Metabolic Difference Analysis of Clostridium cellulovorans Grown on Glucose and Cellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Culture Medium and Batch Fermentation
2.2. Analytical Methods
2.3. Carbon and Energy Flux Analysis
2.4. Gene Expression Analysis by RNA-Seq and qRT-PCR
2.5. Proteomic Analysis
3. Results
3.1. Growth and Fed-Batch Fermentation
3.2. Carbon Source, Redox Balance Analysis, and Stoichiometry
3.3. Transcriptional Analyses of C. cellulovorans Grown on Glucose and Cellulose
3.4. Quantitative Proteome Analyses of Culture Supernatants in C. cellulovorans
4. Discussion
4.1. Growth and Metabolic Product Characteristics
4.2. Preliminary Analysis of Carbon Source Distribution Mechanism
4.3. Preliminary Analysis of Redox Balance Mechanism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sims, R.E.; Mabee, W.; Saddler, J.N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 2010, 101, 1570–1580. [Google Scholar] [CrossRef]
- Usai, G.; Cirrincione, S.; Re, A.; Manfredi, M.; Pagnani, A.; Pessione, E.; Mazzoli, R. Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach. J. Proteom. 2020, 216, 103667. [Google Scholar] [CrossRef]
- Aburaya, S.; Aoki, W.; Kuroda, K.; Minakuchi, H.; Ueda, M. Temporal proteome dynamics of Clostridium cellulovorans cultured with major plant cell wall polysaccharides. BMC Microbiol. 2019, 19, 118. [Google Scholar] [CrossRef] [Green Version]
- Palop, M.L.; Valles, S.; Pinaga, F.; Flors, A. Isolation and characterization of an anaerobic, celluloytic bacterium, Clostridium celerecrescens Sp-Nov. Int. J. Syst. Bacteriol. 1989, 39, 68–71. [Google Scholar] [CrossRef] [Green Version]
- Bao, T.; Zhao, J.; Li, J.; Liu, X.; Yang, S.T. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases. Bioresour. Technol. 2019, 285, 121316. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Ledesma-Amaro, R.; Lin, J.; Jiang, Y.; Yang, S. Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering. Appl. Environ. Microbiol. 2019, 85, e02560-18. [Google Scholar] [CrossRef] [Green Version]
- Xin, F.X.; Dong, W.L.; Zhang, W.M.; Ma, J.F.; Jiang, M. Biobutanol production from crystalline cellulose through consolidated bioprocessing. Trends Biotechnol. 2019, 37, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Lynd, L.R.; Liang, X.; Biddy, M.J.; Allee, A.; Cai, H.; Foust, T.; Himmel, M.E.; Laser, M.S.; Wang, M.; Wyman, C.E. Cellulosic ethanol: Status and innovation. Curr. Opin. Biotechnol. 2017, 45, 202–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, J.F.; Bao, T.; Ernst, P.; Si, Y.N.; Prabhu, S.D.; Wu, H.; Zhang, J.Y.; Zhou, L.F.; Yang, S.T.; Liu, X.G. Intracellular metabolism analysis of Clostridium cellulovorans via modeling integrating proteomics, metabolomics and fermentation. Process Biochem. 2020, 89, 9–19. [Google Scholar] [CrossRef]
- Yang, X.; Xu, M.; Yang, S.T. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metab. Eng. 2015, 32, 39–48. [Google Scholar] [CrossRef]
- Li, F.; Hinderberger, J.; Seedorf, H.; Zhang, J.; Buckel, W.; Thauer, R.K. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 2008, 190, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Lutke-Eversloh, T.; Bahl, H. Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production. Curr. Opin. Biotechnol. 2011, 22, 634–647. [Google Scholar] [CrossRef]
- Foulquier, C.; Riviere, A.; Heulot, M.; Dos Reis, S.; Perdu, C.; Girbal, L.; Pinault, M.; Dusseaux, S.; Yoo, M.; Soucaille, P.; et al. Molecular characterization of the missing electron pathways for butanol synthesis in Clostridium acetobutylicum. Nat. Commun. 2022, 13, 4691. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, Q.; Li, Y.; Zhang, Y. Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories. Microb. Cell Fact. 2017, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Aburaya, S.; Esaka, K.; Morisaka, H.; Kuroda, K.; Ueda, M. Elucidation of the recognition mechanisms for hemicellulose and pectin in Clostridium cellulovorans using intracellular quantitative proteome analysis. AMB Express 2015, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Tamaru, Y.; Miyake, H.; Kuroda, K.; Nakanishi, A.; Kawade, Y.; Yamamoto, K.; Uemura, M.; Fujita, Y.; Doi, R.H.; Ueda, M. Genome sequence of the cellulosome-producing mesophilic organism Clostridium cellulovorans 743B. J. Bacteriol. 2010, 192, 901–902. [Google Scholar] [CrossRef] [Green Version]
- Cho, W.; Jeon, S.D.; Shim, H.J.; Doi, R.H.; Han, S.O. Cellulosomic profiling produced by Clostridium cellulovorans during growth on different carbon sources explored by the cohesin marker. J Biotechnol. 2010, 145, 233–239. [Google Scholar] [CrossRef]
- Esaka, K.; Aburaya, S.; Morisaka, H.; Kuroda, K.; Ueda, M. Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation. AMB Express 2015, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Matsui, K.; Bae, J.; Esaka, K.; Morisaka, H.; Kuroda, K.; Ueda, M. Exoproteome profiles of Clostridium cellulovorans grown on various carbon sources. Appl. Environ. Microb. 2013, 79, 6576–6584. [Google Scholar] [CrossRef] [Green Version]
- Morisaka, H.; Matsui, K.; Tatsukami, Y.; Kuroda, K.; Miyake, H.; Tamaru, Y.; Ueda, M. Profile of native cellulosomal proteins of Clostridium cellulovorans adapted to various carbon sources. AMB Express 2012, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Sun, J.; Chang, J.S.; Shukla, P. Engineering microbes for direct fermentation of cellulose to bioethanol. Crit. Rev. Biotechnol. 2018, 38, 1089–1105. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Yao, X.Q.; Zhang, Q.; Liu, Z.; Wang, Z.J.; Zhang, Y.Y.; Li, F.L. Modulation of the acetone/butanol ratio during fermentation of corn stover-derived hydrolysate by Clostridium beijerinckii strain NCIMB 8052. Appl. Environ. Microbiol. 2017, 83, e03386-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Sun, C.; Zhang, K.L.; Song, Y.C.; Tian, Y.; Chen, X.; Liu, Y.G.; Ye, N.H.; Zhang, J.; Qu, S.; et al. SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant. BMC Plant Biol. 2019, 19, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.; Chang, C.Y.; Clough, T.; Broudy, D.; Killeen, T.; MacLean, B.; Vitek, O. MSstats: An R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 2014, 30, 2524–2526. [Google Scholar] [CrossRef] [Green Version]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Yin, Q.; Han, X.; Chen, J.; Han, Z.; Shen, L.; Sun, W.; Chen, S. Identification of specific glycosyltransferases involved in flavonol glucoside biosynthesis in ginseng using integrative metabolite profiles, DIA Proteomics, and Phylogenetic Analysis. J. Agric. Food Chem. 2021, 69, 1714–1726. [Google Scholar] [CrossRef]
- Eng, J.K.; McCormack, A.L.; Yates, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994, 5, 976–989. [Google Scholar] [CrossRef] [Green Version]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef] [Green Version]
- Desvaux, M. Unravelling carbon metabolism in anaerobic cellulolytic bacteria. Biotechnol. Prog. 2006, 22, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Rydzak, T.; McQueen, P.D.; Krokhin, O.V.; Spicer, V.; Ezzati, P.; Dwivedi, R.C.; Shamshurin, D.; Levin, D.B.; Wilkins, J.A.; Sparling, R. Proteomic analysis of Clostridium thermocellum core metabolism: Relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol. 2012, 12, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, H.G.; Jang, Y.S.; Cho, C.; Lee, J.; Binkley, R.; Lee, S.Y. One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 2016, 363, fnw001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacena, M.A.; Smith, E.E.; Todd, P. Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity. Appl. Microbiol. Biotechnol. 1999, 52, 437–439. [Google Scholar] [CrossRef]
- Lacriola, C.J.; Falk, S.P.; Weisblum, B. Screen for agents that induce autolysis in Bacillus subtilis. Antimicrob. Agents Chemother. 2013, 57, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Leduc, M.; van Heijenoort, J. Autolysis of Escherichia coli. J. Bacteriol. 1980, 142, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Qiao, K.; Tian, L.; Zhang, Q.; Liu, Z.Y.; Li, F.L. Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores. Front. Microbiol. 2015, 6, 950. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.D.; Wang, Z.Z.; Xin, X.; Bai, F.W.; Xue, C. Synergetic engineering of central carbon, energy, and redox metabolisms for high butanol production and productivity by Clostridium acetobutylicum. Ind. Eng. Chem. Res. 2020, 59, 17137–17146. [Google Scholar] [CrossRef]
- Tian, L.; Lo, J.; Shao, X.; Zheng, T.; Olson, D.G.; Lynd, L.R. Ferredoxin:NAD+ oxidoreductase of thermoanaerobacterium saccharolyticum and its role in ethanol formation. Appl. Environ. Microbiol. 2016, 82, 7134–7141. [Google Scholar] [CrossRef] [Green Version]
Glucose a (mM) | Glucose b (mM) | Ratio c (%) | RE d (mM) | RE e (mM) | Ratio f (%) | |
---|---|---|---|---|---|---|
Glucose | 268 ± 2 | 152.3 | 57 | 1072 | 399.4 | 37 |
Cellulose | 204 ± 8 | 99.7 | 49 | 816 | 329.2 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.-Z.; Jiang, D.-D.; Fan, Y.-X.; Zhang, Q.; Liu, L.-C.; Li, F.-L.; Liu, Z.-Y. Metabolic Difference Analysis of Clostridium cellulovorans Grown on Glucose and Cellulose. Fermentation 2023, 9, 321. https://doi.org/10.3390/fermentation9040321
Tang W-Z, Jiang D-D, Fan Y-X, Zhang Q, Liu L-C, Li F-L, Liu Z-Y. Metabolic Difference Analysis of Clostridium cellulovorans Grown on Glucose and Cellulose. Fermentation. 2023; 9(4):321. https://doi.org/10.3390/fermentation9040321
Chicago/Turabian StyleTang, Wen-Zhu, Dan-Dan Jiang, Yi-Xuan Fan, Quan Zhang, Li-Cheng Liu, Fu-Li Li, and Zi-Yong Liu. 2023. "Metabolic Difference Analysis of Clostridium cellulovorans Grown on Glucose and Cellulose" Fermentation 9, no. 4: 321. https://doi.org/10.3390/fermentation9040321
APA StyleTang, W. -Z., Jiang, D. -D., Fan, Y. -X., Zhang, Q., Liu, L. -C., Li, F. -L., & Liu, Z. -Y. (2023). Metabolic Difference Analysis of Clostridium cellulovorans Grown on Glucose and Cellulose. Fermentation, 9(4), 321. https://doi.org/10.3390/fermentation9040321