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Abstract: Fermentation is critical for developing coffee’s physicochemical properties. This study
aimed to assess the differences in quality traits between fermented and unfermented coffee with
four grinding sizes of coffee powder using multiple digital technologies. A total of N = 2 cof-
fee treatments—(i) dry processing and (ii) wet fermentation—with grinding levels (250, 350, 550,
and 750 µm) were analysed using near-infrared spectrometry (NIR), electronic nose (e-nose), and
headspace/gas chromatography–mass spectrometry (HS-SPME-GC-MS) coupled with machine learn-
ing (ML) modelling. Most overtones detected by NIR were within the ranges of 1700–2000 nm and
2200–2396 nm, while the enhanced peak responses of fermented coffee were lower. The overall voltage
of nine e-nose sensors obtained from fermented coffee (250 µm) was significantly higher. There were
two ML classification models to classify processing and brewing methods using NIR (Model 1) and
e-nose (Model 2) values as inputs that were highly accurate (93.9% and 91.2%, respectively). Highly
precise ML regression Model 3 and Model 4 based on the same inputs for NIR (R = 0.96) and e-nose
(R = 0.99) were developed, respectively, to assess 14 volatile aromatic compounds obtained by GC-MS.
Fermented coffee showed higher 2-methylpyrazine (2.20 ng/mL) and furfuryl acetate (2.36 ng/mL)
content, which induces a stronger fruity aroma. This proposed rapid, reliable, and low-cost method
was shown to be effective in distinguishing coffee postharvest processing methods and evaluating
their volatile compounds, which has the potential to be applied for coffee differentiation and quality
assurance and control.

Keywords: coffee arabica; fermentation; colour; volatiles; electronic nose; gas chromatography;
artificial neural networks; machine learning

1. Introduction

Coffee is one of the most prevalent beverages worldwide owing to its stimulating
function, rich and complex aroma and flavour, and health benefits. Coffee’s sensory
quality depends on various factors in the entire production chain, such as plant varieties,
geographical and climate conditions, processing methods, roasting levels, storage, and
brewing methods [1,2]. Generally, green coffee seeds can be obtained using one of three
methods, including dry, semi-dry, and wet processing [1].

Fermentation is the critical procedure in wet processing to submerge de-pulped coffee
beans underwater to remove the attached mucilage with the involvement of microorgan-
isms [3]. The chemical composition of coffee seeds can be altered during fermentation by
metabolic processes, especially the concentration of water-soluble compounds, including
free amino acids, free sugars (glucose and fructose), caffeine, trigonelline, and chloro-
genic acids [4]. Different microorganisms, such as yeast, bacteria, and fungi, can produce
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various enzymes, alcohols, and acids from sugar consumption, which may influence the
sweetness, acidity, and salt content of coffee beans [5,6]. Free amino acids and soluble
carbohydrates are prominent precursors of volatile and non-volatile compounds, including
carbon dioxide, ketones, pyrazines, acetic acid, glycerol, ethers, and aldehydes, which
would affect the development of the coffee flavour and colour in the following roasting
process [2,7,8]. Furan derivatives (25–41%) are the most volatile compounds contributing to
the coffee flavour, with sweet, bread-like, and caramel aromas [9]. However, Knopp, Bytof
and Selmar [7] reported that fermented coffee beans contained lower fructose and glucose
than dry-processed coffee beans, which could influence the generation of furan derivatives
during Maillard reactions and caramelisation because of the lack of substrates. Pyrazines,
known for their hazelnut aroma, are the second most abundant volatile compounds in
coffee at around 25 to 39%, which are also generated through complex interactions between
sugar and amino acids [10]. Phenols or phenolic compounds are also important aromatic
contributors in coffee brew. For example, chlorogenic acids in coffee beans could bring a bit-
ter, acidic, and astringent flavour to coffee brew [11]. Duarte, Pereira and Farah [4] and Lee,
et al. [12] commented that fermented coffee has more a aromatic flavour, with fruity and
acidic attributes, and with fewer bitter, burnt, and woody notes. Haile and Kang [8] also
reported that most indigenous microorganisms presumably lack important characteristics
and cannot improve the coffee’s flavour and aroma as expected. It is notable that ketones
could be the most significant off-flavour makers when coffee beans are overfermented [13].

Brewing is another avenue bringing considerable impact on the sensory properties of
final coffee products at the consumer end, related to the particle size of the coffee powder,
infusion time, and temperature [14,15]. After grinding, the beans are reduced into small
particles with a micro and mesoscale dimension, which generally ranges from micrometers
to around 1000 µm [16]. Therefore, the coffee’s aromatic compounds developed in the
coffee seeds could be released, extracted, and dissolved into the final beverage when
brewing [2]. Commonly, the particle size of ground coffee is classified into four groups:
coarse, medium, fine, and very fine. The formation of smaller coffee powders provides a
large particle surface that allows the rapid liberation of carbon dioxide and the reduction in
the diffusion distance for soluble substances during brewing, which improves the transfer
of colloidal substances to the liquid phase, as well as the physicochemical and final sensory
properties [16,17].

Generally, headspace solid-phase microextraction/gas chromatography–mass spec-
trometry (HS-SPME/GC-MS) is used for coffee beverages to discriminate and evaluate
the chemical patterns of aromatic volatile compounds [6,18]. The sensory analysis of cof-
fee aroma is also widely conducted via quantitative descriptive analysis (QDA®) with
a descriptive sensory panel [19]. However, considering the recognition threshold level
and accuracy of human perceptions, it could induce stimulus errors and be less objective,
sensible, and more time-consuming [20–22]. Electronic nose (e-nose) with artificial neural
networks (ANNs) has been developed and used commercially as a substitute of those
traditional methods when assessing aromas or other chemometrics in beer, wine, tea, juices,
and meat [23–27]. Similarly, developed e-nose has also been used in coffee to assess, dis-
criminate, and predict the sensory descriptors and geographical origin, roasting degree,
and cultivar [18,28–30]. Although it has multiple advantages, including minimum levels
of sample preparation required, interferences among involved chemical reagents, and the
simultaneous determination of multiple compounds, the majority of commercial e-nose
devices are non-portable and still cost-prohibitive for small and medium companies [31,32].
Moreover, scarce information is available on comparing natural and fermented coffee; the
combination of GC-MS and e-nose coupled with machine learning modelling could be
applied to distinguish and predict the differences between volatile compounds in natural
and fermented coffee.

Therefore, this study aimed to assess the differences in quality traits between fer-
mented and unfermented coffee brewed from four grinding levels of coffee powder using
digital technologies, including NIR, portable, and low-cost e-nose, GC-MS, and supervised
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machine learning (ML) modelling. A total of four ML models were developed using NIR
(Model 1) and e-nose (Model 2) as inputs to classify the coffee types. Models 3 and 4 were
developed using NIR and e-nose outputs as inputs, respectively, to predict the relative
abundance based on the peak area of 14 volatile aromatic compounds measured by GC-MS.

2. Materials and Methods
2.1. Sample Preparation

A total of ten (n = 10) natural (n = 5) and fermented (n = 5) arabica coffee beans
(250 g per kind) with two varieties (geisha and bourbon) were purchased online from
eight different companies, traders, or retailers: (1) Tin Man Coffee Roasters, Melbourne,
Australia; (2) Ninety Plus Coffee Estates, LLC, Volcán, Panama; (3) BENCH COFFEE CO. LT
COLLINS, Melbourne, Australia; (4) Vacation Coffee, Melbourne, Australia; (5) Manhattan
Coffee Roasters, Rotterdam, Netherlands; (6) Code Black Investments Pty Ltd., Melbourne,
Australia; (7) ONA Coffee, Melbourne, Australia; and (8) Proud Mary Coffee Roasters
PTY Ltd., Melbourne, Australia; they were used in the intended research project. For each
sample, 40 g of whole coffee beans were taken, separated into four parts (10 g per part),
and ground into a powder with each particle size (250, 350, 550, and 750 µm) accordingly
using a Breville automatic coffee grinder (Breville® Smart Coffee Grinder Pro BCG820BSS,
Breville Pty Ltd., Sydney, Australia). To avoid variation from grinder heating, interval
breaks were applied to cool down the machine every eight grinding operations. For each
measurement, 2.5 g of ground coffee with each particle size was brewed using a Breville
Creatista® Plus espresso machine (Breville Pty Ltd., Sydney, Australia) under the Espresso
mode of a constant pouring volume of 25 mL at 78 ◦C. This step of each sample was
repeated in triplicate.

2.2. Physicochemical Characterisation of Coffee Brew

The research was conducted at the University of Melbourne, Parkville campus, Melbourne,
Australia, at the Digital Agriculture, Food and Wine (DAFW) and Food science labs.

2.2.1. pH Measurement

The pH values of brewed coffee samples were measured in triplicate using the
LAQUAtwin Compact pH meter (LAQUAtwin, HORIBA’s, Kyoto, Japan). A total of
three buffer solutions (pH 4.0, 7.0, and 9.0) were used for machine calibration.

2.2.2. Salt Determination

The salinity levels of brewed coffee samples were determined using an ATAGO digital
pocket salt meter (PAL-ES2, Tokyo, Japan) through the conductivity of the solution in tripli-
cate. The measurement range of the meter was 0.00 to 10.0% (g/100 g of salt concentration).

2.2.3. Colour Measurement

The colour of natural and fermented coffee samples with different roasting levels
was measured using a handheld colourimeter NIX (Nix Pro Colour Sensor™, Nix Sensor
Ltd., Ontario, CA, USA) in triplicate. The colour coordinates (L*, a*, and b* colourimet-
ric) were recorded and analysed. The colour difference (∆E) was calculated using the
following equation:

∆E =

√(
L∗

aF − L∗
aUF
)2

+
(
a∗aF − a∗aUF

)2
+
(
b∗aF − b∗aUF

)2

where aF is the average value of fermented coffee, and aUF is the average value of unfer-
mented coffee.

2.3. Near-Infrared Spectroscopy (NIR) Analysis

A portable NIR device, the microPHAZIR™ (RX Analyzer; Thermo Fisher Scientific,
Waltham, MA, USA), was used to evaluate the samples according to Gonzalez Viejo,
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et al. [33], with a spectral range of 1596 to 2396 nm, in triplicate and three measurements
per replicate. A Whatman® filter paper (Whatman plc., Maidstone, UK; qualitative grade 3,
7.0 cm) was submerged in each coffee sample to be measured. A white background
was placed at the top to avoid signal noise from the environment during the measuring.
The absorbance values from the dry and empty filter paper were subtracted from the
wet filter paper with the samples to obtain only the chemical fingerprinting of the coffee
sample, as described by Gonzalez Viejo et al. [33]. Data obtained from the NIR device were
analysed using Savitzky Golay filters by The Unscrambler X ver.10.3 (CAMO Software,
Oslo, Norway) software to obtain the first derivative data.

2.4. Identification and Quantification of Volatiles by HS-SPME-GC-MS

Volatile compounds in coffee samples were analysed by headspace/gas chromatography–
mass spectrometry (HS-SPME-GC-MS) based on Gonzalez Viejo, Tongson and Fuentes [31]
and Wu, Lu, Liu, Sharifi-Rad and Suleria [11] with some modifications. GC-MS analysis
was conducted via a gas chromatograph (6850 series II Network GC System, Agilent Tech-
nologies, Santa Clara, CA, USA) coupled to an HS-SPME system (PAL RSI I20, Zwingen,
Switzerland) and a mass spectrometer (5973 Network Mass Selective Detector, Agilent
Technologies, Santa Clara, CA, USA). A 30 m DB-Wax capillary column (Agilent Tech-
nologies, Santa Clara, CA, USA) with a 0.25 mm internal diameter anda 0.25 µm film
thickness was chosen with the combination of 65 µm PDMS/DVB fibre (Fused Silica, Sigma
Aldrich, Castle Hill, NSW, Australia). The carrier gas was helium with a 60 kPa column
head pressure. Coffee samples were incubated for 15 min at 60 ◦C, followed by 15 min
extraction and 6 min desorption. The GC oven programme was set as follows: 40 ◦C for
5 min continued with an increase to 190 ◦C at the rate of 5 ◦C/min for 8 min; subsequently,
the temperature reached 240 ◦C at a rate of 10 ◦C/min and was maintained for 10 min. The
acquisition was in SCAN mode (35–350 m/z). The solvent delay time was 2 min.

The coffee sample (2.5 mL) mixed with 20 µL 100 mg/L 3-heptanone as the internal
standard was added into vials and then injected as the temperature gradient programme
above. The linear retention index (LRI) was calculated according to the alkane standard
(C7–C30) with the following equation, which compares the retention time of one target
compound (RTx) with those of n-alkanes with n and n + 1 carbon eluted before and after
the target compound (RTn):

LRI (target compound) = 100 × RTx − RTn

RTn+1 − RTn
+ n

The LRI and mass spectrum of volatile compounds detected in coffee samples are
compared to the data in the NIST Chemistry WebBook spectrum library (NIST2017) and
NIST mass spectra database (Washington, DC, USA), respectively. Semi-quantification was
conducted by comparing the response area of the target compound and internal standard
with the known concentration after the LRI and compound MS were confirmed.

2.5. Electronic Nose (E-Nose) and Data Extraction

A low-cost and portable e-nose developed by the Digital Agriculture Food and Wine
Group at the University of Melbourne (DAFW-UoM) was used to assess the coffee samples,
according to Gonzalez Viejo et al. [31,32,34]. The device was composed of nine different
gas sensors: (i) MQ3: Alcohol (ethanol), (ii) MQ4: Methane (CH4), (iii) MQ7: Carbon
monoxide (CO), (iv) MQ8: Hydrogen (H2), (v) MQ135: NH3/alcohol/benzene, (vi) MQ136:
Hydrogen sulfide (H2S), (vii) MQ137: NH3, (viii) MQ138: Benzene/alcohol/NH3, and
(ix) MG811: Carbon dioxide (CO2). Samples were exposed to sensors for 1 min after 30 s
machine baseline readings. The outputs were analysed by a customised Matlab® R2021a
(Mathworks, Inc., Natick, MA, USA) developed by the DAFW-UoM, which displayed the
curves to select the most stable area of the signals and subdivided it into 10 sections to
calculate 10 mean values per curve automatically.
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2.6. Statistical Analysis and Machine Learning (ML) Modelling

All results were pure results subtracted by blanking or control values and expressed
as mean ± standard error of three independent analyses. All the statistical analyses were
conducted using Minitab 19 (Minitab® for Windows Release 19, Minitab Inc., Chicago,
IL, USA) and GraphPad Prism 9 (GraphPad Prism version 9.0 for Windows, GraphPad
Software, La Jolla, CA, USA). One-way analysis of variance (ANOVA), along with Tukey’s
honest significant differences (HSD) as a post hoc test (α = 0.05), were used to assess
significant differences between samples.

A total of four ML models (Figure 1) were constructed using a Matlab® R2019b code
to assess 17 training algorithms and to find the most accurate models with no under- or
overfitting in a loop [35]. Models 1 and 2 were developed for classification using the
absorbance values obtained by NIR spectra within 1596 and 2396 nm and e-nose outputs as
inputs, respectively, to predict the type of coffee and the grinding size of the coffee powder:
(i) fermented, 250 µm, (ii) fermented, 350 µm, (iii) fermented, 550 µm, (iv) fermented,
750 µm, (v) unfermented, 250 µm, (vi) unfermented, 350 µm, (vii) unfermented, 550 µm,
and (viii) unfermented, 750 µm (Figure 1a,b). Model 1 was constructed using the Bayesian
regularisation algorithm, and Model 2 was constructed using the Levenberg–Marquardt
algorithm. Samples were divided using a random data division (dividerand) algorithm as
70% for the training stage, 15% for testing, and 15% for validation using a performance
algorithm based on the mean squared error (MSE).
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Figure 1. Diagrams of the machine learning (a) classification Models 1 and 2, and (b) regression
Models 3 and 4, showing the specific inputs, targets, and number of neurons used.

Models 3 and 4 were developed using regression artificial neural networks (ANNs)
with the absorbance values of the NIR data and e-nose outputs as inputs, respectively, to
predict the peak area of 14 volatile aromatic compounds. Both models were developed
using the Bayesian regularisation algorithm. Data were randomly divided into 70:30 for
training and testing, respectively, using a performance algorithm based on the MSE. A
neuron number trimming exercise was conducted with 3, 5, 7, and 10 neurons to assess the
best performance.
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3. Results and Discussion
3.1. Physicochemical Estimation
3.1.1. Measurement of pH and Salt Content

The pH values of the fermented and unfermented coffee brewed from four grinding
sizes of coffee beans were measured as shown in Table 1. The unfermented coffee brewed
from the finest-size (250 µm) coffee powder had relatively higher pH values at 4.89 (p < 0.05).
Brewing coffee is an extraction process that may be influenced by the diameter of the
ground coffee particles [16]. The surface area of the coffee particles increases with the
decreasing particle size. Thus, the soluble coffee compounds could be quickly extracted
from the surface and near-surface volume of the fine coffee grind matrix [36]. More acidic
compounds, such as chlorogenic acids, may be dissolved and contribute a greater acidity
to the coffee brew [37]. However, no significant differences (p > 0.05) could be observed
among the coarse-ground fermented and unfermented coffee brews.

Table 1. pH and salt content of unfermented and fermented coffee brew with four coffee bean
grinding sizes.

Sample Size 1 (250 µm) Size 2 (350 µm) Size 3 (550 µm) Size 4 (750 µm)

pH

Unfermented
coffee beans

UFC1 4.79 aC ± 0.03 4.77 bB ± 0.01 4.76 cD ± 0.01 4.77 bC ± 0.01
UFC2 4.86 abB ± 0.01 4.81 bA ± 0.01 4.85 aA ± 0.02 4.83 bB ± 0.03
UFC3 4.94 aA ± 0.03 4.79 bB ± 0.03 4.80 bBC ± 0.02 4.77 bC ± 0.02
UFC4 4.89 aB ± 0.03 4.78 cB ± 0.01 4.83 bB ± 0.02 4.85 aB ± 0.02
UFC5 4.95 aA ± 0.03 4.83 bA ± 0.01 4.82 aB ± 0.02 4.93 aA ± 0.03

Average 4.89 ± 0.03 4.80 ± 0.01 4.81 ± 0.02 4.83 ± 0.02

Fermented coffee
beans

FC1 4.83 bB ± 0.03 4.82 bA ± 0.02 4.75 cD ± 0.01 4.87 aB ± 0.02
FC2 4.77 aD ± 0.02 4.74 aC ± 0.02 4.74 aD ± 0.01 4.73 aD ± 0.02
FC3 4.80 aC ± 0.03 4.83 aA ± 0.02 4.79 aC ± 0.01 4.82 aB ± 0.01
FC4 4.80 bcC ± 0.01 4.79 cB ± 0.01 4.81 bB ± 0.02 4.84 aB ± 0.01
FC5 4.69 bE ± 0.02 4.66 bD ± 0.01 4.83 aB ± 0.04 4.66 bE ± 0.02

Average 4.78 ± 0.02 4.77 ± 0.01 4.78 ± 0.02 4.78 ± 0.02

Salt content

Unfermented
coffee beans

UFC1 0.11 aBC ± 0.01 0.11 aBC ± 0.01 0.11 aB ± 0.01 0.10 bAB ± 0.01
UFC2 0.12 aB ± 0.01 0.11 aBC ± 0.01 0.09 bC ± 0.01 0.08 bBC ± 0.01
UFC3 0.13 aB ± 0.01 0.12 bB ± 0.01 0.10 cBC ± 0.01 0.09 dB ± 0.01
UFC4 0.13 bB ± 0.01 0.14 aA ± 0.01 0.09 cC ± 0.01 0.07 dC ± 0.01
UFC5 0.11 bBC ± 0.01 0.13 aB ± 0.01 0.10 cBC ± 0.01 0.07 dC ± 0.01

Average 0.12 ± 0.01 0.12 ± 0.01 0.10 ± 0.01 0.08 ± 0.01

Fermented coffee
beans

FC1 0.12 aB ± 0.01 0.11 aBC ± 0.01 0.09 bC ± 0.01 0.09 bB ± 0.01
FC2 0.12 ab ± 0.01 0.11 bcBC ± 0.01 0.13 aA ± 0.01 0.10 cAB ± 0.01
FC3 0.10 aC ± 0.01 0.10 aC ± 0.01 0.10 aBC ± 0.01 0.07 bC ± 0.01
FC4 0.19 aA ± 0.01 0.14 bA ± 0.01 0.11 cB ± 0.01 0.11 cA ± 0.01
FC5 0.11 aBC ± 0.01 0.10 aC ± 0.01 0.09 bC ± 0.01 0.09 bB ± 0.01

Average 0.13 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.09 ± 0.01

All values represent the average of three replicates from unfermented (UFC) and fermented (FC) coffee beans with
five different brands. Different depicted significant differences between samples based on the ANOVA and Tukey’s
honest significant difference (HSD) post hoc test (p < 0.05). Different lowercase letters a–d indicate significant
differences for particle size. Different capital letters A–E indicate significant differences for sample types.
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The pH values of all the fermented coffee beans were significantly (p < 0.05) lower than
that of the unfermented brews, which indicates that the coffee brew made from fermented
coffee beans could have a relatively higher acidity. The pH value and titratable acidity
are considered two conventional ways to express the acidity of coffee, since the perceived
acidity of coffee is a result of the proton donation of acids to receptors on the human
tongue [38]. During the fermentation, microorganisms may act on the pectinaceous sugars
and other quantities of reducing or nonreducing sugars existing in coffee mucilage, which
contributes to the production of lactic, butyric, acetic, and other higher carboxylic acids
and tends to reduce the pH of the final coffee brew [8].

There was no significant difference (p > 0.05) in the salt content of the unfermented
and fermented coffee brew in Table 1. However, the salt content in coffee slightly decreased
along with the reduced size of the gounds. The sodium present in the brewed samples was
low (0.07–0.19). During daily consumption, a small amount of salt is a usual alternative to
other additives, such as sugar and milk, in coffee to bring out the sweetness, maintain the
pleasant aromas, and dampen the bitterness remarkably [39,40].

3.1.2. Colour Measurement

The colour values (L*, a*, and b*) of all the coffee samples and the colour difference
(∆E) between the average value of the fermented and unfermented coffee are shown in
Table 2. The fermented coffee brewed from 550 µm coffee powder showed the highest
colour difference (∆E = 91.10) to that of unfermented coffee. Overall, fermented coffee
with all grinding sizes exhibited significantly higher lightness but lower redness and yel-
lowness values (L* = 63.77, a* = 2.51, b* = 48.96) than unfermented coffee (L* = 58.36,
a* = 5.74, b* = 53.16). The coffee colour is mainly developed through the Maillard reaction
and caramelisation during roasting, with the primary involvement of sugar [41]. However,
the sugar content in fermented coffee could be highly reduced due to the action of mi-
croorganisms during fermentation [8]. Therefore, less sugar remaining in the coffee beans
could induce a lighter, less brown, but yellower appearance after roasting, since the brown
pigment formation is due to the Maillard reaction through the interactions between sugar
and amino acids.

In grinding size, there was a decrease in lightness but an increase in redness with the
reduced particle size. Brewing coffee also contributes to the extraction of various substances
from coffee powder, such as phenolic compounds, caffeine, carbohydrates, lipids, and acids.
Smaller particle sizes could further contribute to the better release and dissolution of brown
pigments, such as melanoidins [42]. It is reasonable that coffee brewed from coarse powder
presented a brighter appearance than fine coffee powder.
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Table 2. Colour measurements of unfermented and fermenetd coffee brew with four coffee bean grinding sizes.

Sample
Size 1 (250 µm) Size 2 (350 µm) Size 3 (550 µm) Size 4 (750 µm)

L* a* b* L* a* b* L* a* b* L* a* b*

Unfer-
mented
coffee
beans

UFC1 50.24 de ± 0.93 8.05 e ± 0.59 54.52 ab ± 1.99 53.57 d ± 1.53 6.24 d ± 1.25 53.74 b ± 0.99 58.36 bc ± 0.96 4.76 ab ± 1.64 54.01 ab ± 2.66 59.98 bcde ± 1.74 5.44 bc ± 1.49 56.69 a ± 2.10

UFC2 57.56 bc ± 0.18 6.71 f ± 1.89 52.46 bc ± 1.44 60.13 bc ± 0.82 4.17 d ± 1.69 51.01 b ± 0.94 58.57 b ± 1.52 5.55 a ± 0.60 52.96 ab ± 0.90 57.70 def ± 1.20 7.57 ab ± 0.88 56.76 a ± 1.47

UFC3 49.63 ef ± 1.21 12.83 bc ± 1.02 47.60 e ± 1.79 56.80 cd ± 0.68 10.33 bc ± 1.32 63.27 a ± 0.79 57.80 bc ± 1.70 7.03 a ± 1.72 58.05 a ± 1.98 69.14 a ± 1.35 0.64 cd ± 0.73 53.24 ab ± 1.59

UFC4 40.07 g ± 0.27 13.94 b ± 1.67 54.49 ab ± 1.06 44.74 e ± 1.47 12.29 b ± 1.47 37.83 c ± 1.56 51.65 c ± 0.93 7.30 a ± 1.90 52.72 ab ± 1.78 55.02 ef ± 2.72 3.94 bcd ± 1.68 42.67 bc ± 1.31

UFC5 39.58 g ± 0.39 18.91 a ± 0.35 52.78 bc ± 0.52 42.21 e ± 0.63 17.19 a ± 0.40 53.06 b ± 0.65 58.20 bc ± 0.66 6.24 a ± 0.26 54.65 ab ± 0.29 49.98 f ± 1.59 11.10 a ± 1.02 56.43 a ± 0.17

Average 47.42 ± 0.60 12.09 ± 1.10 52.37 ± 1.36 51.49 ± 1.03 10.04 ± 1.23 51.78 ± 0.99 56.92 ± 1.15 6.18 ± 1.22 54.48 ± 1.52 58.36 ± 1.72 5.74 ± 1.16 53.16 ± 1.33

Ferme-
nted

coffee
beans

FC1 50.31 de ± 0.60 8.40 e ± 0.37 50.07 d ± 1.53 52.45 d ± 0.91 7.02 cd ± 0.21 52.65 b ± 0.72 57.06 bc ± 2.28 7.18 a ± 1.64 53.18 ab ± 1.28 65.03 abcd ± 1.25 2.58 bcd ± 0.36 45.73 abc ± 1.60

FC2 51.93 d ± 0.37 10.27 d ± 0.51 56.25 a ± 0.87 54.44 e ± 1.46 8.97 a ± 0.72 57.17 ab ± 1.94 58.41 bc ± 0.75 6.98 a ± 1.05 57.01 ab ± 1.70 60.42 bcde ± 1.63 4.60 bcd ± 0.79 54.61 ab ± 1.68

FC3 58.94 a ± 1.22 2.36 gh ± 0.61 48.92 de ± 2.12 64.73 ab ± 0.82 −0.42 e ± 0.86 42.03 c ± 1.82 63.16 ab ± 1.40 −0.36 c ± 0.96 42.64 c ± 0.80 67.24 ab ± 1.02 −0.67 d ± 2.12 40.49 c ± 1.17

FC4 59.63 a ± 2.18 3.40 g ± 1.21 49.97 d ± 0.75 69.79 a ± 1.24 −2.40 e ± 0.61 39.50 c ± 2.59 66.45 a ± 1.30 0.48 bc ± 0.96 49.04 bc ± 2.67 59.28 cde ± 1.20 6.46 ab ± 1.51 56.94 a ± 1.80

FC5 58.78 ab ± 0.92 1.29 h ± 0.04 52.38 bc ± 1.37 69.92 a ± 1.26 −0.21 e ± 1.46 50.43 b ± 2.92 69.92 a ± 2.26 −0.21 bc ± 1.46 50.43 abc ± 2.92 66.90 abc ± 0.53 −0.44 d ± 0.45 47.03 abc ± 1.39

Average 55.92 ± 1.06 5.14 ± 0.55 51.52 ± 1.33 62.27 ± 1.14 2.59 ± 0.77 48.36 ± 1.99 63.00 ± 1.59 2.81 ± 1.21 50.46 ± 1.87 63.77 ± 1.13 2.51 ± 1.05 48.96 ± 1.53

∆E 11.01 13.54 91.1 15.92

All values represented as the average of three replicates from unfermented coffee (UFC) and fermented coffee (FC) with five different brands. ∆E represents the colour difference between
the average value of fermented and unfermented coffee. Different letters a–h depict significant differences between samples based on the ANOVA and Tukey’s honest significant
difference (HSD) post hoc test (p < 0.05).
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3.2. Near-Infrared Spectroscopy (NIR) Analysis

The first derivative data of the NIR absorbance scans for fermented and unfermented
coffee were acquired, as shown in Figure 2. As observed in this figure, the peak values for all
coffee brews were between 1700–2000 nm and 2200–2396 nm, in which compounds such as
water, proteins, carbohydrates, and volatile compounds, including amides, could be found.
For the main overtones, compounds such as ketones (1698 nm), aliphatic hydrocarbons
(1699–1700, 1732, 1767, and 2313 nm), alcohol (1737 nm), aromatic hydrocarbons (1749 nm),
water (1940 nm), esters and acids (1955 nm), aryl (2299 nm), lipids (2315 nm), sucrose
(2306–2312 nm), and other polysaccharides (2327–2340 nm) were found [33,43,44]. This is
consistent with the results reported by Okubo and Kurata [45].
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Figure 2. NIR spectra (1596–2396 nm) of unfermented (A) and fermented (B) coffee samples shown
as the Savitzky–Golay first derivative. Different colours of the lines represented different replicates of
sample measurement.

Although different curve trends within the same NIR wavelength range for coffee
sample measurements were obtained by Esteban-Díez, et al. [46] and Ribeiro, Ferreira and
Salva [43], this is probably due to the results of different brands, roasting conditions, and
geographic origins [44]. Barbosa, dos Santos Scholz, Kitzberger and de Toledo Benassi [6]
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also detected lipid fractions that could influence aroma formation and the release of volatile
compounds during the roasting process, such as aldehydes, ketones, and alcohols, in a
similar wavelength range. Unfermented coffee brews had a relatively higher absorbance
than fermented coffee brew for most of the overtones from these compounds.

3.3. Electronic Nose Outputs

Figure 3 shows the volatile compound analysis results of the fermented and unfer-
mented coffee brews with four different grinding sizes using the e-nose. Overall, except
for the set brewing from the coarsest coffee powder, the fermented coffee exhibited a
relatively higher total voltage accumulation of all sensors. Significant differences (p < 0.05)
between the fermented and unfermented samples in all nine sensors could be observed.
The MQ3 (ethanol) and MQ4 (methane) sensors showed a significantly higher voltage for
all the coffee brews, followed by the MQ7 (carbon monoxide) sensors. The MG811 (carbon
dioxide) sensor values are inverse; hence, higher values mean lower CO2 levels.
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Figure 3. Stacked mean voltage of the nine different e-nose gas sensors among unfermented (UFC)
and fermented (FC) coffee samples with four grinding sizes from five different brands. Differences
are compared for each sensor among samples (bar colours); different letters a–g depict significant
differences between samples based on the ANOVA and Tukey’s honest significant difference (HSD)
post hoc test (p < 0.05).

By-products such as alcohol and various acids generated by the action of microorgan-
isms on the polysaccharides present in the mucilage of the coffee beans during fermentation
could be absorbed into the cellular structure of the seed [5]. Although the voltage of alcohol
detection fluctuated among all the coffee brews, it is reasonable that one of the fermented
coffee brews exhibited the greatest detection level with all four grinding sizes. Carbon
monoxide could be produced during coffee roasting due to the interaction between oxygen
and methane. The gases could be trapped in the pore structure of the roasted coffee and be
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emitted more quickly if ground into smaller particles [47]. Newton [48], Killian, et al. [49],
and Gonzalez Viejo, Tongson and Fuentes [31] also commented that there is CO production
during roasting, which could explain the detection of the MQ7 sensor. Gonzalez Viejo,
Tongson and Fuentes [31] also claimed that the lower voltage with MQ7 in several samples
is probably due to the brewing process. Noticeably, the MQ135 (NH3/alcohol/benzene)
and MQ137 (NH3) sensors displayed fluctuating voltage among all the samples. Purine
alkaloids in coffee beans, especially caffeine, could probably be degraded during roasting
and generate NH3, which may explain the detection by those three sensors [50].

3.4. Identification and Quantification of Volatile Compounds in Coffee Brew

The content range of volatile compounds identified and semi-quantified in a the
fermented and unfermented coffee brew with four different grinding sizes by the HS-
SPME-GC-MS method is shown in Table 3. In total, 14 compounds were identified in both
types of coffee brew and shared a similar overall content of the detected volatile compounds
(VOCs). As for the influence of grinding size, the average content of the overall detected
VOCs decreased from around 32.80 to 25.28 ng/mL along with the coarser coffee powder
size, which is consistent with previous research conducted by Yu, et al. [51]. The negative
correlation between grinding size and VOC content could be related to extraction efficiency.
The solid–liquid interfacial area may increase as the grinding size decreases, allowing the
extraction of a higher amount of volatiles [51].

Acetic acid was the only detected organic acid in the coffee brews, which may come
from the decomposition of saccharides (sucrose and fructose) during roasting [52]. Acid
precursor 1-deoxyglucosone could be generated during roasting through the hydrolysis
and thermal dehydration of sugars and then contribute to the formation of acetic acid [11].
The fermented coffee brew showed a lower content of acetic acid than unfermented coffee,
which could again indicate the microbial consumption of sugar during the fermentation of
harvested coffee beans [8]. However, Elhalis, Cox, Frank and Zhao [1] reported significantly
higher (p < 0.05) concentrations of acetic acid in fermented coffee beans than in unfermented.

Table 3 and Table S1 show that 2-methylpyrazine was the most abundant pyrazine in
the fermented coffee brew, with an average concentration of 2.20 ng/mL, similar to Elhalis,
Cox, Frank and Zhao [1]. There were two clusterings that could be observed from the group
of pyrazines: 2,5(6)-dimethylpyrazine and 2-ethyl-5(6)-methylpyrazine. The fermented
coffee brews showed a slightly higher content of these volatile compounds. 2-Ethyl-5-
methylpyrazine is generally used to distinguish roasted arabica and robusta coffee beans,
which confers negative earthy notes generated through the Maillard reaction [53]. Both 2,5-
dimethylpyrazine and 2,6-dimethylpyrazine were a dominant pyrazine product of the same
Maillard reaction in both the fermented and unfermented coffee brews, with different loca-
tions of the functional groups and exhibiting a chocolate and nutty aroma [11,51]. This could
be contributed by the formation of a series of Amadori-type conjugates through the catalysis
of the Amadori rearrangement in the dipeptide/sugar adduct [54]. Significant variance
could be found in the content of furans and furanic compounds between the fermented and
unfermented coffee brews, especially furfural and 5-methylfurfural. Furanic compounds
may be produced through the dehydration, cyclisation, and polymerisation of Amadori
rearrangement products or the thermal oxidation of furans, such as 2-furanmethanol, poly-
unsaturated fatty acids, and ascorbic acid [11,55]. Furans are developed from the reaction
between sugars and amino acids; hence, the unfermented coffee brew exhibited a relatively
higher content. It could also contribute to the accumulation of other furanic compounds
in the unfermented coffee brews. Gonzalez Viejo, Tongson and Fuentes [31] also identi-
fied 5-methylfurfural and furfural acetate from commercial coffee products, which could
provide spice, caramel, bready, or coffee aromas. Notably, the content of furfuryl acetate
was relatively higher in the fermented coffee brews, which could bring a fruity aroma. Lee,
Cheong, Curran, Yu and Liu [12] also claimed that the fermentation using yeast as starter
cultures could induce the production of several volatile compounds, including acetaldehyde,
ethanol, ethyl acetate, isoamyl acetate, as well as a caramel and fruity flavour.
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Table 3. The content range of volatile compounds identified in unfermented and fermented coffee brews by HS-SPME-GC-MS.

No. Compound Name Molecular
Formula

Aroma RT * (min)

Conc. (ng/mL)

Unfermented Coffee

UFC1 UFC2 UFC3 UFC4 UFC5

Pyridines
1 Pyridine C5H5N Sour/smoky/burnt/coffee 10.49 0.35–0.68 0.68–0.83 0.45–0.65 0.66–0.99 0.53–1.00

Pyrazines
2 2-Methylpyrazine C5H6N2 Nutty/cocoa/roasted 13.01 1.98–2.03 1.03–1.43 1.32–1.75 1.20–1.87 1.18–2.15
3 2,5-Dimethylpyrazine C5H6N2 Nutty/peanut/musty/earthy 14.73 0.67–0.91 0.37–0.65 0.41–0.74 0.50–0.97 0.47–1.06
4 2,6-Dimethylpyrazine C6H8N2 Chocolate/nutty/roasted 14.92 1.02–1.25 0.61–0.96 0.66–1.15 0.77–1.27 0.70–1.44
5 2-Ethylpyrazine C6H8N2 Nutty/roasted/cocoa/coffee 15.05 0.71–0.83 0.43–0.67 0.63–0.73 0.56–0.89 0.55–0.93
6 2-Ethyl-6-methylpyrazine C7H10N2 Roasted potato/roasted hazelnut 16.55 0.77–1.06 0.46–0.84 0.47–0.91 0.61–1.21 0.59–1.43
7 2-Ethyl-5-methylpyrazine C7H10N2 Coffee/roasted/nutty 16.72 0.68–0.96 0.42–0.73 0.43–0.82 0.58–1.09 0.58–1.22

Acids
8 Acetic acid C2H4O2 Sour/overripe fruit 18.34 0.80–0.98 0.43–0.83 0.52–0.77 0.52–0.88 0.46–0.89

Furan and Furanic compounds
9 Furfural C5H4O2 Sweet/woody/bready/caramellic 18.54 5.65–7.13 9.10–10.53 5.83–8.75 8.99–13.08 7.24–12.03

10 2-Furanmethanol C5H6O2
Sweet/brown

caramellic/bready/coffee 23.62 2.74–2.99 2.72–3.69 2.48–3.48 2.71–4.29 2.62–4.10

11 5-Methylfurfural C6H6O2 Spice/caramel/bready/coffee 21.37 3.10–5.72 5.04–7.10 3.04–5.61 4.33–8.71 3.96–8.03
12 Furfuryl acetate C7H8O3 Fruity/banana/ethereal 20.52 1.48–2.00 2.31–3.12 1.30–2.20 2.21–3.30 1.93–3.16

Ketones
13 2-Acetylfuran C6H6O2 Sweet/nutty/roasted/coffee 19.64 1.33–1.52 2.05–2.47 1.44–2.10 1.73–2.67 1.15–2.26

Phenols
14 2-Methoxy-4-vinylphenol C9H10O2 Sweet/spicy/clove-like/smoky 34.77 0.33–0.78 0.25–0.36 0.33–0.43 0.31–0.43 0.34–0.39
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Table 3. Cont.

No. Compound Name Molecular
Formula

Aroma RT * (min)

Conc. (ng/mL)

Fermented Coffee

FC1 FC2 FC3 FC4 FC5

Pyridines
1 Pyridine C5H5N Sour/smoky/burnt/coffee 10.49 0.37–0.49 0.47–0.61 0.34–0.42 0.57–0.72 0.29–0.36

Pyrazines
2 2-Methylpyrazine C5H6N2 Nutty/cocoa/roasted 13.01 2.21–2.63 1.59–2.24 1.63–2.37 1.46–2.05 1.61–1.87
3 2,5-Dimethylpyrazine C5H6N2 Nutty/peanut/musty/earthy 14.73 0.79–1.17 0.53–0.97 0.55–0.97 0.52–0.99 0.59–0.67
4 2,6-Dimethylpyrazine C6H8N2 Chocolate/nutty/roasted 14.92 1.19–1.61 0.93–1.46 0.38–1.44 0.87–1.38 1.05–1.14
5 2-Ethylpyrazine C6H8N2 Nutty/roasted/cocoa/coffee 15.05 0.79–1.06 0.61–1.00 0.58–0.93 0.57–0.91 0.63–0.87
6 2-Ethyl-6-methylpyrazine C7H10N2 Roasted potato/roasted hazelnut 16.55 0.78–1.30 0.71–1.28 0.59–1.08 0.69–1.26 0.84–0.94
7 2-Ethyl-5-methylpyrazine C7H10N2 Coffee/roasted/nutty 16.72 0.75–1.19 0.58–1.07 0.59–1.04 0.62–1.13 0.72–0.81

Acids
8 Acetic acid C2H4O2 Sour/overripe fruit 18.34 0.70–0.75 0.37–0.84 0.46–0.75 0.60–0.76 0.39–0.83

Furan and Furanic compounds
9 Furfural C5H4O2 Sweet/woody/bready/caramellic 18.54 7.63–8.66 7.91–10.32 5.09–7.29 6.76–9.29 5.65–5.89

10 2-Furanmethanol C5H6O2
Sweet/brown

caramellic/bready/coffee 23.62 3.01–3.46 3.40–4.14 2.18–3.14 2.64–3.84 2.51–2.83

11 5-Methylfurfural C6H6O2 Spice/caramel/bready/coffee 21.37 3.43–4.70 4.84–7.36 2.17–3.94 3.92–6.49 3.63–4.07
12 Furfuryl acetate C7H8O3 Fruity/banana/ethereal 20.52 1.49–2.04 3.82–5.00 0.87–1.67 2.01–2.99 1.88–2.22

Ketones
13 2-Acetylfuran C6H6O2 Sweet/nutty/roasted/coffee 19.64 1.47–1.86 1.63–2.30 0.91–1.57 1.33–2.05 1.41–1.45

Phenols
14 2-Methoxy-4-vinylphenol C9H10O2 Sweet/spicy/clove-like/smoky 34.77 0.40–0.53 0.36–0.47 0.08–0.44 0.35–0.42 0.37–0.40

* RT is short for retention time. All values represent the average of three replicates from unfermented (UFC) and fermented (FC) coffee samples with five different brands.
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In the class of phenols, 2-methoxy-4-vinylphenol was only identified with a slightly
higher content in the fermented coffee brews. It is consistent with previous research
conducted by Elhalis, Cox, Frank and Zhao [1] that the concentration of 2-methoxy-4-
vinylphenol was slightly higher in the fermented roasted coffee beans compared to the
mechanically de-mucilaged beans.

3.5. Machine Learning Modelling

Table 4 shows that Model 1 has a high overall accuracy (93.9%) to classify coffee
samples according to their processing type and grinding size using the NIR absorbance
values between 1596 and 2396 nm as inputs. The training MSE value (0.04) was lower than
that of the testing (0.05). The similar MSE value of the validation and testing shows no
under- or overfitting of the data. Furthermore, Model 2, developed to classify the type of
coffee samples using the e-nose outputs as model inputs, presented a high overall accuracy
(91.2%). There were no observed signs of under- or overfitting because the training MSE
value (0.02) was lower than the validation (0.07) and testing (0.07), and the latter two had
the same value.

Table 4. Classification artificial neural network results for Models 1 and 2. Abbreviations: MSE:
means squared error.

Stage Samples Accuracy Error Performance
(MSE)

Model 1: Inputs: NIR; Targets: type of coffee
Training 126 99.7% 0.3% 0.04
Testing 54 91.6% 9.4% 0.05
Overall 180 93.9% 6.1% -

Model 2: Inputs: electronic nose; Targets: type of coffee
Training 420 98.4% 1.6% 0.02

Validation 90 92.4% 7.6% 0.07
Testing 90 92.4% 7.6% 0.07
Overall 600 91.2% 8.8% -

The receiver operating characteristic (ROC) curves of Models 1 and 2 are shown in
Figure 4, which were both closer to the top left edge for the true-positive-rate values
(sensitivity). Interestingly, the coarser the coffee powders were, the lower the sensitivity of
their ROC curves. It is probably because of the similarities shared in the physicochemical
characteristics between fermented and unfermented coffee with higher grinding sizes.
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Table 5 shows that Models 3 and 4 had a similar and high overall accuracy (R = 0.96;
R = 0.99). These models were developed using the NIR absorbance values within 1596–2396 nm
and e-nose outputs as inputs, respectively, to predict 14 volatile compounds detected by
GC-MS. According to the performance MSE values, there were no signs of the under- or
overfitting of the models, as the training-stage MSE values were lower than the testing-stage
values for both models.

Table 5. The results of the artificial neural network regression Models 3 and 4. Abbreviations:
R: correlation coefficient; MSE: means squared error.

Stage Samples Observations R Slope Performance
(MSE)

Model 3: Inputs: NIR; Targets: volatile aromatic compounds
Training 126 1764 0.99 0.99 0.07
Testing 54 756 0.89 1.00 1.34
Overall 180 2520 0.96 1.00 -

Model 4: Inputs: electronic nose; Targets: volatile aromatic compounds
Training 420 5880 0.99 0.98 0.11
Testing 180 2520 0.98 1.00 0.25
Overall 600 8400 0.99 0.98 -

Figure 5a shows the overall Model 3 with 95% prediction bounds; there were 3.49%
outliers (88 out of 2520 data points), with the majority from furfural (33 out of 88 outliers),
followed by 5-methylfurfural (28 out of 88 outliers). Likewise, Figure 5b shows the overall
Model 4, with 3.57% outliers (299 out of 8400 data points) according to the 95% prediction
bounds, where most outliers were also from furfural (119 out of 299 outliers), followed
by 5-methylfurfural (76 out of 299 outliers). Gonzalez Viejo, Tongson and Fuentes [31]
reported the very high accuracy of their models (R = 0.99) using e-nose results as inputs
to predict the peak area of volatile compounds in coffee detected by GC-MS. Gonzalez
Viejo, et al. [56] also constructed highly accurate ML regression models using the NIR
(R = 0.97) and e-nose (R = 0.99) data of sourdough bread as inputs to assess 16 volatile
aromatic compounds.
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GC-MS analysis, where the x-axis represents the observed data, while the y-axis depicts the predicted
values. Abbreviations: VAC: volatile aromatic compounds; R: correlation coefficient.
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The models developed show that the NIR (Models 1 and 3) and e-nose (Models 2
and 4) measurements of the coffee were able to find patterns within the input data to
predict the post-harvesting processing method and grinding size, as well as the volatile
aromatic compounds. Further studies may focus on developing machine learning models
to predict the intensity of the sensory descriptors related to fermented and unfermented
coffee using the e-nose outputs as inputs. This could provide a more critical prediction
among postharvesting processing, sensory perception, and consumer acceptability. The
NIR and e-nose used in this study are portable, affordable, and convenient, and was shown
to be objective, reliable, and rapid in evaluating the coffee’s quality traits. These methods
may also be used to develop methods to assess authentication and provenance for the
coffee industry, local family coffee farms, and retailers.

4. Conclusions

Conclusively, the wet fermentation and grinding size of coffee beans may significantly
influence the flavour, aroma, and physicochemical properties of coffee brew by changing
the contents of phytochemical and critical volatile compounds, such as acids, esters, and
aldehydes. The fermented coffee exhibited a lighter appearance, relatively lower pH, but
lower detection of acetic acid, which is probably due to other organic acids. The total e-nose
detection of fermented coffee beans was relatively higher. Although the content of overall
volatile compounds detected by GC-MS in the unfermented coffee was higher, several
compounds, such as 2-methylpyrazine (2.20 ng/mL) and furfuryl acetate (2.36 ng/mL), had
a higher concentration in the fermented coffee, which could contribute to a stronger fruity
flavour. The ANN models using the results of the NIR (Model 3) and e-nose (Model 4) as
inputs and GC-MS as the ground truth predicted the composition of 14 volatile compounds
with very high accuracy (R > 0.95). The impact of fermentation on the coffee’s quality
traits and volatile compounds was comprehensively, rapidly, and objectively assessed
in this study. Moreover, the postharvest processing methods, brewing method, and the
volatile compound patterns of coffee beverages could also be predicted to some extent
with minimal laboratory equipment. The lower cost of the digital technologies used in this
study coupled with ML modelling have a high potential to be used for coffee differentiation
assessment, processing prediction, and quality assurance for local coffee farms, roasters,
and retailers. More specific and perceived relations among postharvesting processing
methods, physiochemical properties, volatile aromatic compounds, and the consumers’
acceptability of coffee could be further investigated using specific overtones of NIR spectra,
an assessment of the intensity of sensory descriptors, the composition of volatile aromatic
compounds, and machine learning algorithms.
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