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Abstract: Fermented feed is needed to maintain the vitality of probiotics and cannot be sterilized.
Fermented feeds, especially those with added CaCO3, have a high risk of contamination with
pathogens. Escherichia coli, Staphylococcus aureus, and Shigella flexneri are the main pathogenic bacteria
threatening animal breeding. This study developed a new microbial quantitative real-time PCR
analysis method to investigate the antibacterial rule in fermented feed with different amounts of
CaCO3. Moreover, using the qPCR method, we found that the feed pH decreased slowly with the
increase of CaCO3 addition. In the early stage of fermentation, CaCO3 addition promoted three
pathogenic bacteria growth. In the middle and late fermentation, CaCO3 addition inhibited the
growth of Escherichia coli and Shigella flexneri, and the greater the CaCO3 addition, the stronger the
inhibitory effect. The CaCO3 addition reduced the growth inhibition of Staphylococcus aureus, and
the inhibition effect was weaker with the increase of CaCO3 addition. From the inhibitory effect
on intestinal pathogenic bacteria such as Escherichia coli and Shigella flexneri, the optimal addition
amount of CaCO3 was 12%. At this level of addition, the number of Lactiplantibacillus plantarum subsp.
plantarum, Lacticaseibacillus rhamnosus, and Bacillus subtilis were also the highest, and the content of
organic acids with antibacterial effects was also the highest. The addition of CaCO3 had an inhibitory
effect on the growth of pathogenic bacteria, mainly attributed to the promotion of the growth of
Lactiplantibacillus plantarum subsp. plantarum and Lacticaseibacillus rhamnosus, and the organic acid
of its fermentation product had an inhibitory effect on pathogenic bacteria. This study provides
theoretical guidance for the antibacterial rule of high-pH fermented feed with different amounts of
CaCO3.

Keywords: animal nutrition; organic acid; solid-state fermentation; Escherichia coli; Lacticaseibacillus
rhamnosus

1. Introduction

Pathogenic bacteria (PB) are a huge threat to animal breeding. Main PB are Escherichia
coli, Staphylococcus aureus and Shigella flexneri [1]. If an animal is infected with these PB, it
will cause serious bodily disease and even death. Studies have reported that Escherichia coli
infection can cause diarrhea, meningitis, sepsis, atherosclerosis, etc. [2], and Staphylococcus
aureus infection can cause vomiting, diarrhea, and abdominal distension [3]. Animal feed
is one of the main sources of PB. Traditional feed can be sterilized by high-temperature
cooking and other methods. However, fermented feed is rich in a large number of probiotics,
and sterilization before use will cause serious damage to the probiotics and greatly reduce
the probiotic effect of fermented feed. Moreover, the water content of fermented feed is
generally higher than that of traditional feed, and the possibility of spoilage leading to
carrying PB is higher.
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Soybean meal (SBM) and bean dregs (BDs) are high-quality raw materials for the
production of fermented feed. SBM is known for its balanced amino acid composition
and high protein content compared to other plant protein sources [4]. The protein content
of SBM is generally 45–55%, of which more than 80% is water-soluble [5]. BDs are the
by-products in the processing of soybean products such as soy milk and tofu, which are
nutritious but inexpensive. BDs are high in fat, protein, isoflavones, and other nutrients [6].
The solid-state fermentation process is widely used in the production of fermented feed
due to its simple equipment and low production cost [7]. Because some nutrients in BDs
and SBM are destroyed in the process of high-temperature sterilization, their nutrient
and energy utilization rates are very low, and their potential utilization value is not fully
realized. Therefore, solid-state fermentation materials such as BDs and SBM often do not
undergo sterilization treatment, and the fermentation process cannot achieve an absolutely
sterile environment. This greatly increases the risk of carrying PB in fermented feed.
The probiotics used in animal nutrition are mainly strains of different genera, such as
Lactobacillus, Bacillus, Pediococcus, and Enterococcus [8]. Other probiotics are microscopic
fungi, such as Saccharomyces cerevisiae [9]. These probiotics are also added to fermented
feed as fermentation strains and produce some beneficial products for animal health.
Studies have reported that many fermentation products, such as organic acids, antibacterial
peptides, and bacteriocins, have certain antibacterial effects [10,11]. Lactobacillus rhamnosus
and Lactobacillus plantarum are probiotics that can be added to animal feed [12], and they
can produce organic acids [13]. Organic acids can lower the pH of feed and inhibit the
growth of PB. Because of its antibacterial and immune regulatory activities, it has been
applied in animal production [14]. Nithya and Halami [15] found that the antibacterial
peptide secreted by Bacillus subtilis exhibited promising antibacterial properties and can
be considered a potential candidate as a biopreservative agent. Saccharomyces cerevisiae
and its cellular components (mannaoligosaccharides, glucooligosaccharides, and enzymes)
can improve the growth, immunity, and intestinal health of cultured animals [16]. The
proliferation of microorganisms forms nutrient competition for PB and has an inhibitory
effect on their growth. However, the antibacterial rule of fermented feed on specific PB
remains to be studied.

Calcium (Ca) is crucial for egg formation, eggshell strength, and thickness. Adequate
Ca intake by laying hens is key to ensuring the quality of eggshells [17]. Research has shown
that when laying hens continue to consume Ca, they can fully utilize their egg production
performance [18]. Therefore, in the process of laying hens breeding, Ca supplements
such as CaCO3 are often added to the feed. In addition, during the fermentation process,
CaCO3 is often added to co-ferment with microorganisms to form organic acid calcium,
small peptide calcium, etc. [19,20], which can effectively improve the absorption and
utilization of Ca and increase the nutritional value of fermented feed. The added CaCO3
can neutralize the organic acids secreted by the microorganisms so that the fermentation
environment maintains a high pH value and a high Ca2+ osmotic pressure. This may
cause the fermentation strains to not grow and metabolize normally or may even cause
them to die. The fermentation process maintains a constant high pH, which is easily
contaminated by PB such as Escherichia coli, Staphylococcus aureus, and Shigella flexneri,
resulting in fermentation failure.

The traditional microbial quantitative analysis method is mainly to determine the
species and quantity of microorganisms by enrichment culture on plates and evaluation of
the microorganism morphology and culture characteristics [21]. Traditional quantitative
analysis methods are time-consuming and laborious, and different strains have a large
influence on each other [22]. In addition, there are a large number of microorganisms that
cannot be cultured in the sample, which leads to lower test results [23]. This is also one of the
reasons why some feed production enterprises have poor accuracy in microbial detection
in feed products. Quantitative real-time PCR (qPCR) is increasingly applied to microbial
quantitative analysis. The microbial quantitative analysis by qPCR is efficient, simple, and
accurate [24]. However, the accurate analysis of qPCR depends on the specificity of the
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primers used for the particular strain. The specificity of the strain primer is especially
important when determining the various strains in a mixed multi-strain sample.

This study developed a qPCR method for the determination of fermenting microorgan-
isms and PB. Escherichia coli, Staphylococcus aureus, Shigella flexneri, and different amounts
of CaCO3 were added simultaneously at the beginning of fermentation. The growth of
fermenting microorganisms, PB, and changes in organic acid content in fermented feed
were analysed to investigate the antibacterial rule of fermented feed with different amounts
of CaCO3. Moreover, the results of this study are expected to be applied to the microbial
quantitative detection process of feed products in feed production enterprises in the future.

2. Materials and Methods
2.1. Materials and Reagents

BDs and SBM were purchased from a bean processing factory in Zhenjiang City
(Jiangsu, China). All solvents and chemicals are analytical reagent grade or higher and are
purchased from Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China). Acid
protease and papain were purchased from Ningxia Xia Sheng Enzyme BioEngineering Co.,
Ltd. (Ningxia, China), and the activity of these enzymes is 60,000 U/g.

2.2. Microorganisms

Lactiplantibacillus plantarum subsp. plantarum (CGMCC 1.557), Lacticaseibacillus rhamno-
sus (CGMCC 1.2467), Bacillus subtilis (CGMCC 1.1086), and Saccharomyces cerevisiae (2.1527)
were purchased from the China General Microbiological Culture Collection Center. Shigella
flexneri (CMCC 51572) was purchased from the National Center for Medical Culture Collec-
tions. Escherichia coli (ATCC 43888) and Staphylococcus aureus (ATCC 6538) were preserved
by our laboratory.

2.3. Expanding the Culture of Strains and Configuration of Culture Media

Luria–Bertani (LB) liquid medium (1 L): 10 g tryptone, 10 g sodium chloride, and 5 g
yeast extract were accurately weighed in a 1 L beaker. A total of 950 mL of distilled water
was then added to the beaker and blended on a magnetic stirrer. The liquid was placed in
a 1 L volumetric bottle and filled to 1000 mL. The medium was then evenly divided into
four 500 mL conical glass bottles. These cone-shaped glass bottles containing the medium
were then autoclaved at 121 ◦C for 20 min. Malt extract medium (1 L): 130.1 g wort powder
was accurately weighed and placed in a 1 L beaker filled with 700 mL water. After the
powder was heated and dissolved, the liquid was placed in a 1 L volume bottle, and the
volume was fixed to 1000 mL. The liquid was divided into four 500 mL conical glass bottles.
It was then autoclaved at 121 ◦C for 15 min. Bacillus subtilis, Lactiplantibacillus plantarum
subsp. plantarum, Lacticaseibacillus rhamnosus, Escherichia coli, Staphylococcus aureus, and
Shigella flexneri were cultured with LB medium at 37 ◦C for 16 h, respectively. Saccharomyces
cerevisiae was cultured with malt extract medium at 28 ◦C for 16 h.

2.4. Primer Specificity Verification

The strains were cultured to OD600 = 1.00, and the DNA of each bacterial was extracted
with the FastPure Bacteria DNA Isolation Mini Kit (Vazyme, Nanjing, China); moreover,
yeast DNA was extracted by fungal genome extraction kit (Takara, Kusatsu, Japan). The
specificity of each primer was verified by routine PCR with the DNA of other strains. The
reaction system was as follows: 2× Rapid Tag Master Mix 10 µL (Vazyme, Nanjing, China),
Upstream primer 0.8 µL, Downstream primer 0.8 µL, DNA template 2 µL, ddH2O 6.4 µL.
The reaction procedure was as follows: pre-denaturation at 94 ◦C for 3 min, denaturation
at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s, and elongation at 72 ◦C for 1 min; a total of
30 cycles were completed, and elongation was at 72 ◦C for 10 min. The PCR-amplified
products were analyzed by 3% agarose gel electrophoresis. The primer sequences used in
this study can be seen in Table 1 [25–27].
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Table 1. Specific primers of strains.

Strains Primers (5′-3′) Amplified Fragment

Bacillus subtilis F: CGTAGAGCCACTTGAGCG
R: CTGCCGTTACAGTTCCTT 257

Saccharomyces cerevisiae F: GCGATAACGAACGAGACCCTAA
R: CCAGCACGACGGAGTTTCACAAGAT 225

Lactiplantibacillus plantarum subsp. F: GTGGTGCGGTCGATATTTTAGTT
R: TCAGCCGCGCTTGTAACC 108

Lacticaseibacillus rhamnosus F: GACGCAGCCGGTTGACCCAA
R: GGCGGCAGTTGCCCCAGAAT 376

Escherichia coli F: GCACTAAAAGCTTGGAGCAGTTC
R: AACAATGGGTCAGCGGTAAGGCTA 178

Staphylococcus aureus F: GCGATTGATGGTGATACGGTT
R: AGCCAAGCCTTGACGAACTAAAGC 279

Shigella flexneri F: GAGATTCCTGCTCCGCTAA
R: TGCGAGGTAGTTGACATTGG 323

2.5. Establishment of Strain Standard Curves for qPCR Determination

The establishment of strain standard curves refers to the method of Yu, Dong, and
Lu [28] with slight modification. The DNA fragments amplified by specific primers were
recovered as the standard for qPCR. The concentration of the fragments was measured and
converted to the copy number of each standard strain for making standard curves. The cal-
culation formula was copy number = DNA concentration (ng µL−1) × 10−9 × 6.023 × 1023/
(660× base number). The standards were diluted 10 times to 10−7~10−2 copies µL−1, and
SYBR Green was used as fluorescent dye for qPCR. qPCR reaction system was SYBR Qpcr
Master Mix (Vazyme, Nanjing, China) 10 µL, Upstream primer 0.8 µL, Downstream primer
0.8 µL, DNA template 2 µL, ddH2O 6.4 µL. The reaction procedure was as follows: prede-
naturation at 95 ◦C for 30 s, amplification at 95 ◦C for 5 s, 60 ◦C for 31 s, a total of 40 cycles.
After the reaction, it was warmed to 95 ◦C 15 s, then to 60 ◦C 1 min, and then to 95 ◦C 1 s.
The amplification and analysis were carried out by Thermofisher QuantStudio 3 (Thermo
Fisher Scientific, Singapore). The standard curve could be drawn by taking the logarithm
of positive template as abscissa and the initial cycle number (Ct) of fluorescent signals in
the process of PCR reaction as ordinate.

2.6. Solid-State Fermentation Process

The solid-state fermentation process referred to the research of Heng et al. [29] and
made slight modifications based on our experimental results (Figure 1). Firstly, 120 g BDs
and 120 g SBM are mixed in a plastic bowl with a bare mouth. The mixture was stirred
evenly and fermented under the aerobic condition at 30 ◦C for 14 h. Then, Saccharomyces
cerevisiae, Lactiplantibacillus plantarum subsp. plantarum, Lacticaseibacillus rhamnosus, and
0.65% acid protease + 0.65% papain (w/w) were added. The mixture was stirred evenly and
was put into a fermentation bag containing a one-way vent. Finally, the fermentation bag
was sealed, and the fermentation was conducted under an anaerobic condition at 30 ◦C in
a constant temperature incubator. Three PB (Escherichia coli, Staphylococcus aureus, Shigella
flexneri) and different amounts of CaCO3 (0, 2, 4, 8, and 12%, w/w) were added before
sealing the fermentation bag for anaerobic fermentation. The inoculum size of each strain
was 1.25% (v/w), and the strains were cultured to OD600 = 1.00.
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Figure 1. Initial fermentation process.

2.7. Changes of Fermented Feed pH and Organic Acid Content with Different Amounts of CaCO3

Samples were taken on days 0, 1, 4, 7, 11, 15, 20, and 30 of fermentation to determine
the feed pH. Samples were taken on 0, 7, 15, and 30 days of fermentation to determine the
organic acid content.

2.8. Microorganism Detection with qPCR

Samples were taken at 12 h, 1 day, 4 days, 7 days, 11 days, 15 days, 20 days, and
30 days of fermentation to determine three PB by qPCR. Samples were taken on days 0,
7, 15, and 30 of fermentation to determine Bacillus subtilis by qPCR. Samples were taken
at 12 h, 7 days, 15 days, and 30 days of fermentation to determine Saccharomyces cerevisiae,
Lactiplantibacillus plantarum subsp. Plantarum, and Lacticaseibacillus rhamnosus by qPCR.
The extraction of microbial DNA in fermented feed also refers to the method of Yu, Dong,
and Lu [28] with slight modification. Sample (1.00 g) was mixed with 10 mL deionized
water, shaken for 20 min, and filtered through a 200 mesh sieve. Filtrate (2 mL) was used to
extract DNA for qPCR, and bacterial DNA was extracted by the FastPure Bacteria DNA
Isolation Mini Kit (Vazyme, Nanjing, China); yeast DNA was extracted by fungal genome
extraction kit (Takara). The remaining qPCR steps are as described above.

2.9. Determination of Fermented Feed pH and Organic Acids

Feed pH was determined according to the method of Elfalleh et al. [30]. The sample
(2.00 g) was mixed with 20 mL of deionized water, soaked for 2 h, and measured with
a pH meter (Sartorius PB-10, Sartorius, Beijing, China). Organic acids were determined
by the method of Moghaddam, Zhang, and Du [31] with slight modification. Sample
(1.00 g) was mixed with 20 mL pH 2.7 HCl solution, sonicated for 30 min, shaken and
soaked for 3.5 h, and then centrifuged at 6000× g for 35 min. The supernatant was diluted
with HCl solution (pH 2.0) at 1:1 and filtered through a 0.45 µm filter membrane before
HPLC analysis (SHIMADZU, Kyoto, Japan). Chromatographic conditions: mobile phase,
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0.01 mol L−1 KH2PO4 (pH 2.7):methanol = 97:3; chromatographic column: Welch AQ-C18;
detection wavelength: 210 nm; flow rate: 0.6 mL min−1. The total organic acid content was
the sum of each acid content.

2.10. Statistical Analysis

All experiments were performed in triplicate. All data are expressed as the mean± SD
and were analyzed using one-way analysis of variance (ANOVA) in SPSS 25.0 and plotted
using Origin Pro8. Statistical significance was set at p < 0.05.

3. Results
3.1. Strain Primer Specificity Verification

In this study, except for the nucA gene used in Saccharomyces cerevisiae and Staphylococ-
cus aureus, the other five bacterial strains all used the recA gene, and these two genes have
been confirmed to have been optimized for amplification methods and used for quantitative
analysis of micrograms numbers [25–27]. Each strain primer used in the experiment can
only bind to its own DNA, not to other strains of DNA (Figure 2), so the specificity of each
strain primer is good.
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Figure 2. Specificity verification of strain primers. (a) Bacillus subtilis; (b) Saccharomyces cerevisiae;
(c) Lactiplantibacillus plantarum subsp. plantarum; (d) Lacticaseibacillus rhamnosus; (e) Escherichia
coli; (f) Staphylococcus aureus; (g) Shigella flexneri. M: DNA Marker (50~500 bp); 1: Bacillus subtilis;
2: Saccharomyces cerevisiae; 3: Lactiplantibacillus plantarum subsp. plantarum; 4: Lacticaseibacillus
rhamnosus; 5: Escherichia coli; 6: Staphylococcus aureus; 7: Shigella flexneri.

3.2. Establishment of qPCR Strain Standard Curves

During the PCR process, the fluorescence signal of the sample amplification products
shows an s-shaped curve with exponential cycle, linear cycle, and plateau phase [32]. In
the exponential phase, there is a linear relationship between the initial concentration of
the sample and the number of amplification cycles (Ct value) corresponding to the sample.
The standard curves of strains are shown in Table 2.

Table 2. Standard curves of strains.

Strains Standard Curves Related Coefficient Efficiency Coefficient

Bacillus subtilis Y = −3.3493X + 35.973 R2 = 0.9996 98.87%
Saccharomyces cerevisiae Y = −3.4505X + 38.2299 R2 = 0.9977 94.90%

Lactiplantibacillus plantarum subsp. plantarum Y = −3.4474X + 35.226 R2 = 0.9999 95.01%
Lacticaseibacillus rhamnosus Y = −3.4732X + 36.781 R2 = 0.9951 94.05%

Escherichia coli Y = −3.3464X + 39.203 R2 = 0.9990 98.98%
Staphylococcus aureus Y = −3.4632X + 38.2299 R2 = 0.9991 94.42%

Shigella flexneri Y = −3.2115X + 35.226 R2 = 0.9985 104.48%

3.3. Changes of Fermented Feed pH with Different Amounts of CaCO3

As shown in Figure 3, with the increase of CaCO3 addition, the pH drop of fermented
feed slows down. Without CaCO3 addition, the pH of fermented feed was lower than 4.5
in 4 days of fermentation and dropped to about 4.1 in 30 days of fermentation. The pH of
fermented feed with 2% CaCO3 dropped to below 4.5 in 15 days and was around 4.3 in
30 days. The pH of fermented feed with 4% CaCO3 dropped to about 4.5 in 30 days. The



Fermentation 2023, 9, 940 8 of 14

pH of fermented feeds with 8% and 12% CaCO3 was always above 5.0 during one month
of fermentation.
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3.4. Growth Changes of Escherichia coli, Staphylococcus aureus, and Shigella flexneri with
Different Amounts of CaCO3

As shown in Figure 4a, in the early stage of fermentation, the addition of CaCO3 promoted
the growth of Escherichia coli, of which 4% was the most obvious, followed by 8%. The addition of
CaCO3 made the maximum growth of Escherichia coli (2.63 × 107 copies g−1) appear in advance
to the 4th day, while the maximum growth of Escherichia coli (2.14× 107 copies g−1) appeared
on the 7th day without the addition of CaCO3, and the maximum growth of Escherichia coli in
the feed with the addition of CaCO3 was higher than that in the feed without the addition of
CaCO3. In the middle and later stages of fermentation, the number of Escherichia coli decreased
with the increase of CaCO3 addition.
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As shown in Figure 4b, in the early stage of fermentation, CaCO3 addition promoted
the growth of Staphylococcus aureus, and with the increase of CaCO3 addition, the promotion
effect was weakened; the greatest promotion effect was 2% CaCO3. In the middle and late
stages of fermentation, the number of Staphylococcus aureus gradually decreased, and with
the increase of CaCO3 addition, the number of Staphylococcus aureus increased. The growth
trend of Shigella flexneri in all groups of experiments increased first and then decreased
(Figure 4c). In the early stage of fermentation, the growth rate of Shigella flexneri in the
feed with CaCO3 addition was faster than that in the feed without CaCO3 addition. In the
middle and late stages of fermentation, the number of Shigella flexneri continued to decrease
in all groups of experiments.

3.5. Changes of Organic Acid Content and Growth Changes of Fermenting Strains with Different
Amounts of CaCO3

As shown in Figure 5a, at 7 days of fermentation, the CaCO3 addition reduced the
number of Bacillus subtilis. The addition of 2% CaCO3 slowed down the decline of Bacillus
subtilis in the late stage of fermentation. As shown in Figure 5b, the addition of 2% and
4% CaCO3 promoted the growth of Saccharomyces cerevisiae in the early stage of fermen-
tation. In the late stage of fermentation, the addition of CaCO3 slowed down the decay
of Saccharomyces cerevisiae. In the fermentation process containing anaerobic fermentation,
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lactic acid bacteria grow rapidly and are the dominant fermenting strains [29]. As shown
in Figure 5c,d, the addition of CaCO3 promoted the growth of Lactiplantibacillus plantarum
subsp. plantarum and Lacticaseibacillus rhamnosus throughout the fermentation process.
The number of both lactic acid bacteria increased with the increase of CaCO3 addition. In
addition, as shown in Figure 6, the content of organic acids in fermented feed increased
with the addition of CaCO3. In the early stage of fermentation (0–7 days), the organic acid
content increases rapidly. After 7 days of fermentation, the organic acid content showed a
slow increasing trend.
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4. Discussion

It is reported that fermented feed with a pH lower than 4.5 has a better antibacterial
effect, and long-term high pH is likely to contaminate PB [33,34]. During the experiment,
none of the fermented feeds with CaCO3 showed obvious white spots, odor, etc. We
speculate that it is possible that the fermented feeds still have a good antibacterial effect
under the high pH caused by the addition of CaCO3.

The growth trend of Escherichia coli, Staphylococcus aureus, and Shigella flexneri increased
first and then decreased in all groups of experiments (Figure 4a–c). In the early stage of
fermentation, the addition of CaCO3 made the feed pH high, which was favorable to the
growth of Escherichia coli, and the growth competition ability of Escherichia coli was stronger
than other strains. In the middle and later stages of fermentation, the number of Escherichia
coli decreased with the increase of CaCO3 addition. This indicated that the addition of
CaCO3 promoted the inhibition of Escherichia coli by fermented feed, and the inhibition
effect was stronger with the increase of CaCO3 addition. Different from Escherichia coli, the
addition of CaCO3 weakened the growth inhibition of fermented feeds to Staphylococcus
aureus, and the inhibition effect became weaker with the increase of CaCO3 addition. This
may be because Staphylococcus aureus was a gram-positive bacterium with thicker cell
walls [35] that was more resistant to antimicrobial substances in fermented feed. The
addition of CaCO3 had a significant inhibition effect on the growth of Shigella flexneri. The
higher the CaCO3 addition, the faster the number of Shigella flexneri decreased, indicating
that the inhibitory effect of fermented feed on Shigella flexneri was stronger.

At present, it is not clear which amount of CaCO3 is the most appropriate. Because
the quantities of Bacillus subtilis, Lactiplantibacillus plantarum subsp. plantarum and Lacticas-
eibacillus rhamnosus are the highest with a CaCO3 addition under 12%, the production of
organic acids is also the highest, and this additional amount has the best inhibition effect
on the Escherichia coli and Shigella flexneri. But, the inhibition against Staphylococcus aureus
was the worst. The addition of 4% CaCO3 is more suitable for the growth of Saccharomyces
cerevisiae. The exploration of the most suitable amount of CaCO3 addition is the content of
our next research.

The growth of microorganisms plays an important role in the antimicrobial effect of
fermented feed. Adding an appropriate amount of CaCO3 is beneficial for the reproduction
of fermentation strains such as Bacillus subtilis and Saccharomyces cerevisiae in this study. The
addition of CaCO3 promotes the growth of Lactiplantibacillus plantarum subsp. plantarum
and Lacticaseibacillus rhamnosus to varying degrees. The proliferation of microorganisms
such as Lactiplantibacillus plantarum subsp. plantarum and Lacticaseibacillus rhamnosus had
a competitive inhibitory effect on the growth of Escherichia coli, Staphylococcus aureus,
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and Shigella flexneri. Lactiplantibacillus plantarum subsp. plantarum and Lacticaseibacillus
rhamnosus can also secrete lactic acid bacteriocins, organic acids, and other antibacterial
substances, which have a good inhibitory effect on PB. Peng et al. [36] found bacteriocin LP
21-2 produced by Lactiplantibacillus plantarum SHY 21-2 had a broad antimicrobial spectrum
against gram-positive bacteria and gram-negative bacteria, including Staphylococcus aureus
ATCC25923, Salmonella typhi CMCC50071.

CaCO3 is one of the frequently added raw materials in fermented feed, and its co-
fermentation with microorganisms can form organic acid calcium, small peptide calcium,
etc. [19,20], which can effectively improve the absorption and utilization rate of calcium
and enhance the nutritional value of fermented feed. In addition, the addition of CaCO3
significantly increased the content of organic acids in the fermented feed (Figure 6). The
antimicrobial effect of lactic acid is believed to be exerted through the ability of undissoci-
ated acids to enter cells, disrupt pH homeostasis, and, thus, cause damage to nucleic acids
and proteins [33]. The main components of organic acids in this fermented feed were lactic
acid and acetic acid. Costa et al. [37] found that decreases in counts of L. monocytogenes or S.
Enteritidis in “Minas Frescal” cheese and ground chicken breast, respectively, were related
to increases in lactic and acetic acid contents and decreases in pH values. Bacteriocins
can effectively inhibit the growth and reproduction of pathogenic microorganisms and
have great feeding value [38]. Vázquez, González, and Murado [39] found that compared
with bacteriocin, lactic acid and acetic acid are more effective at inhibiting PB. However,
most of the organic acids were in the form of organic acid radicals due to the presence
of CaCO3. This may be due to organic acid ions also having good antibacterial effects.
Although the addition of a large amount of CaCO3 resulted in the high pH of the fermented
feed, it promoted the production of large amounts of organic acid radicals, which had a
good growth inhibition effect on PB. The quality of the feed remains unaffected, and the
increased organic acid radicals also improve the quality of the fermented feed.

This study established a rapid detection method for the number of microorganisms in
the fermented feed fermentation process. This is more accurate and rapid than the traditional
method of using plate enrichment culture and evaluating microbial morphology and culture
characteristics to determine the type and quantity of microorganisms in products [18]. Al-
though this method cannot distinguish dead cell DNA, resulting in a judgment of excessive
quantity, this study provides a rapid and quantitative analysis of microorganisms during the
fermentation process of fermented feed, providing a theoretical basis for the prevention of
PB pollution, safe production, and preservation of fermented feed. Propidine monoazide
(PMA) is a common live bacterial dye, which combines with qPCR technology (PMA-qPCR)
to not only specifically quantify the number of strains but also distinguish between live
and dead cells [40]. It has been applied to the quantitative detection of microorganisms in
beverages [41]. This method may be applied to the rapid and accurate quantitative detection
of microorganisms in fermented feed, which is also our next research direction.

5. Conclusions

In order to improve the quality and stability of fermented feed and to more accurately
detect changes in microbial biomass during the fermentation process of fermented feed,
we have established a rapid qPCR method for detecting microbial changes in fermented
feed. The relationship between the addition of CaCO3 and the changes in the number of
probiotics, PB, and the organic acid content was established through this method. The
addition of CaCO3 significantly inhibited the growth of Escherichia coli and Shigella flexneri
and reduced the growth inhibition of Staphylococcus aureus. It also promoted the growth
of fermenting strains and a large amount of organic acid production, which made the
fermented feed have a certain antibacterial effect. For the inhibitory effect of intestinal
PB, the additional amount of 12% CaCO3 is the most suitable. At this level of addition,
the number of Lactiplantibacillus plantarum subsp. plantarum, Lacticaseibacillus rhamnosus,
and Bacillus subtilis are the highest, and the content of organic acids with antibacterial
effects is also the highest. However, this method cannot distinguish between dead cell
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DNA, resulting in a judgment of excessive quantity. However, this study provides a new
rapid detection method for quickly adjusting feed production processes by detecting the
number of microorganisms in the fermentation production process of fermented feed and
provides a theoretical basis for preventing PB pollution, safe production, and preservation
of fermented feed.
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