Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from Lentinula edodes via Bacillus subtilis natto Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Lentinan
2.2.1. Fermentation Method
2.2.2. Extraction Method of Lentinan
2.3. Structural Characteristics of Lentinan
2.3.1. Analysis of Chemical Composition
2.3.2. Analysis of Monosaccharide Composition
2.3.3. Analysis of Molecular Weight
2.3.4. Fourier-Transform Infrared Spectra Analyses
2.3.5. Scanning Electron Microscopy
2.4. Water-Holding Capacity and Water Solubility Capacity
2.5. Antioxidant Activities In Vitro
2.5.1. DPPH Free Radical Scavenging Ability
2.5.2. ABTS+ Free Radical Scavenging Ability
2.5.3. Ferric-Reducing Antioxidant Power Assay
2.6. Statistical Analyses
3. Results and Discussion
3.1. Extraction Yield of Lentinan from Fermented and Unfermented L. edodes
3.2. Physicochemical Characteristics of Fermented and Unfermented Lentinan
3.2.1. Chemical Composition Analysis
3.2.2. Monosaccharide Composition Analysis
3.2.3. Molecular Weight Analysis
3.2.4. Fourier-Transform Infrared Spectra Analysis
3.2.5. Scanning Electron Microscopy Analysis
3.3. WHC and WSC
3.4. Antioxidant Activities In Vitro
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, C.; Fan, X.; Fan, Z.; Shi, D.; Gao, H. Optimization of Enzymes-Microwave-Ultrasound Assisted Extraction of Lentinus edodes Polysaccharides and Determination of Its Antioxidant Activity. Int. J. Biol. Macromol. 2018, 111, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Jeon, E.; Kim, J.-C.; Kang, S.G.; Yoon, S.; Ko, H.-J.; Kim, P.-H.; Lee, G.-S. Lentinan from Shiitake Selectively Attenuates AIM2 and Non-Canonical Inflammasome Activation while Inducing pro-Inflammatory Cytokine Production. Sci. Rep. 2017, 7, 1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziaja-Sołtys, M.; Radzki, W.; Nowak, J.; Topolska, J.; Jabłońska-Ryś, E.; Sławińska, A.; Skrzypczak, K.; Kuczumow, A.; Bogucka-Kocka, A. Processed Fruiting Bodies of Lentinus edodes as a Source of Biologically Active Polysaccharides. Appl. Sci. 2020, 10, 470. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; He, H.; Liu, X.; Liu, C.; Liang, Y.; Mei, Y. Mycelial Polysaccharides of Lentinus edodes (Shiitake Mushroom) in Submerged Culture Exert Immunoenhancing Effect on Macrophage Cells via MAPK Pathway. Int. J. Biol. Macromol. 2019, 130, 745–754. [Google Scholar] [CrossRef]
- Ren, G.; Xu, L.; Lu, T.; Yin, J. Structural Characterization and Antiviral Activity of Lentinan from Lentinus edodes Mycelia against Infectious Hematopoietic Necrosis Virus. Int. J. Biol. Macromol. 2018, 115, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.; Rutckeviski, R.; Villalva, M.; Abreu, H.; Soler-Rivas, C.; Santoyo, S.; Iacomini, M.; Smiderle, F.R. Isolation and Comparison of α- and β-D-Glucans from Shiitake Mushrooms (Lentinula edodes) with Different Biological Activities. Carbohydr. Polym. 2020, 229, 115521. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Wang, F.; Xu, J.; Tang, X.; Li, N. Structural Characterization and Antioxidant Activity of Polysaccharide from Ginger. Int. J. Biol. Macromol. 2018, 111, 862–869. [Google Scholar] [CrossRef]
- Li, Z.; Nie, K.; Wang, Z.; Luo, D. Quantitative Structure-Activity Relationship Models for the Antioxidant Activity of Polysaccharides. PLoS ONE 2016, 11, e0163536. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Chen, K.; Zhang, R.; Chen, X.; Hu, P.; Kan, J. Polysaccharides from Bamboo Shoots Processing By-Products: New Insight into Extraction and Characterization. Food Chem. 2018, 245, 1113–1123. [Google Scholar] [CrossRef]
- Akram, K.; Shahbaz, H.M.; Kim, G.-R.; Farooq, U.; Kwon, J.-H. Improved Extraction and Quality Characterization of Water-Soluble Polysaccharide from Gamma-Irradiated Lentinus edodes: Extraction of Water-Soluble Polysaccharide. J. Food Sci. 2017, 82, 296–303. [Google Scholar] [CrossRef]
- He, J.; Liu, Z.; Jiang, W.; Zhu, T.; Wusiman, A.; Gu, P.; Liu, J.; Wang, D. Immune-Adjuvant Activity of Lentinan-Modified Calcium Carbonate Microparticles on an H5N1 Vaccine. Int. J. Biol. Macromol. 2020, 163, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Li, K.; Hu, Y.; Yu, M.; Qu, J.; Xu, X. Optimization of Selenizing Conditions for Seleno-Lentinan and Its Characteristics. Int. J. Biol. Macromol. 2015, 81, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Huang, G. Extraction, Separation, Modification, Structural Characterization, and Antioxidant Activity of Plant Polysaccharides. Chem. Biol. Drug Des. 2020, 96, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Hong, R.; Zhang, R.; Yi, Y.; Dong, L.; Liu, L.; Jia, X.; Ma, Y.; Zhang, M. Physicochemical and Biological Properties of Longan Pulp Polysaccharides Modified by Lactobacillus fermentum Fermentation. Int. J. Biol. Macromol. 2019, 125, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Park, H.M.; Kang, C.-H. Antioxidant Effect via Bioconversion of Isoflavonoid in Astragalus membranaceus Fermented by Lactiplantibacillus plantarum MG5276 In Vitro and In Vivo. Fermentation 2022, 8, 34. [Google Scholar] [CrossRef]
- Jia, M.; Chen, J.; Liu, X.; Xie, M.; Nie, S.; Chen, Y.; Xie, J.; Yu, Q. Structural Characteristics and Functional Properties of Soluble Dietary Fiber from Defatted Rice Bran Obtained through Trichoderma viride Fermentation. Food Hydrocoll. 2019, 94, 468–474. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, H.; Lu, Z.; Lu, F.; Bie, X.; Zhang, C. Improved Physicochemical and Functional Properties of Dietary Fiber from Millet Bran Fermented by Bacillus natto. Food Chem. 2019, 294, 79–86. [Google Scholar] [CrossRef]
- Olawuyi, I.F.; Lee, W.Y. Structural Characterization, Functional Properties and Antioxidant Activities of Polysaccharide Extract Obtained from Okra Leaves (Abelmoschus esculentus). Food Chem. 2021, 354, 129437. [Google Scholar] [CrossRef]
- Zhu, Y.; Dun, B.; Shi, Z.; Wang, Y.; Wu, L.; Yao, Y. Structural Characterization and Bioactivity Evaluation of Water-Extractable Polysaccharides from Chickpeas (Cicer arietinum L.) Seeds. Front. Nutr. 2022, 9, 946736. [Google Scholar] [CrossRef]
- Dubios, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugar and Related Substances. Anal. Chem. 1956, 28, 250–256. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New Method for Quantitative Determination of Uronic Acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Pei, F.; Lv, Y.; Cao, X.; Wang, X.; Ren, Y.; Ge, J. Structural Characteristics and the Antioxidant and Hypoglycemic Activities of a Polysaccharide from Lonicera caerulea L. Pomace. Fermentation 2022, 8, 422. [Google Scholar] [CrossRef]
- Wu, J.; Chen, T.; Wan, F.; Wang, J.; Li, X.; Li, W.; Ma, L. Structural Characterization of a Polysaccharide from Lycium barbarum and Its Neuroprotective Effect against β-Amyloid Peptide Neurotoxicity. Int. J. Biol. Macromol. 2021, 176, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, L. Structural Characterization and Antioxidant Activity of Polysaccharide from Four Auriculariales. Carbohydr. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Ahmed, Z.; Wang, Y.; Anjum, N.; Ahmad, A.; Khan, S.T. Characterization of Exopolysaccharide Produced by Lactobacillus kefiranofaciens ZW3 Isolated from Tibet Kefir—Part II. Food Hydrocoll. 2013, 30, 343–350. [Google Scholar] [CrossRef]
- Duan, G.-L.; Yu, X. Isolation, Purification, Characterization, and Antioxidant Activity of Low-Molecular-Weight Polysaccharides from Sparassis latifolia. Int. J. Biol. Macromol. 2019, 137, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC Assays Comparison to Measure the Antioxidant Capacity of Food Products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Fimbres-Olivarria, D.; Carvajal-Millan, E.; Lopez-Elias, J.A.; Martinez-Robinson, K.G.; Miranda-Baeza, A.; Martinez-Cordova, L.R.; Enriquez-Ocaña, F.; Valdez-Holguin, J.E. Chemical Characterization and Antioxidant Activity of Sulfated Polysaccharides from Navicula sp. Food Hydrocoll. 2018, 75, 229–236. [Google Scholar] [CrossRef]
- Li, S.; Shah, N.P. Characterization, Antioxidative and Bifidogenic Effects of Polysaccharides from Pleurotus eryngii after Heat Treatments. Food Chem. 2016, 197, 240–249. [Google Scholar] [CrossRef]
- Liu, X.-X.; Liu, H.-M.; Yan, Y.-Y.; Fan, L.-Y.; Yang, J.-N.; Wang, X.-D.; Qin, G.-Y. Structural Characterization and Antioxidant Activity of Polysaccharides Extracted from Jujube Using Subcritical Water. LWT 2020, 117, 108645. [Google Scholar] [CrossRef]
- Sheng, K.; Wang, C.; Chen, B.; Kang, M.; Wang, M.; Liu, K.; Wang, M. Recent Advances in Polysaccharides from Lentinus edodes (Berk.): Isolation, Structures and Bioactivities. Food Chem. 2021, 358, 129883. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lu, Y.; Zhao, A.; Wu, Y.; Zhang, Y.; Yang, X. Quantitative Analyses for Several Nutrients and Volatile Components during Fermentation of Soybean by Bacillus subtilis natto. Food Chem. 2022, 374, 131725. [Google Scholar] [CrossRef] [PubMed]
- Jeff, I.B.; Yuan, X.; Sun, L.; Kassim, R.M.R.; Foday, A.D.; Zhou, Y. Purification and in Vitro Anti-Proliferative Effect of Novel Neutral Polysaccharides from Lentinus edodes. Int. J. Biol. Macromol. 2013, 52, 99–106. [Google Scholar] [CrossRef]
- Wagner, J.R.; Gueguen, J. Effects of Dissociation, Deamidation, and Reducing Treatment on Structural and Surface Active Properties of Soy Glycinin. J. Agric. Food Chem. 1995, 43, 1993–2000. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Lu, Y.; Feng, X.; Tian, G.; Liu, Q. Antioxidative and Hepatoprotective Activities of a Novel Polysaccharide (LSAP) from Lepista sordida Mycelia. Food Sci. Hum. Wellness 2021, 10, 536–544. [Google Scholar] [CrossRef]
- Liu, X.; Bian, J.; Li, D.; Liu, C.; Xu, S.; Zhang, G.; Zhang, L.; Gao, P. Structural Features, Antioxidant and Acetylcholinesterase Inhibitory Activities of Polysaccharides from Stem of Physalis alkekengi L. Ind. Crops Prod. 2019, 129, 654–661. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.; Xiao, J.; Huang, Q.; Li, C.; Fu, X. Physicochemical, Functional, and Biological Properties of Water-Soluble Polysaccharides from Rosa roxburghii Tratt Fruit. Food Chem. 2018, 249, 127–135. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Y.; Li, R.; Li, S.; Zhang, M.; He, C.; Chen, H. The Structural Characteristic of Acidic-Hydrolyzed Corn Silk Polysaccharides and Its Protection on the H2O2-Injured Intestinal Epithelial Cells. Food Chem. 2021, 356, 129691. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, R.; Wang, Y.; An, X.; Liu, N.; Song, M.; Yang, Y.; Yin, N.; Qi, J. Characterization and Antioxidant Activity of Wheat Bran Polysaccharides Modified by Saccharomyces cerevisiae and Bacillus subtilis Fermentation. J. Cereal Sci. 2021, 97, 103157. [Google Scholar] [CrossRef]
- Jeddou, K.B. Structural, Functional, and Antioxidant Properties of Water-Soluble Polysaccharides from Potatoes Peels. Food Chem. 2016, 205, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhang, H.; Yao, H.; Zhou, J.; Duan, Y.; Ma, H. Comparison of Characterization, Antioxidant, and Immunological Activities of Three Polysaccharides from Sagittaria sagittifolia L. Carbohydr. Polym. 2020, 235, 115939. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, G.; Arshad, M.U.; Saeed, F.; Afzaal, M.; Niaz, B.; Hussain, M.; Raza, M.A.; Nayik, G.A.; Obaid, S.A.; Ansari, M.J.; et al. Comparative Study of Raw and Fermented Oat Bran: Nutritional Composition with Special Reference to Their Structural and Antioxidant Profile. Fermentation 2022, 8, 509. [Google Scholar] [CrossRef]
Sample Name | Yield (%) | Total Sugars (%) | Uronic Acid (%) | Total Protein (%) |
---|---|---|---|---|
LNT | 4.74 ± 0.44 b | 54.43 ± 3.44 b | 2.08 ± 0.54 b | 6.84 ± 1.21 a |
LNT-F | 8.87 ± 1.09 a | 65.22 ± 1.29 a | 4.33 ± 0.21 a | 2.17 ± 0.81 b |
LDM | 2.33 ± 0.28 b | 46.37 ± 2.46 b | 2.66 ± 0.52 b | 13.07 ± 1.52 a |
LDM-F | 4.55 ± 0.65 a | 50.77 ± 1.79 a | 4.38 ± 0.17 a | 1.63 ± 0.25 b |
DLP-F | 0.96 ± 0.04 | 14.22 ± 0.97 | 4.93 ± 0.25 | 2.98 ± 0.49 |
Sample Name | Mannose (%) | Glucose (%) | Galactose (%) |
---|---|---|---|
LNT | 2.56 | 94.69 | 2.75 |
LNT-F | 1.54 | 94.82 | 3.64 |
LDM | 4.86 | 91.11 | 4.03 |
LDM-F | 1.11 | 94.65 | 4.24 |
Sample Name | WHC (%) | WSC (%) |
---|---|---|
LNT | 551.67 ± 32.50 a | 15.63 ± 2.13 b |
LNT-F | 76.08 ± 7.17 b | 41.43 ± 2.40 a |
LDM | 416.49 ± 32.97 b | 17.61 ± 1.98 b |
LDM-F | 59.12 ± 4.39 b | 50.49 ± 2.73 a |
Sample Name | DPPH (mg/mL) | ABTS+ (mg/mL) |
---|---|---|
LNT | 0.015 ± 0.005 a | 17.273 ± 8.360 a |
LNT-F | 0.014 ± 0.023 a | 3.947 ± 0.472 b |
LDM | 0.004 ± 0.006 a | 10.533 ± 2.438 a |
LDM-F | 0.006 ± 0.007 a | 6.032 ± 2.359 b |
VC | 0.030 | 0.398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Qu, Y.; Li, H.; Tang, S.; Chen, C.; Wang, Y.; Wang, H. Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from Lentinula edodes via Bacillus subtilis natto Fermentation. Fermentation 2023, 9, 333. https://doi.org/10.3390/fermentation9040333
Xu M, Qu Y, Li H, Tang S, Chen C, Wang Y, Wang H. Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from Lentinula edodes via Bacillus subtilis natto Fermentation. Fermentation. 2023; 9(4):333. https://doi.org/10.3390/fermentation9040333
Chicago/Turabian StyleXu, Mengyue, Yaning Qu, Hui Li, Shuangqing Tang, Chanyou Chen, Yazhen Wang, and Hongbo Wang. 2023. "Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from Lentinula edodes via Bacillus subtilis natto Fermentation" Fermentation 9, no. 4: 333. https://doi.org/10.3390/fermentation9040333
APA StyleXu, M., Qu, Y., Li, H., Tang, S., Chen, C., Wang, Y., & Wang, H. (2023). Improved Extraction Yield, Water Solubility, and Antioxidant Activity of Lentinan from Lentinula edodes via Bacillus subtilis natto Fermentation. Fermentation, 9(4), 333. https://doi.org/10.3390/fermentation9040333