long-read assembly and
functional annotation [10]

Regano Code-sequence prediction [60,71]

Pipeline
Aligning, trimming, and sorting

sequences; analysing biodiversity;
naming sequences by taxonomy

[60]

RDP (Ribosomal Database Project) Differences in community architecture [69]

Fast UniFrac Illustrate co-relations between microbial
structure and attributes [69]

CANOCO Identify causes and effects of microbial
communities on reactor efficiency [69]

XLSTAT Comparison of taxonomies between two
samples using pairwise statistics [72]

STAMP MG-RAST [65]

3.2. Analysis of OTU Clustering

Various clean sequences are aligned with sequence aligners such as Py-NAST [55],
INFERNAL aligner [61], MOTHUR [71], ClustalW [36], and MUSCLE [67] in conjunction
with the bacterial and archaeal database SILVA [60]. Figure 4 is a model diagram for func-
tional hits of COG. Usearch software is then used to cluster linked sequences into operating
taxonomy units (OTUs) using the average adjacent clustering algorithm (Usearch-global
command) [72]. Ninety-seven percent sequence similarity is typical for sequence classi-
fiers such as RDP Bayesian classifier [61], UCLUST-RDP classifier [73], MEGA/MEGA5
MEGA 10, and MEGA X [36,60,74]. Of note, the normalization of sample size can be
accomplished using a program such as MOTHUR by re-sampling the same number of
readings for all samples depending on the smallest sample size. OTU-based analysis of
bacterial and archaeal sequences can then be further performed. For example, utilizing the
R-Venn-Diagram programme, Yun et al. [75] examined the microbial community dynamics
of ammonia inhibition during its mitigation by internal dilution in high-rate anaerobic
digestion of food-waste leachate. Begmatov et al. studied OTUs for taxonomic analysis
by searching against the SILVA v.138 rRNA sequence database via VSEARCH v. 2.14.1
algorithm 28. Similarly, MiDAS 414, a recently developed reference database of full length
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16S rRNA genes for waste-water treatment plants was used for species-level taxonomical
analysis [66].
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3.3. Analysis of Alpha Diversity

A 97% cut-off level of OTUs was used for diversity-indices calculation using Usearch
v.1127 [66]. As a rule, the Chao index characterizes the richness of a community, while
the Shannon and Simpson indices characterize the diversity of a community [76]. The
alpha-diversity analysis based on OTUs, which is related to the Chao1 wealth analyser, is
used to evaluate the abundance of microbial species or diversity of microbial organisms in
different biogas-producing systems (Chao1); the abundance-based species-richness estima-
tor (ACE), the Shannon–Weaver diversity index (Shannon) and the Simpson diversity index
(Simpson) are used for the MOTHUR program, the VEGAN library software package [77],
and the RDP Pipeline [61]. Of all the indexes, there is a positive correlation between Chao1,
ACE, and Shannon and microbial culture biodiversity, although Simpson has negative
correlation with it. In particular, the Shannon and Simpson indices can be used to assess
biodiversity, while the Chao1 and ACE indices can be specifically utilised in the microbial
communities to compute the total number of species (abundance). Therefore, the greater
the Good’s distribution, the more the results of sequencing represent the real condition.
One key benefit of utilising the presented equations to quickly estimate the biological
diversity of microbial communities is that it allows for straightforward estimation, which
is not the case with other diversity indices [78]. Simpson and Shannon indices combine
richness and evenness into a single measure, obscuring other aspects such as the economic,
ecological, and social value of each species [79]. Complex multivariate analyses such as
canonical correlation analysis must be undertaken to alleviate the limits of biodiversity
indexes and provide more important information on environmental variables connected
with species in a microbial culture. In addition, the alpha rarefaction curve is used pri-
marily to detect sequencing adequacy. It represents an association between sequencing
numbers and species occurrence, which is typically developed using MOTHUR, QIIME,
and R tools by randomly subsampling OTU sequences. The plateaus reflect adequate
sequencing depth for alpha-rarefaction curves, while the monotonically rising portion is
evidence of inadequate sequencing. For instance, Smith et al. [80] reported on a pilot-scale
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thermophilic anaerobic digester microbial culture system handling poultry faeces and
contrasted the rarefaction curves for 16 S rRNA genes and various sequence similarities.
Results proved that the rarefaction curve was asymptotic with similarity levels of about 97
percent, suggesting that the sequence dataset had adequately sampled variability in this
study and that adequate sequence complexity at these levels was achieved. However, the
amount of OTUs at 99–100% was still increasing, which implies much more undetected
diversity at this stage [80].

3.4. Metataxonomic Analysis

Compositional analysis on the basis of taxonomy is the basic information that is ob-
tained for anaerobic microbial community analysis. First, the database is compared and
categorized, then, the sequences are taxonomically classified. Several sequence databases
such as EzTaxon-e database [62], RDP database [81], SILVA database [82], and GenBank
NT/NR database [83] are used to filter the unknown sequences through a blast search.
The confidence level is generally 80–90%. Thereafter, using software such as Bergey’s
taxonomy and Bayesian classifier [84,85], the resultant-matched sequences are allocated
phylogenetically to the taxonomic classification. The analysis of taxonomic classification of
anaerobic microbial populations is conveniently carried out on the basis of family, genus,
order, class and phylum. This classification could be represented in a single multilevel
species-taxonomy diagram using the software Krona [63]. Moreover, MetaPhlAn [86],
PhyML [64], and CL community software [62], can also be used to find the phylogenetic
composition of microbial populations. Zhang et al. [87] reported that the most dominant
species were Trichococcus in first stage, i.e., hydrolysis, Amino bacterium in the second stage,
i.e., acidogenesis, and Levilinea in the third stage, i.e., methanogenesis, in a self-designed
three-stage anaerobic tank digesting food waste. Moreover, the dominant species of bacteria
changed with a change in the feed stock found in the same anaerobic tank co-digesting
horse manure and food waste. Archaeal species Methanosarcina and Methanobacterium and
bacterial species Aminobacterium and Proteiniphilum were dominant species compared to
mono-digesting species in the anaerobic tank [88]. Figure 5 shows a model diagram for the
taxonomic hit distribution at the phylum level. The model graph shows the microbial com-
munity present in a digestate sample from an AD fed on agro-waste. In many studies, it has
been found that the dominant species were altered with alterations in operating conditions
such as pre-treatments [89] HRT, [47] OLR (organic loading rate) [57], temperature [90],
etc, and type of feed stock. Metataxonomic analysis of a single and two-staged anaerobic
digestion revealed that the species Clostridium, Bacteroides, Desulfovibrio, Lactobacillus, Lacto-
coccus, Longilinea, Methanosaeta and Syntrophus showed changes in structure as changes in
parameters such as measures of efficiency, hydrodynamics and kinetics of the performance
were recorded [91]. In a recent study, a high-throughput sequencing method showed a shift
in the archaeal and eubacterial population due to the inclusion of hydrogen gas in AD [92].

3.5. Study of the Similarities/Differences in Microbial Taxonomic Compositions

Based on the study of the composition of microbial taxonomy, study of the dissimilarity
and similarity of different samples is carried out and the findings thus obtained can typically
be reported in two ways, one being a statistical analysis plot and the other a ternary plot.
Using a two-tailed Welch t-test with an alpha value of 0.05, STAMP [93] has also been
used to conduct a pairwise statistical comparison of taxonomy between two samples. For
example, Yu et al. [94] performed a comparative study between the relative abundance of
traditional anaerobic digester (CAD) microbial communities and the “anaerobic dynamic
membrane bioreactor” (ANDMBR) at the genus level, which resulted in a statistical analysis
of differences. The definition of comparative excess is the fraction of sequences in a sample
that are identical to a given taxon expressed as a percentage (percent). The findings suggest
that the ADMBR includes a higher concentration of the genus Methanosarcina and a smaller
volume of the genus Methanosaeta than the CAD in a statistically relevant way. Conversely,
in the ANDMBR, Methanosarcina and Methanosaeta were more abundant as a whole than
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in the CAD [94]. Microbial taxonomic compositions in the various samples can be shown
via a ternary plot [95]. To create a ternary plot in R use the ‘ternary plot’ function in the
‘ggtern’ 3.3.5 package [96,97]; depending on the relative existence of the plot, only the
species present in all samples are stored and imported. The ratio of each species’ relative
abundance to its overall abundance across all samples is used to describe the abundance of
each species in each sample. Every species is distinguished by an exclusive point in the
ternary sequence, and the proportions of the points correspond to the relative abundance.
For example, in anaerobic granules from digesters fed with cannery wastewater, brewery
wastewater, and milk wastewater, Lu [98] investigated the distribution of specific bacterial
and archaeal populations using ternary plots and discovered that the majority of high-
abundance bacterial phylae, such as Chloroflexi, Bacteroidetes, and Proteobacteria, were shared
by all three types of granules. Around the same time, the phyla Methanosaeta occupied all
cannery and brewery granules with more members of the phyla Methanobacterium found
in cannery granules. The diversity and consistency of microbial communities between
various anaerobic digesters can be distinguished using ternary plots. A model diagram
depicting the taxonomic hit distribution is shown in Figure 6. In a metataxonomic analysis
of an anaerobic digester fed with corncob, three different approaches were used to reveal
that there is a noticeable change in the microbial consortium in the AD [99].
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3.6. Statistical Multivariate Analysis

Through a brief literature survey concerning anaerobic microbial community analysis,
the most commonly used multivariate-analysis techniques included “main coordinate
analysis” (PCoA) [56,70,100], “non-metric multi-dimensional scaling” (NMDS) [49,101,102],
“main component analysis” (PCA) [52,90], “redundancy analysis” (RDA) [36,48], and
“canonical correspondence analysis” (CCA) [40,58,62]. All of these multivariate methods
share the same goal of displaying comparable objects in close proximity to one another and
dissimilar objects at a greater distance from one another [103]. Based on the data sets and
computational methods employed, these methods are typically classified as either unre-
stricted (principal component analysis, principal component ordination, and NMDS) or
constrained (ratio dissimilarity analysis, and canonical correlation analysis) (linear versus
unimodal). An important distinction between PCA and PCoA in uncontrolled ordination
work is that in PCoA the starting point vector is a parallel or dissimilar distance sequence,
which is distinct from the PCA starting point for data collection. Nevertheless, in the
study of complicated metagenome results, PCA, PCoA [104], QIIME [56], MOTHUR [70],
and MG-RAST [17] have identified an increasing number of applications. For example,
PCoA was used to compare populations of specific digesters using the same method of
stabilization of biosolids and compared population differences between samples using
different methods of stabilization [100]. In another case, PCoA studied the changes in the
bacterial community structure in response to OLR, showing that the three-fold digesters
behaved similarly at each point [40]. In comparison, with various OLRs, microbial pop-
ulation configurations shifted significantly from stage 1 to stage 4. Although there was
negligible variation in community structure between stage 1 and stage 2, the enhanced OLR
significantly altered the group structure in stage 3. The decreased OLR in stage 4 moved
the bacterial population structure down to those in stage 1 and 2, but not absolutely [40].
Notably, it was more challenging for PCoA to evaluate variable participation as PCoA
was unable to provide a direct link between the main components and environmental
variables, so PCoA was preferred over PCA when a ton of input data was lacking [78].
Another unconstrained ordination technique, nonmetric multidimensional scaling (NMDS),
is commonly used to describe the complexity and resemblance of microbial population
systems in anaerobic digestion across time [48,105], or in several digesters under vari-
ous environmental conditions, such as specific OLRs, temperatures [36,57], and additive
(e.g., zeolites [106]) using the R package vegan [107]. In general, the NMDS technique
produces the high dimensionality of the data by mapping comparable datasets together
and mapping dissimilar datasets with larger stepped distances [103]. On the other hand,
PCA is limited to using only the “Euclidean distance matrix”, but NMDS and PCoA are
not limited to any particular distance matrix [108]. In general, however, NMDS is more
computer-intensive than PCoA and PCA [103], resulting in a longer time needed for NMDS
research. RDA and CCA are two commonly used methods for analysing metagenome data
from microbial communities in restricted ordination science. These two approaches are
very close, except that RDA is focused on linear models while CCA is based on unimodal
interactions between organisms and climate [105]. For RDA plots a Hellinger transfor-
mation is performed, and the plots are created using vegan 2.5–7 package [97]. Next, a
technique utilizing detrended communication analysis (DCA) can be conducted to help
users choose which approach to follow [109]. The technique primarily involves four phases,
i.e., (i) in the programme, selecting ‘DCA’ for indirect gradient analysis (e.g., CANOCO),
(ii) choosing detrending by lines, (iii) choosing the Hill scaling for ordination-score scaling
and (iv) selecting the other choices to run the study [109]. Through comparing the results of
the measurements of gradient duration with 4.0 and 3.0, it is possible to quickly identify the
most appropriate method. Specifically, unimodal strategies such as CCA should be used
when the gradient duration value reaches 4.0; whereas the linear option is likely to be a
better alternative if the value exceeds 3.0. RDA and CCA work reasonably well in the scale
of 3 to 4 [109]. Because RDA and CCA are very close, RDA is given as an example by a brief
case study. A CANOCO device (version 4.5, Wagenignen, The Netherlands) was used to
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conduct the RDA ordination. The bacterial community structure has been demonstrated to
be affected by digester performance and operational factors [36]. The arrows reflect various
environmental factors (e.g., operating conditions) in a standard CCA diagram, and the
longer the ray is, the greater the environmental factor’s effect. A strong association between
two environmental variables is seen where the angle between the environmental factors is
extreme, while an obtuse angle corresponds to a negative correlation [108]. Reactor perfor-
mance and operating parameters were examined, including temperature, pH, alkalinity,
and volatile fatty acids, utilising CCA with XLSTAT methodologies to clarify the relation-
ship between microbial (bacterial and archaeal) species and these factors (VFAs) [40,58,110].
The differences in sample periods among class-level microbial community composition and
digester physicochemical characteristics is another great illustration of the anaerobic diges-
tion method for the oxidation of organic industrial pollutants [111]. A Mantel test was per-
formed using the integrated Mantel function in R, while the coordinates from a RDA plot of
the material/inoculum combinations were transformed into distances using the geosphere
1.5–14 package (https://cran.r-project.org/web/packages/geosphere/geosphere.pdf, ac-
cessed on 13 November 2022) and Spearman method. The AD kinetic parameters were
transformed into distances using the Euclidian method [97].

3.7. Metatranscriptomics and Application

Metagenomics data may be annotated dynamically utilizing bioinformatics frame-
works or methods such as BLAST in databases (e.g., SWISSPROT [112], COG, KEGG [113]),
MG-RAST (SEED) [65], GenDB [114], and IMG/M [115]) in order to obtain knowledge
beyond taxonomic compositions. In particular, BLAST has been mainly used against var-
ious databases for the functional annotation of short-metagenome contiquity, while the
GenDB genome-annotation software is usually responsible for the functional annotation
of long-assembled contiquity [114]. The MG-RAST framework is a SEED-based program
that allows users to access automatic analysis metadata [65]. IMG/M offers researchers
a three-dimensional (genes, metabolites and functions) genome annotation system and
comparative analysis of microbial genomes using several methods such as KEGG [116],
InterPro [117], Pfam [118], and gene ontology [119]. Hybridization methods focused on
microarrays are also helpful in the study of genome diversity and bacterial connectiv-
ity [120]. Although numerous bioinformatics methods for gene functional annotations have
been developed, some of them, such as single genome genetic prediction tools, are not
well suited for complex metagenomic data sets of anaerobic microbial populations due to
heterogeneous sequence structure, length, and error [121,122]. It is clear that successful
gene-classification methods (e.g., IMG/M and KEGG) can still be widely used to classify
protein-coding areas, which is one of the main issues in microbial metagenomics studies.
Such an example is the research by Campanaro et al. [65], which used bioinformatics
methods (e.g., KEGG, COG and SEED) to model functional associations between microbial
species involved in the AD process and to identify key microbial genomes that encode
enzymes involved in different metabolic pathways. Microbial co-association networks
include knowledge of the function of time or other external factors on the nature of popula-
tion organization. Group metabolic networks, through recognizing metabolite exchanges
and species-specific resource requirements, can provide a mechanistic connection between
organisms [123]. In fact, MEGAN can also be used to systematically evaluate various
metagenomes focused on the SEED hierarchy and KEGG pathways [68]. In reaction to
minor disruptions, microbial populations may shift unexpectedly, related to changing con-
ditions or several stable states. However, with time-varying networks, temporal variability
in microbial encounters can be observed [124]. Therefore, more experiments under various
operating conditions (e.g., specific substrates and temperatures) are likely to enable the
anaerobic microbial genome database and related applications to be expanded in the near
future through increasingly powerful tools and algorithms.

https://cran.r-project.org/web/packages/geosphere/geosphere.pdf
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4. Application of the Analysis of Anaerobic Microbial Community on Biogas Production

Exploration in metagenomic data via bioinformatic tools has helped researchers to iden-
tify many important bacterial and archaeal species in anaerobic digester tanks [17,65,125].
Studies have also revealed many different parameters such as, changes in microbial pop-
ulation according to the alteration of operational parameters, methanogenesis pathways
and bacterial metabolism [83,89], and performance of anaerobic digesters with respect to
the microbial community [126–128]. Furthermore, technologies are being established in the
field of metagenomics using new and improved bioinformatics tools, helping researchers to
gain knowledge about new developments in the field of biogas production. Various devel-
opments, viz., improved and optimized AD processes, pliability and rigidity of metabolic
pathways, analysis of antibiotic-resistant genes and mathematical modelling of microbial
communities are summarized.

4.1. Development of Improved AD Processes

The optimization and improvisation of AD are achieved by improving various strate-
gies such as pre-treatment of feedstock [129], optimization of operational parameters [130],
design optimization of the anaerobic digester [87,88], addition of supplements such as
additives [131], etc., and microbial community analyses are mostly carried out for all the
alterations conducted for optimization of AD. Zhang et al. [131] reported that the pro-
cess of anaerobic digestion in both pilot-scale as well as lab-scale digesters was improved
by adding activated carbon as a supplement. 16 S rRNA genes were pyrosequenced to
find that the dominant phyla, i.e., Proteobacteria, Elusimicrobia and Firmicutes, increased by
1.7–2.9 times due to supplementing the digesters with activated carbon. Another study
conducted on hydrogenase and nitrate reductase at the transcript level revealed that Blautia,
Acetitomaculum (acetogens), Selenomonas, Wolinella (fumarate and nitrate reducers) and
Desulfovibrio (sulfate reducers) were the main cause for H2 production in AD [132].

Recent research revealed that in three-staged digesters, all three stages, that is hydrol-
ysis, acidogenesis and methanogenesis, were optimized and selectively enriched at every
stage with respect to the microbial community of each stage, i.e., hydrolysing bacteria,
acidogenesis bacteria, and methanogens. That study was conducted using pyrosequencing
analysis, and 16 S rRNA high-throughput sequencing is yet to be performed [87,88]. In
other research Suksong et al. [130] revealed that the highest methane yield was obtained at a
carbon to nitrogen (C:N) ratio of 30:1, total solid (TS) content of 16%, and feedstock to inocu-
lum (F:I) ratio of 2:1. This inference was obtained by optimizing the operational parameters
such as TS, C:N ratio, and F:I ratio. The enhanced production of methane gas was due to
the selectively enriched microbial community, viz., Clostridium species, Methanoculleus
species, and Ruminococcus species [130]. A recent study revealed that despite producing
methane at a rate of 241–247 mL/g VS, the thermal hydrolysis process-anaerobic digester
(THP-AD) reactors collected around ~1999 mg/L of propionate. About 30 significant
“metagenomic assembled genomes” were augmented and ~70 metagenome-assembled
genomes were retrieved from that metagenomic study. A study of genome-centric metage-
nomics revealed the recovery of 68 metagenome-assembled genomes (MAGs), 32 of which
were significantly enriched [133]. A study of the effect of carrier-based silica-lignin on anaer-
obic digesters showed that maximum bacterial count was noted during dehydrogenase
phase [134]. The overall improvement of AD can be achieved by study of genome–centric
analyses for understanding the whole microbial community. This could be accomplished by
developing an assembly of whole functionality of the microbial community and assessing
its coding gene annotations [135].
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4.2. Development on Metabolomics Analysis

Treatment of unmanaged waste and production of biomethane gas can be accom-
plished with the help of highly efficient anaerobic reactions. However, the efficiency of the
anaerobic digestion processes could be increased by gaining sufficient knowledge about
the metabolic pathways of methanogens. Recent studies have mentioned the coupling of
metagenomic sequence analysis along with radio-isotopic analysis to disclose the main
metabolic pathways of dominant methanogen species present in the anaerobic tanks, di-
gesting manure or sludge [17]. Results from the two different analysis methods have shown
inconsistencies, i.e., the metabolic pathways revealed by radio-isotope analysis were differ-
ent from the results determined by metagenomic analysis. Many similar studies have been
carried out on networks of microbial communities and their metabolic pathways with the
help of several bioinformatic tools and techniques. Likewise, research on metabolic path-
ways and networks of microbial communities using bioinformatics technology are available
in automated AD systems. Zhang et al. [18] reported that a food-waste-digesting anaerobic
digester was optimized by enriching it with activated carbon. Analysis of metabolic path-
way with the help of KEGG-pathway analysis revealed that there were significant changes
in the microbial community and their metabolic pathways, which was also confirmed by
taxonomic tree analysis. The results of both analyses showed that the main metabolic
pathway in ADs enriched with activated carbon was the metabolic pathway of propanoate
which transforms propanoic acid into acetic acid. Lipid metabolism and methanogenesis
pathways were also improved and it was found through the microbial community analysis
that the activated carbon encouraged the growth of the species Methanosaeta and Geobac-
ter, which form a highly populated syntrophic microbial community [18]. Jiang et al. [136]
recently studied the mcrA (methyl Co-A reductase) gene and 14C-labelled sodium ac-
etate by using a pyrosequencing technique and radiolabelling technique to find out how
the relationship between dominating methanogen pathways and TAN (total ammonia
nitrogen) is altered by change in syntrophic acetate oxidation and acetoclastic pathways,
which further results in enhanced methane formation in AD. It was also found that the
higher carbon dioxide and methane ratios (2.1–3.0) in high total ammonia nitrogen (TAN),
approx. 11.1 g/kg wet weight, digesters show a maximum of 75% methane production
through hydrogenotrophic pathways, whereas, only 23% methane production was through
hydrogenotrophic pathways when the ratio of CO2 and CH4 was approx. 0.1–0.3 in low
TAN (0.2 g/kg wet weight) digesters [136]. Thus, the relation between TAN and metabolic
pathways could be optimized to manipulate the syntrophic and acetoclastic metabolic
pathways. In another study of continuous AD, a 16 S rRNA gene-sequencing technique
found that there was a huge change in the microbial community during its adjustment
to an environment with a high concentration of ammonia (10 g NH4+-N/L) [137]. A hy-
drogenotrophic species, Methanoculleus spp. and a syntrophic acetate-oxidizing bacterial
species, Clostridium ultunense, were found to be growing rapidly and increasing in popula-
tion at high levels of ammonia (>7 g NH4+-N/L), revealing a hydrogenotrophic pathway as
a major metabolic pathway [137]. A major shift from acetoclastic pathways to more flexible
and complex metabolic pathways was seen at 5 g/L NH4+-N concentration [138]. In an-
other study, changes in the microbial community due to change in temperature was found.
Metabolic pathways were studied in anaerobic tanks digesting activated sludge, working
at thermophilic temperature range (55–65 ◦C) and 2–4 days of HRT (hydraulic retention
time) [83]. At higher temperature, i.e., 55–60 ◦C, Methanosarcina species were found to be
dominant as revealed by 16S rRNA pyrosequencing analysis. However, the analysis also
revealed that if the temperature is raised to 65 ◦C, the population of Methanosarcina species
is significantly reduced, resulting in a decrease in overall methane yield and deposition
of VFA. Higher temperature encouraged the syntrophic acetate oxidation as found by
stable-isotopic signature (δ13C) analysis. Similar results were seen when HRT was reduced
to two days [52]. In a recent study, raw sequence data were subjected to quality assurance,
splitting, and grouping in order to create OTUs, and then species taxonomic classification
was conducted. “Canoco5” was used to conduct the analysis for redundancy. This study
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revealed that feedstock breakdown sped up as a result of co-digestion, which enriched
the dominating hydrolytic bacterium Defluviitoga [139]. Formation of phosphine in an
anaerobic digester was investigated in a study which revealed that the bacterial species Es-
cherichia and Ruminococcaceae were found in abundance. Two types of databases: KEGG
and MetaCyc pathway revealed the close relation of phosphine synthesis [140]. Bioaugmen-
tation in anaerobic digesters helps in recovery of VFA, and a metabolomics study revealed
that during the early steps of bioaugmentation of VFA, the acetoclastic microbial population
plays the major role in methanogenesis and neutralizing the pH [141]. In a recent study
of a multi-staged anaerobic digester fed with food waste, an analysis was conducted on
the foaming mechanism in the digester. The results of the metabolomic analysis revealed
that the metabolic molecules that have higher expression, are up-regulated, and have high
surface activity are the major contributors in foaming [141]. Metabolomic analysis during
co-digestion of corn straw and pig manure showed the hydrogenotrophic and acetoclastic
pathways working during the process [142]. Another study using beta-diversity analy-
sis revealed that richness in species is more significant in thermophilic digesters than in
mesophilic digesters [143].

4.3. Development in Identification of Antibiotic-Resistant Genes

Metagenomics methods, bioinformatic tools and techniques, and high-throughput
sequencing are successfully used to identify antibiotic-resistant genes as disposal of the
sludge or digestate in open environments, specially on land, may cause health risks. Lee
et al. [144] presented in their study a characterization of wastes such as. sludge, food
waste and manure in terms of amount of antibiotic-resistant genes. The result of the
characterization revealed that comparative amounts of antibiotic-resistant genes were found
to be highest in manure and the least amount was found in food waste. The results showed
that the diversity and structures of antibiotic-resistant genes varies with variation in the type
of substrate [144]. In a recent report, Luo et al. [126] reported a significant overall amount of
antibiotic-resistant genes, 7 × 10 −3 to 1.1 × 10 −1 copies of ARGs/copy of 16 S rRNA DNA,
in tanks digesting, industrial waste and manure. The digestate from thermophilic anaerobic
digesters has a lower amount of antibiotic-resistant genes [126], which makes thermophilic
digesters more dominant for removing pathogenic microorganisms [145,146]. Antibiotic-
resistant genes and bacteria resistant to antibiotics were observed in ADs digesting pig
manure through HTFQ PCR (high-throughput fluorescent quantitative PCR) and Illumina
MiSeq sequencing [147]. Three transposons and 83 antibiotic-resistant genes were detected
from the above-mentioned sequencing techniques. Also, some resistant genes such as
tetracycline and Macrolide-lincosamide-streptogramin decreased after the AD processes.
However, the comparatively large quantities of florfenicol, sulfa drug, aminoglycoside,
chloramphenicol, and amphenicol-resistant genes were improved by 52–270 times [147].
Biogas digestate has been used as manure for farmlands for a long period of time and
the presence of antibiotic-resistant genes has created an increment of the population of
antibiotic-resistant bacterial strains causing contamination of cropland soil [147]. Therefore,
to minimize the proliferation of antibiotic-resistant genes in farmland soil, remedial and
regulatory steps must be employed. Recent research has revealed that pre-treatment of
substrate, i.e., sewage sludge with microwaves, helped in reducing the antibiotic-resistant
genes, which, however, increased in the AD but in nominal amounts [110]. Hence, pre-
treatment with microwaves is one of the easy and potent techniques for removing antibiotic-
resistant genes from bio-manure made from AD digestate. To better understand antibiotic-
resistant and bacterial species, environmental metagenomics analysis techniques have
been explored and developed; for example, an online open analysis portal, ARGs-OAP
is one such platform which consists of a databank named SARG version 2.0 [148]. The
SARG databank consists of a lot of sequence data present in ARDB, CARD, and protein
databanks, namely NCBI-NR [148]. For easy and complete access to data from the ARGs-
OAP databank online portal, http://smile.hku.hk/SARGs (accessed on 13 November 2022)
can be browsed.

http://smile.hku.hk/SARGs
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4.4. Creation of the Modelling and Optimization of Microbial Population Dynamics

Some recent trends have revealed many developments in microbial community-
dynamics modelling and how these dynamics are related to operational and physiochemical
parameters. For example, in order to promote rational control and intervention in microbial
communities, Hanemaaijer et al. [149] determined analytical modelling methods for mi-
crobial community dynamics, ranging from methagenomics to community structure. The
study was dedicated to two kind of modelling methods including a naïve coarse-grained
model which could resolve the extrapolating problem from the investigational informa-
tion, and the other model was a mathematical model which could assimilate prevailing
physiochemical, physiological, and genomic data [149]. The first model has established
unusually low consideration, although it can possibly be improved to be a more complete
genomic-level stoichiometric model which can perform as mixed data integrators. The
second model has been primarily considered and used because of its ability to exploit data
and extrapolate power [149]. Similarly, Succurro et al. [150] gave a summary of mathemat-
ical models of microbial ecosystems found naturally and accentuated that to develop a
hypothetical account of a microbial community one should choose an exact problem. A
current agreement is that it is time for more progress to be made in the large theoretically
defined methods, the methagenomic microbial interface simulators (e.g., MetaMIS [151])
and the mathematical amalgamation tools (e.g., MetaTopics [152]) to expand the population
dynamics area of modelling from a mere explanatory example to a whole biogeochemical
concept [150,153,154]. Further, Succurro and Ebenhöh [155] published a detailed review of
mathematical modelling of microbial ecosystems, which determined two main divisions of
mathematical approaches (differential equation models and constraint-based stoichiometric
models) and presented the current purpose to the analysis of microbial communities. The
benefits of these two models are determined tactics that can effectively provide a macro-
scopic illustration of microscopic biological systems [155]. In order to move forward, an
integration modelling method has been shown to recognize growing patterns in microbial
classification and their dynamics delimited by diverse spatial-temporal phenomena [155].
It was proposed that simulators and researchers would work together from the theoretical
phases of the investigation plan to guarantee a precise mixing of concepts and experi-
ments [150]. With the help of mathematical models, a common platform could be made
to understand the structures of complicated bacterial communications. The results and
information attained from the modelling of microbial populations help in controlling and
enhancing the AD process by optimizing the microorganisms. In this regard, many signifi-
cant advancements in microbial population systems alterations have been made. Digester
conformation, type of feedstock, environment conditions and operating factors (e.g., tem-
perature) are the important pushing aspects for community-structure deviations [156]. For
example, in an anaerobic tank digesting pig excreta, the genus Methanocorpusculum was
in the majority at pH 7.0, and at pH 6.0 and 8.0, genus Methanosarcina was dominant,
showing that by controlling pH dominant species of microbial populations can be opti-
mized [157]. Likewise, some research has been conducted to produce a feedback system
which can efficiently help in detection of any malfunction in the overall system. For exam-
ple, alkalinity is used as a sign or indicator for steadiness of the process in an AD [158–160].
So far these technologies have brought breakthrough advances which have helped in better
understanding AD processes, however imaging the multifaceted 3-D multiple species
population nevertheless creates substantial challenges in experiments, so the knowledge
gained so far and utilized for optimizing and modifying existing AD processes needs to be
researched further.

5. Restrictions and Predictions of Bioinformatics Analysis on Microbial Metagenomics

Analysis of the microbial community, i.e., metagenomic analysis of anaerobic digesters
has been frequently explored. Most countries are working in the field of metagenomics
and meta-transcriptome analysis and microbial community analysis of anaerobic digesters.
However, there are many challenges that need to be tackled before bioinformatic analy-
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sis becomes a general technique. Advancement in sequencing technology has made the
sequencing process rapid and easy and therefore has caused some serious problems in
data storage. For example, a huge amount of data, of about 600–1000 GB per run is being
produced by sequencing data through Hi Seq. 2500, and similarly approx. 1,000,000 reads
are produced by 454 pyrosequencing on each sequencing run, which is equal to about
0.7 GB data [146,161]. Again, raw sequences increase the sequencing data up to 10–20 times
for each analysis [161]. A major challenge in the field of bioinformatics is the enormous
volume of data which is being produced due to sequencing [122]. Furthermore, metage-
nomic research based on next-generation sequencing is still naïve. Recently sequenced
metagenome data should be provided with more storage space and statistical sustenance.
Therefore, to explore microbial communities of anaerobic digestion a common program
or platform for the storage of enormous data must be created. Also, statistical methods,
machine learning, artificial intelligence, and data mining are some of the fields from which
the tools and techniques of bioinformatics have been derived for data management [162].
However, the original data of metagenomics which are generally fed into bioinformatic
software differ greatly with the genomic data [162]. Genomic data analysis has been car-
ried out using various computational approaches; however, there are some issues that
need to be resolved. Humongous sequence data is an insuperable problem for assembly
and binning which can be accredited to the incomplete calculating ability and explicit
internal storage ability [39]. Moreover, there occurs an absurdity between precision and
data managing rates because assembly and binning according to the taxonomy requires
numerous hours to numerous days [161]. Therefore, more effective analysis tools should
be developed that are rapid in completing analysis tasks such as the technology present
in super computers and also provide more precise results. Another reason that has been
found to be an obstacle in metagenomic analysis is the excessively high amount of cost
of metagenomic sequencing, consequently, repeatability of experiments become less fea-
sible, and hence it is difficult to confirm the significance of produced data [33]. Thus,
to obtain more consistent and unfailing results, it is advisable to sequence in triplicate.
Campanaro et al. [163] in their study stated that biasness of sequenced data of amplified
16S rRNA genes is mainly because of the improper matching of the universal primers of
all the target genes and also because of lesser-known hypervariable regions [163]. The
usage of several indicator genes and transcriptional studies are therefore suggested in
order to improve the estimation of profusion for important taxonomic groups [163]. In
fact, most bioinformatics analyses to date have relied on the contrast of sequences with
reference databases. Practices for using existing databases for evaluating bioinformatics,
however, may be troublesome given the potential incompleteness of datasets. Therefore,
to promote reliable and efficient study of anaerobic microbial metagenomics, upgraded
databases with better quality data are required. Fourth, metagenomics strategies provide a
deeper insight into microbial populations, but have primarily been used for concise and in-
formative methods to react to the original question [122]. There are still differences between
research, pilot and field data, and extrapolation. In addition, there is still a substantial gap
in what we can know from microbial communities through bioinformatics methods and
what species and gene functions we can regulate, because the microbial environment is an
extremely complex network of diverse spatio-temporal interactions between microorgan-
isms as well as between microorganisms and the ecosystem [164]. In order to fill this void,
further information should be offered on how the genetic properties produce their dynamic
behaviours and the dynamic interactions between individual microorganisms. In fact, nu-
trient amounts and fluxes within microbial species should also be thoroughly investigated.
Finally, the existing scope of mining of anaerobic microorganism metagenomics data, based
primarily on clear sequence similarity searches, may not be sufficient as microbial genomes
should be the basis for microbial ecology [165]. For more comprehensive data mining, it
is highly recommended that methodologies focused on bioinformatics be combined with
core biotechnological approaches (e.g., TRFLP, FISH, PCR-DGGE and qPCR [1,27,166]).
Nevertheless, there may still be a long way to go to the ideal point where digester efficiency
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can be precisely managed on the basis of anaerobic microbial community real-time analysis
of methagenomics information. A large-scale precision-fermentation program using an
artificial neural network is proposed to accomplish these efforts and to continue with the
production of insightful solutions. With an artificial intelligence (AI) workflow, vast data
(e.g., elementary feedstock materials, operating parameters, and microbial population
metagenomics) derived from extensive past AD activities can be built into coevolutionary
neural networks that can be further refined into useful networks such as deep Q networks
using experimental data as training details. A better combination of regulatory parameters,
digester sorting, and microbial population information can be proposed in a useful network
with new feedstock part data to support practical AD operations. Although there are
merely a few research reports [167–169] built on the disposition of AI methods over the last
years, AI application in anaerobic digestion simulation, regularization, and optimization
has great potential in the near future, particularly with the rapid development of novel
and hybrid AI approaches. For example, a new algorithm has been created to design
minimal microbial communities with required metabolic capability [170]. This algorithm
will precisely enable researchers to identify minimum sets of microbial species that can
collectively provide the enzymatic capability needed to synthesize the target metabolite
population from a predefined selection of accessible substrates [170]. Thus, the result might
be a major move towards the objective of modifying specific microbial communities for the
optimization and industrial applications of anaerobic digesters.

6. Conclusions

Lately, a lot of research work has been conducted in the field of microbial commu-
nity analysis and metagenomics analysis of anaerobic digesters that has helped to better
understand the AD process. New techniques and tools in bioinformatics have helped in
controlling and optimizing the anaerobic digestion processes in terms of feedstock, temper-
ature, pH, HRT, VFA, TAN, etc., which has been a boon for the industries and has huge
commercial potential. Despite the many applications of metagenomic analysis, there are
some major issues related to this analysis such as data consistency, data storage, data usage
and data managing techniques. These problems need to be assessed and tackled to further
improvise and control AD processes. This review gives insights about the latest trends in
metagenomic studies, newest and often used bioinformatic tools and techniques. However,
the prevailing issues in these type of studies have grabbed the attention of researchers from
the fields of environmental science, biotechnology, bioinformatics, computer science, and
civil and chemical engineering. A lot of demand for research and development in this area
is the need of hour and to strategically implement new advancements to provide molecular
techniques at the commercial level. New technology in the field of database management
is now being researched and technology such as artificial neural network and machine
learning are finding their way into the optimization of biogas producing anaerobic tanks.
Henceforth, the near future is brightening up with usage of more advanced technology
in bioinformatics and to produce better yields of methane through optimally engineered
anaerobic digesters.
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