Enhanced Anaerobic Digestion Using Conductive Materials through Mediation of Direct Microbial Interspecies Electron Transfer: A Review
Abstract
:1. Introduction
2. The Type and Mechanisms of IET in AD
2.1. Mechanisms of MIET
2.2. Mechanisms of DIET
2.2.1. DIET via Conductive Pili
2.2.2. DIET via C-Type Cytochrome
2.2.3. DIET via Conductive Materials
3. Enhancing Methanogenesis through Conductive Materials Supplement via DIET
3.1. Enhanced AD by Carbon-Based Conductive Materials via DIET
3.1.1. Activated Carbon
3.1.2. Biochar
3.1.3. Carbon Cloth
3.1.4. Carbon Fiber
3.1.5. Graphite and Graphite Felt
3.1.6. Graphene
3.1.7. Carbon Nanotubes
3.1.8. Magnetic Biochar
Carbon-Based Conductive Materials | AD Mode | AD Substrate | Inoculum Ratio (Substrate: Inoculum) | Organic Load | pH | Temperature (°C) | Effect on AD Performance | References | |
---|---|---|---|---|---|---|---|---|---|
Type | Dosage | ||||||||
Biochar | 15 g/L | Batch | Phenol | 1:4 | 2.38 g COD/L | - | 35 | The maximum CH4 production rate increased from 4.0 mL/d to 10.4–13.9 mL/d. | [26] |
Biochar | 10 g/L | Batch | Glucose | 6:1 | 6.00 g/L | 7.0 | 37 | The maximum methane production rate increased by 23.5–47.1%. | [29] |
Biochar | 25, 50 g/L | Batch | Food waste | 1.8:1 | 8.50 g VS/L | - | 35 | The accumulative methane yield reached 110.3 mL CH4/g VS and 126.7 mL CH4/g VS. | [56] |
Biochar | 10 g/L | Batch | Oil | 1:1 | 3.00 g/L | 7.0 | 55 35 | CH4 production increased by 13.3–32.5% in thermophilic digesters. | [27] |
Biochar | 13 g/L | Batch | Chicken manure | 4.2:1 | 49.77 g VS/L | - | 35 | The highest cumulative methane yield obtained was 294 mL/g VS, which was 69% higher than that of the control. | [57] |
Biochar | 10 g/L | Batch | Wheat straw | 2:1 (Based on VS) | - | - | 50 | Twofold increment in the methane yield (223 L/kg VS) compared to the control (110 L/kg VS). | [58] |
Gasification biochar | 12 g/L | Semi-continuous | Ethanol | - | 3.20 g ethanol/L/d | - | 36 | Methane yield content reached 742 mL CH4/g ethanol. | [28] |
Biochar | 10 g/L | Semi-continuous | Kitchen wastes | - | 6.74 g VS/L/d | - | 37 | Methane production rates were increased by 42% (673.6 mL/d vs. 956.8 mL/d). | [30] |
Activated carbon | 5, 10 g/L | Batch | Food waste and fruit-vegetable waste | 1:1 | 20.90 g VS/L | 7.0 | 37 | Methane yield and shortest lag phase were observed in 5 g/L PAC and 10 g/L PAC group, 22.0% higher and 62.5% shorter than that without activated carbon supplementation, respectively. | [25] |
Granular Activated carbon | 15 g/L | Batch | Liquid of swine effluent | 1.65:1 | 6.83 g VS/L | - | 40 | The methane production rates increased by 11.5% in relation to the controls. | [24] |
Raw fractions of swine effluent | 7.27:1 | 3.03 g VS/L | - | 40 | The methane production rates increased by 37.8% in relation to the controls. | ||||
Granular activated carbon | 10 g/L | Batch | Waste activated sludg | 1:9 | 19.60 g VS/L | 7.0 | 35 | The methane yields of raw sludge were reduced by 6.5–36.9%; the lag phases of methanogenesis were shortened by 19.3–30.6%. | [20] |
Graphite felt | Semi-continuous | Syntrophic metabolism of propionate and butyrate | - | 5.00 g COD/L | 7.0 | 37 | The final average CH4 production rate increased by 19.1% and 16.7%, respectively. | [43] | |
Graphite | 0.75 g/L | Batch | Cow manure | 2.02:1 | - | 7.3–7.5 | 35 | The accumulative biogas production increased by 18.61%. | [40] |
1 g/L | Food waste | 1.66:1 | 35 | The accumulative biogas production increased by 19.75%. | |||||
1.5 g/L | Food waste and cow manure | 1.89:1 | 35 | Maximum biogas production was 1471.1 mL/g VS; the accumulative biogas production was increased by 7.5%. | |||||
Graphene | 3 × 6 cm | Batch | Swine manure | 4.5:1 | 55.60 g VS/L | 7.2–7.5 | 38 | The biogas yield was 356.49 m3/t dry swine manure and the methane yield was 222.17 m3/t dry swine manure: these are 41.49% and 60.89% higher than those of the control group, respectively. | [47] |
Graphene | 0.5 g/L | Batch | Coal gasification wastewater | - | 2.50 g COD/L | 7.5 ± 0.1 | 36 | Methane production rate achieved 64.7% and 180.5 mL/d, respectively. | [44] |
Activated carbon | 10 g/L | Methane production rate achieved 54.2% and 162.1 mL/d, respectively. | |||||||
Graphene | 1.0 g/L | Batch | Ethanol | 1:100 | 8.33 mL/L | 7.5 ± 0.1 | 35 | The highest biomethane yield was 695.0 ± 9.1 mL/g and production rates were 95.7 ± 7.6 mL/g/d. | [45] |
Carbon cloth | 5 pieces | Continuous | High-strength brewery wastewater | - | 1.00–10.00 g COD/L | 7.8 | 35 | The COD removal efficiency reached 98%. | [33] |
Carbon cloth | 10 pieces (10 × 6 cm) | Semi-continuous | Organic wastewater | - | 10.00 g COD/L/d | 6.5 ± 0.5 | 35 | Methane yield increased by 200–260%. | [32] |
Carbon nanomaterials | 500 mg/Kg | Batch | Sheep manure | - | - | 35 | The daily and accumulative production of methane increased by approximately 46.8% and 33.6%, and the total solid content decreased by approximately 12.8% and 10.4%. | [52] | |
Carbon nanotubes | 1 g/L | Batch | Acetolactic | 10:1 | 20.00 mmol/L | - | 37 | Cumulative methane production tripled with virtually no observed lag phase. | [49] |
5 g/L | 17-fold increase in initial methane yield and 1.5-fold increase in conversion of butyrate to methane. | ||||||||
Carbon nanotubes | 1.5 g/L | Continuous | Beet Sugar Industrial Wastewater | - | 186.00 mg VS/L | 6.9 ± 0.2 | 36 | Cumulative biogas production increased by 12.6%. | [51] |
Carbon fiber | 93% carbon content | Batch | Ethanol | 1:8 | 1.50–3.00 kg/(m3·day) | 7.0–8.5 | 35 | Maximum methane production rate increased by 40%. | [39] |
Magnetic biochar | 1 g/L | Batch | Waste activated sludge | 1:4 | - | - | 35 | Methane yield reached 208.7 mL/g volatile suspended solids, increasing by 22.1% compared to that in control. | [53] |
3.2. Enhanced AD by Iron-Based Conductive Materials via DIET
3.2.1. Magnetite and Fe3O4
3.2.2. Hematite and Fe2O3
3.2.3. Goethite
3.2.4. Zero-Valent Iron
Iron-Based Conductive Materials | AD Mode | AD Substrate | Inoculum Ratio (Substrate: Inoculum) | Organic Load | pH | Temperature (°C) | Effect on AD Performance | References | ||
---|---|---|---|---|---|---|---|---|---|---|
Type | Dosage | Size | ||||||||
Nano Fe3O4 | 1.5 g/L | - | Continuous | Beet Sugar Industrial Wastewater | - | 186.00 mg VS/L | 6.9 ± 0.2 | 36 | Generated 12.6% more mL/g VS CH4 than the control reactor. | [51] |
Fe2O3 | 75 mmol | - | Batch | Swine manure | 3:1 | - | - | 37 | The accumulative methane production improved by a maximum of 11.06%. | [64] |
Nano Fe3O4 | 0.5 g/L | 20 nm | Semi-continuous | Sludge | - | 31.80 g/L | 7.37–7.81 | 35 | Biogas production increased by 24.44%. | [61] |
Nano Fe3O4 | 40 mg/L | - | Batch | cabbage | 3.2:1 | 14.56 g VS/L | - | 37 | Biomethane production was enhanced by 123%. | [81] |
40 mg/L | cabbage | Biomethane production was enhanced by 79%. | ||||||||
60 mg/L | cauliflower biowaste | 4.8:1 | 21.86 g VS/L | Biomethane production was enhanced by 138%. | ||||||
60 mg/L | cauliflower biowaste | Biomethane production was enhanced by 106%. | ||||||||
Nano Fe3O4 | 20 mg/L | - | Batch | Manure | 2:1 | - | - | 37 | The highest specific biogas and methane production were 584 mL biogas/g VS and 351.8 mL CH4 g/VS, respectively, compared with the control which yielded only 352.6 mL biogas/g VS and 179.6 mL CH4 g/VS. | [63] |
Nano Fe2O3 | 100 mg/L | 20–40 nm | Batch | Cattle manure | 1:3 | 15.50 mL/L | - | 38 | Methane yields improved by 19.74%. | [73] |
500 mg/L | Methane yields improved by 18.14%. | |||||||||
1000 mg/L | Methane yields improved by 21.11%. | |||||||||
85%Fe3O4 | 100 mg/L | Methane yields improved by 36.99%. | ||||||||
500 mg/L | Methane yields improved by 39.36%. | |||||||||
1000 mg/L | Methane yields improved by 56.89%. | |||||||||
Nano Fe3O4 | 2.20 mg/L | - | Continuous | banana plant wastes and buffalo dung | - | 12.50 g VS/L | 6.8–7.6 | 37 | The highest methane yield was increased by 33.0%. | [62] |
1.25 mg/L | canola straw and buffalo dung | The highest methane yield was increased by 39.4%. | ||||||||
Nano Fe3O4 | 100 mg/L | 20–30 nm | Batch | Waste sludge | 1:1 | 7.40 g VS/L | 7.0 | 36 | Hydrogen yield was 11.9 mL/g and methane yield was 109.8 mL CH4/g, which increased by 15.1% and 58.7%, respectively, compared with those of the control. | [68] |
Nano Fe3O4 | 20 mg/L | 15–20 nm | Batch | dairy manure and corn stover | 2.5:1 | 147.65 g VS/L | 6.7–9.5 | 35 | The methane yield was 191.2 L/kg VS. | [82] |
Magnetite | 1.5 g/L | - | Batch | Glycerol | 2.5:1 | 7.50 g COD/L | 7.5 ± 0.1 | 37 | 6% increase in CH4 production compared to the control. | [65] |
Nano Fe3O4 | 10 g/L | - | Batch | Synthetic wastewater | 1:2 | 2.00 g COD/L | - | 35 | The maximum methane production rate increased by 78.3%. | [83] |
Nano Magnetite | 2.5 g/L | - | Batch | Wastewater | 39:1 | - | - | 35 | The maximum CH4 production rate was increased 2.3 ± 0.3-fold accompanied by an almost delay-free start-up. | [84] |
Goethite | 20 mM | <200 nm | Batch | Blue-algae biomass | 10:1 | 10.00 gVS/L | 7.0 ± 0.1 | 35 | The methane yield reached 263 ± 5 mL/g VS. | [76] |
Goethite | 20 mM | - | Continuous | Blue-algae biomass | - | 0.50 g VS/L/d | 7.0 ± 0.1 | 35 | Biogas and methane production was increased by 16.1% and 24.1%, respectively. | [77] |
Zero-valent iron | 10 g/L | - | Semi-continuous | Food wastes | - | 7.44 g VS/L/d | 7.2–7.5 | 37 | The maximum methane production was 778.2 mL/g VS. | [78] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, H.-J.; Lee, S.-H.; Lim, T.-G.; Park, J.-H.; Kim, B.; Buffière, P.; Park, H.-D. Recent advances in methanogenesis through direct interspecies electron transfer via conductive materials: A molecular microbiological perspective. Bioresour. Technol. 2021, 322, 124587. [Google Scholar] [CrossRef] [PubMed]
- Gahlot, P.; Ahmed, B.; Tiwari, S.B.; Aryal, N.; Khursheed, A.; Kazmi, A.A.; Tyagi, V.K. Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: Mechanism and application. Environ. Technol. Innov. 2020, 20, 101056. [Google Scholar] [CrossRef]
- Kundu, R.; Kunnoth, B.; Pilli, S.; Polisetty, V.R.; Tyagi, R.D. Biochar symbiosis in anaerobic digestion to enhance biogas production: A comprehensive review. J. Environ. Manag. 2023, 344, 118743. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Yin, Q.; Gu, M.; Wu, G. Inhibition mitigation of methanogenesis processes by conductive materials: A critical review. Bioresour. Technol. 2020, 317, 123977. [Google Scholar] [CrossRef]
- Ajay, C.M.; Mohan, S.; Dinesha, P.; Rosen, M.A. Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel 2020, 277, 118234. [Google Scholar] [CrossRef]
- Wang, W.; Lee, D.J. Direct interspecies electron transfer mechanism in enhanced methanogenesis: A mini-review. Bioresour. Technol. 2021, 330, 124980. [Google Scholar] [CrossRef]
- Kunatsa, T.; Xia, X. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresour. Technol. 2022, 344, 126311. [Google Scholar] [CrossRef]
- Xu, H.; Chang, J.; Wang, H.; Liu, Y.; Zhang, X.; Liang, P.; Huang, X. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms. Sci. Total Environ. 2019, 695, 133876. [Google Scholar] [CrossRef]
- Bryant, M.P. Microbial methane production—Theoretical aspects. J. Anim. Sci. 1979, 48, 193–201. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, G. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction. Biotechnol. Adv. 2019, 37, 107443. [Google Scholar] [CrossRef] [PubMed]
- Summers, Z.M.; Fogarty, H.E.; Leang, C.; Franks, A.E.; Malvankar, N.S.; Lovley, D.R. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 2010, 330, 1413–1415. [Google Scholar] [CrossRef] [PubMed]
- Rotaru, A.-E.; Shrestha, P.M.; Liu, F.; Markovaite, B.; Chen, S.; Nevin, K.P.; Lovley, D.R.; Voordouw, G. Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 2014, 80, 4599–4605. [Google Scholar] [CrossRef] [PubMed]
- Reguera, G.; McCarthy, K.D.; Mehta, T.; Nicoll, J.S.; Tuominen, M.T.; Lovley, D.R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101. [Google Scholar] [CrossRef]
- Holmes, D.E.; Shrestha, P.M.; Walker, D.J.F.; Dang, Y.; Nevin, K.P.; Woodard, T.L.; Lovley, D.R. Metatranscriptomic Evidence for Direct Interspecies Electron Transfer between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils. Appl. Environ. Microbiol. 2017, 83, e00223-17. [Google Scholar] [CrossRef]
- Kato, S.; Hashimoto, K.; Watanabe, K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ. Microbiol. 2012, 14, 1646–1654. [Google Scholar] [CrossRef]
- Rotaru, A.-E.; Shrestha, P.M.; Liu, F.; Shrestha, M.; Shrestha, D.; Embree, M.; Zengler, K.; Wardman, C.; Nevin, K.P.; Lovley, D.R. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 2014, 7, 408–415. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Li, Y.; Dang, Y.; Zhu, T.; Quan, X. Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem. Eng. J. 2017, 313, 10–18. [Google Scholar] [CrossRef]
- Hassanein, A.; Naresh Kumar, A.; Lansing, S. Impact of electro-conductive nanoparticles additives on anaerobic digestion performance—A review. Bioresour. Technol. 2021, 342, 126023. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, H.; Zhang, Y.; Cui, M.H.; Fu, B.; Liu, H.B. Insight into sludge anaerobic digestion with granular activated carbon addition: Methanogenic acceleration and methane reduction relief. Bioresour. Technol. 2021, 319, 124131. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Wang, X.; Tong, Y.W. Effects of activated carbon on mesophilic and thermophilic anaerobic digestion of food waste: Process performance and life cycle assessment. Chem. Eng. J. 2020, 399, 125757. [Google Scholar] [CrossRef]
- Dastyar, W.; Mirsoleimani Azizi, S.M.; Meshref, M.N.A.; Dhar, B.R. Powdered activated carbon amendment in percolate tank enhances high-solids anaerobic digestion of organic fraction of municipal solid waste. Process Saf. Environ. Prot. 2021, 151, 63–70. [Google Scholar] [CrossRef]
- Tan, L.C.; Lin, R.; Murphy, J.D.; Lens, P.N.L. Granular activated carbon supplementation enhances anaerobic digestion of lipid-rich wastewaters. Renew. Energy 2021, 171, 958–970. [Google Scholar] [CrossRef]
- Romero, R.M.; Valenzuela, E.I.; Cervantes, F.J.; Garcia-Reyes, R.B.; Serrano, D.; Alvarez, L.H. Improved methane production from anaerobic digestion of liquid and raw fractions of swine manure effluent using activated carbon. J. Water Process Eng. 2020, 38, 101576. [Google Scholar] [CrossRef]
- Ma, J.; Wei, H.; Su, Y.; Gu, W.; Wang, B.; Xie, B. Powdered activated carbon facilitates methane productivity of anaerobic co-digestion via acidification alleviating: Microbial and metabolic insights. Bioresour. Technol. 2020, 313, 123706. [Google Scholar] [CrossRef]
- Wang, G.; Gao, X.; Li, Q.; Zhao, H.; Liu, Y.; Wang, X.C.; Chen, R. Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer. J. Hazard. Mater. 2020, 390, 121726. [Google Scholar] [CrossRef]
- Lü, F.; Liu, Y.; Shao, L.; He, P. Powdered biochar doubled microbial growth in anaerobic digestion of oil. Appl. Energy 2019, 247, 605–614. [Google Scholar] [CrossRef]
- Qi, Q.; Sun, C.; Cristhian, C.; Zhang, T.; Zhang, J.; Tian, H.; He, Y.; Tong, Y.W. Enhancement of methanogenic performance by gasification biochar on anaerobic digestion. Bioresour. Technol. 2021, 330, 124993. [Google Scholar] [CrossRef]
- Lu, F.; Luo, C.; Shao, L.; He, P. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 2016, 90, 34–43. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Z.; Zhang, Y. Enhancing anaerobic digestion of kitchen wastes with biochar: Link between different properties and critical mechanisms of promoting interspecies electron transfer. Renew. Energy 2021, 167, 791–799. [Google Scholar] [CrossRef]
- Feng, D.; Xia, A.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q. Effects of carbon cloth on anaerobic digestion of high concentration organic wastewater under various mixing conditions. J. Hazard. Mater. 2022, 423, 127100. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Xia, A.; Liao, Q.; Nizami, A.S.; Sun, C.; Huang, Y.; Zhu, X.; Zhu, X. Carbon cloth facilitates semi-continuous anaerobic digestion of organic wastewater rich in volatile fatty acids from dark fermentation. Environ. Pollut. 2021, 272, 116030. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Sun, D.; Dang, Y.; Meier, D.; Holmes, D.E.; Smith, J.A. Carbon cloth enhances treatment of high-strength brewery wastewater in anaerobic dynamic membrane bioreactors. Bioresour. Technol. 2020, 298, 122547. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Rotaru, A.E.; Liu, F.; Philips, J.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour. Technol. 2014, 173, 82–86. [Google Scholar] [CrossRef]
- Dang, Y.; Holmes, D.E.; Zhao, Z.; Woodard, T.L.; Zhang, Y.; Sun, D.; Wang, L.Y.; Nevin, K.P.; Lovley, D.R. Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour. Technol. 2016, 220, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Baek, G.; Saikaly, P.E.; Logan, B.E. Addition of a carbon fiber brush improves anaerobic digestion compared to external voltage application. Water Res. 2021, 188, 116575. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 9. [Google Scholar] [CrossRef]
- Barua, S.; Zakaria, B.S.; Dhar, B.R. Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers. Bioresour. Technol. 2018, 266, 259–266. [Google Scholar] [CrossRef]
- Du, J.; Gu, M.; Yin, Q.; Wu, G. Temporary addition of carbon fibers facilitates methanogenic degradation of ethanol during anaerobic treatment. Sci. Total Environ. 2021, 765, 142724. [Google Scholar] [CrossRef]
- Muratcobanoglu, H.; Gokcek, O.B.; Mert, R.A.; Zan, R.; Demirel, S. Simultaneous synergistic effects of graphite addition and co-digestion of food waste and cow manure: Biogas production and microbial community. Bioresour. Technol. 2020, 309, 123365. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, Y.; Lin, P.; Li, J.; Dong, H.; Yu, H.; Qi, L.; Ren, L. Effects of graphite, graphene, and graphene oxide on the anaerobic co-digestion of sewage sludge and food waste: Attention to methane production and the fate of antibiotic resistance genes. Bioresour. Technol. 2021, 339, 125585. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 2015, 191, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, Y.; Ji, D.; Li, X.; Zhang, J.; Zang, L. Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion. Bioresour. Technol. 2019, 287, 121373. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Han, Y.; Ma, W.; Han, H.; Ma, W.; Xu, C. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene. Bioresour. Technol. 2018, 262, 302–309. [Google Scholar] [CrossRef]
- Lin, R.; Cheng, J.; Zhang, J.; Zhou, J.; Cen, K.; Murphy, J.D. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 2017, 239, 345–352. [Google Scholar] [CrossRef]
- Lin, R.; Deng, C.; Cheng, J.; Xia, A.; Lens, P.N.L.; Jackson, S.A.; Dobson, A.D.W.; Murphy, J.D. Graphene Facilitates Biomethane Production from Protein-Derived Glycine in Anaerobic Digestion. iScience 2018, 10, 158–170. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Gan, R.; Jia, H.; Yong, X.; Yong, Y.-C.; Wu, X.; Wei, P.; Zhou, J. Enhanced biogas production from swine manure anaerobic digestion via in-situ formed graphene in electromethanogenesis system. Chem. Eng. J. 2020, 389, 124510. [Google Scholar] [CrossRef]
- Tian, T.; Qiao, S.; Li, X.; Zhang, M.; Zhou, J. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour. Technol. 2017, 224, 41–47. [Google Scholar] [CrossRef]
- Salvador, A.F.; Martins, G.; Melle-Franco, M.; Serpa, R.; Stams, A.J.M.; Cavaleiro, A.J.; Pereira, M.A.; Alves, M.M. Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environ. Microbiol. 2017, 19, 2727–2739. [Google Scholar] [CrossRef]
- Yan, W.; Lu, D.; Liu, J.; Zhou, Y. The interactive effects of ammonia and carbon nanotube on anaerobic digestion. Chem. Eng. J. 2019, 372, 332–340. [Google Scholar] [CrossRef]
- Ambuchi, J.J.; Zhang, Z.; Shan, L.; Liang, D.; Zhang, P.; Feng, Y. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment. Water Res. 2017, 117, 87–94. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Ma, C.; White, J.C.; Zhao, Z.; Duan, C.; Zhang, Y.; Adeel, M.; Rui, Y.; Li, G.; et al. Carbon nanomaterials induce residue degradation and increase methane production from livestock manure in an anaerobic digestion system. J. Clean. Prod. 2019, 240, 118257. [Google Scholar] [CrossRef]
- Jin, H.-Y.; Yang, L.; Ren, Y.-X.; Tang, C.-C.; Zhou, A.-J.; Liu, W.; Li, Z.; Wang, A.; He, Z.-W. Insights into the roles and mechanisms of a green-prepared magnetic biochar in anaerobic digestion of waste activated sludge. Sci. Total Environ. 2023, 896, 165170. [Google Scholar] [CrossRef] [PubMed]
- Ruan, R.; Wu, H.; Yu, C.; Zhao, C.; Zhou, D.; Shi, X.; Cao, J.; Huang, B.; Luo, J. Impacts of magnetic biochar from reed straw on anaerobic digestion of pigment sludge: Biomethane production and the transformation of heavy metals speciation. Process Biochem. 2023, 125, 96–103. [Google Scholar] [CrossRef]
- Ni, Z.; Zhou, L.; Lin, Z.; Kuang, B.; Zhu, G.; Jia, J.; Wang, T. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. J. Hazard. Mater. 2023, 452, 131314. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, Y.; Zhang, T.; Hu, Q.; Wah Tong, Y.; He, Y.; Dai, Y.; Wang, C.H.; Peng, Y. Food waste treating by biochar-assisted high-solid anaerobic digestion coupled with steam gasification: Enhanced bioenergy generation and porous biochar production. Bioresour. Technol. 2021, 331, 125051. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 2018, 275, 258–265. [Google Scholar] [CrossRef]
- Paritosh, K.; Vivekanand, V. Biochar enabled syntrophic action: Solid state anaerobic digestion of agricultural stubble for enhanced methane production. Bioresour. Technol. 2019, 289, 121712. [Google Scholar] [CrossRef]
- Di, L.; Wang, F.; Li, S.; Wang, H.; Zhang, D.; Yi, W.; Shen, X. Influence of nano-Fe3O4 biochar on the methanation pathway during anaerobic digestion of chicken manure. Bioresour. Technol. 2023, 377, 128979. [Google Scholar] [CrossRef]
- Wang, D.; Han, Y.; Han, H.; Li, K.; Xu, C.; Zhuang, H. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite. Bioresour. Technol. 2018, 257, 147–156. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, Z.; Zhang, Y.; Xu, R.; Zheng, Y.; Hu, J.; Li, X.; Jia, M.; Xiong, W.; Cao, J. Influence of nanoscale zero-valent iron and magnetite nanoparticles on anaerobic digestion performance and macrolide, aminoglycoside, beta-lactam resistance genes reduction. Bioresour. Technol. 2019, 294, 122139. [Google Scholar] [CrossRef] [PubMed]
- Noonari, A.A.; Mahar, R.B.; Sahito, A.R.; Brohi, K.M. Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield. Renew. Energy 2019, 133, 1046–1054. [Google Scholar] [CrossRef]
- Abdelsalam, E.; Samer, M.; Attia, Y.A.; Abdel-Hadi, M.A.; Hassan, H.E.; Badr, Y. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy 2017, 120, 842–853. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, J.; Wei, Y.; Shen, P. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure. Bioresour. Technol. 2019, 287, 121393. [Google Scholar] [CrossRef] [PubMed]
- Im, S.; Yun, Y.-M.; Song, Y.-C.; Kim, D.-H. Enhanced anaerobic digestion of glycerol by promoting DIET reaction. Biochem. Eng. J. 2019, 142, 18–26. [Google Scholar] [CrossRef]
- Qiu, C.; Feng, Y.; Wu, M.; Liu, M.; Li, W.; Li, Z. NanoFe3O4 accelerates methanogenic straw degradation by improving energy metabolism. Bioresour. Technol. 2019, 292, 121930. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H.; Ma, F.; Zhao, G.; Wang, S. Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: Effects of an iron oxide-zeolite additive. Bioresour. Technol. 2018, 262, 169–176. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, L.; Wang, Y.; Zhao, Y.; She, Z.; Gao, M.; Guo, Y. Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: Impact on the biogas production and the substrate metabolism. Renew. Energy 2020, 146, 2724–2735. [Google Scholar] [CrossRef]
- Baek, G.; Jung, H.; Kim, J.; Lee, C. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent—Magnetic separation and recycling of magnetite. Bioresour. Technol. 2017, 241, 830–840. [Google Scholar] [CrossRef]
- Liu, F.; Rotaru, A.E.; Shrestha, P.M.; Malvankar, N.S.; Nevin, K.P.; Lovley, D.R. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ. Microbiol. 2015, 17, 648–655. [Google Scholar] [CrossRef]
- Aulenta, F.; Fazi, S.; Majone, M.; Rossetti, S. Electrically conductive magnetite particles enhance the kinetics and steer the composition of anaerobic TCE-dechlorinating cultures. Process Biochem. 2014, 49, 2235–2240. [Google Scholar] [CrossRef]
- Lovley, D.R. Reach out and touch someone: Potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev. Environ. Sci. BioTechnol. 2011, 10, 101–105. [Google Scholar] [CrossRef]
- Farghali, M.; Andriamanohiarisoamanana, F.J.; Ahmed, M.M.; Kotb, S.; Yamamoto, Y.; Iwasaki, M.; Yamashiro, T.; Umetsu, K. Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles. Waste Manag. 2020, 101, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Hu, A.; Ren, G.; Chen, M.; Tang, J.; Zhang, P.; Zhou, S.; He, Z. Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud. Water Res. 2018, 134, 54–62. [Google Scholar] [CrossRef]
- Zhu, M.-Y.; Peng, S.-C.; Tao, W.; Wang, J.; Tang, T.; Chen, T.-H.; Yue, Z.-B. Response of methane production and microbial community to the enrichment of soluble microbial products in goethite-dosed anaerobic reactors. Fuel 2017, 191, 495–499. [Google Scholar] [CrossRef]
- Yue, Z.-b.; Ma, D.; Wang, J.; Tan, J.; Peng, S.-C.; Chen, T.-H. Goethite promoted anaerobic digestion of algal biomass in continuous stirring-tank reactors. Fuel 2015, 159, 883–886. [Google Scholar] [CrossRef]
- Tan, J.; Wang, J.; Xue, J.; Liu, S.-Y.; Peng, S.-C.; Ma, D.; Chen, T.-H.; Yue, Z. Methane production and microbial community analysis in the goethite facilitated anaerobic reactors using algal biomass. Fuel 2015, 145, 196–201. [Google Scholar]
- Zhu, Y.; Zhao, Z.; Yang, Y.; Zhang, Y. Dual roles of zero-valent iron in dry anaerobic digestion: Enhancing interspecies hydrogen transfer and direct interspecies electron transfer. Waste Manag. 2020, 118, 481–490. [Google Scholar] [CrossRef]
- Ye, W.; Lu, J.; Ye, J.; Zhou, Y. The effects and mechanisms of zero-valent iron on anaerobic digestion of solid waste: A mini-review. J. Clean. Prod. 2021, 278, 123567. [Google Scholar] [CrossRef]
- Yuan, T.; Shi, X.; Sun, R.; Ko, J.H.; Xu, Q. Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion. J. Clean. Prod. 2021, 278, 123627. [Google Scholar] [CrossRef]
- Faisal, S.; Salama, E.-S.; Malik, K.; Lee, S.-h.; Li, X. Anaerobic digestion of cabbage and cauliflower biowaste: Impact of iron oxide nanoparticles (IONPs) on biomethane and microbial communities alteration. Bioresour. Technol. Rep. 2020, 12, 100567. [Google Scholar] [CrossRef]
- Ajayi-Banji, A.A.; Rahman, S. Efficacy of magnetite (Fe3O4) nanoparticles for enhancing solid-state anaerobic co-digestion: Focus on reactor performance and retention time. Bioresour. Technol. 2021, 324, 124670. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Yang, S.; Wang, Z.; Xing, L.; Wu, G. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide. Chem. Eng. J. 2018, 333, 216–225. [Google Scholar] [CrossRef]
- Ren, G.; Chen, P.; Yu, J.; Liu, J.; Ye, J.; Zhou, S. Recyclable magnetite-enhanced electromethanogenesis for biomethane production from wastewater. Water Res. 2019, 166, 115095. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, T.; Zhang, W. Enhanced Anaerobic Digestion Using Conductive Materials through Mediation of Direct Microbial Interspecies Electron Transfer: A Review. Fermentation 2023, 9, 884. https://doi.org/10.3390/fermentation9100884
Kong T, Zhang W. Enhanced Anaerobic Digestion Using Conductive Materials through Mediation of Direct Microbial Interspecies Electron Transfer: A Review. Fermentation. 2023; 9(10):884. https://doi.org/10.3390/fermentation9100884
Chicago/Turabian StyleKong, Tianqi, and Wanli Zhang. 2023. "Enhanced Anaerobic Digestion Using Conductive Materials through Mediation of Direct Microbial Interspecies Electron Transfer: A Review" Fermentation 9, no. 10: 884. https://doi.org/10.3390/fermentation9100884
APA StyleKong, T., & Zhang, W. (2023). Enhanced Anaerobic Digestion Using Conductive Materials through Mediation of Direct Microbial Interspecies Electron Transfer: A Review. Fermentation, 9(10), 884. https://doi.org/10.3390/fermentation9100884