Enhancing the Fertilizer Quality and Remediation Ability of Anaerobic Digestate via Myrothecium verrucaria Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Growth and Tolerance Study
2.3. Batch Experiment Design
2.4. Extraction and Characterization of Humic Acid
2.5. Analysis Methods
2.6. Pathogen Analysis
2.7. Heavy Metal Binding Analysis
3. Results and Discussion
3.1. Growth and Tolerance of Myrothecium verrucaria under Varying Anaerobic Digestate Concentrations
3.2. Effect of Digestate Treatment on the Composition of Dissolved Organic Matter
3.3. Effect of Digestate Treatment on Structural Characteristics of Humic Acid
3.4. Effect of Digestate Treatment on Its Biological Safety for Land Application
3.5. The Capacity of HA for Heavy Metal Remediation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Zhang, W.; Wu, J.; Chen, X.; Liu, R.; Han, Y.; Xiao, B.; Yu, Z.; Peng, Y. Improving two-stage thermophilic-mesophilic anaerobic co-digestion of swine manure and rice straw by digestate recirculation. Chemosphere 2021, 274, 129787. [Google Scholar] [CrossRef]
- Tian, P.; Gong, B.; Bi, K.; Liu, Y.; Ma, J.; Wang, X.; Ouyang, Z.; Cui, X. Anaerobic Co-digestion of pig manure and rice straw: Optimization of process parameters for enhancing biogas production and system stability. Inter. J. Environ. Res. Pub. Health. 2023, 20, 804. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Lü, F.; Hao, L.; Zhang, H.; Shao, L.; He, P. Digestate management for high-solid anaerobic digestion of organic wastes: A review. Bioresour. Technol. 2020, 297, 122485. [Google Scholar] [CrossRef] [PubMed]
- Muhmood, A.; Wang, X.; Dong, R.; Xiao, H.; Wu, S. Quantitative characterization and effective inactivation of biological hazards in struvite recovered from digested poultry slurry. Water Res. 2021, 204, 117659. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Wang, M.; Shi, X.; Wang, X.; Zhang, X.; Chai, L.; Liu, D.; Shen, Q. The functions of potential intermediates and fungal communities involved in the humus formation of different materials at the thermophilic phase. Bioresour. Technol. 2022, 354, 127216. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Muhmood, A.; Dong, R.; Wu, S. Synthesis of humic-like acid from biomass pretreatment liquor: Quantitative appraisal of electron transferring capacity and metal-binding potential. J. Clean. Prod. 2020, 255, 120243. [Google Scholar] [CrossRef]
- Qi, G.; Yue, D.; Fukushima, M.; Fukuchi, S.; Nie, Y. Enhanced humification by carbonated basic oxygen furnace steel slag—I. Characterization of humic-like acids produced from humic precursors. Bioresour. Technol. 2012, 104, 497–502. [Google Scholar] [CrossRef]
- Yang, T.; Hodson, M.E. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water. Sci. Total Environ. 2018, 635, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Jokic, A.; Wang, M.C.; Liu, C.; Frenkel, A.I.; Huang, P.M. Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature: The role of δ-MnO2. Org. Geochem. 2004, 35, 747–762. [Google Scholar] [CrossRef]
- Yang, T.; Hodson, M.E. Investigating the use of synthetic humic-like acid as a soil washing treatment for metal contaminated soil. Sci. Total Environ. 2019, 647, 290–300. [Google Scholar] [CrossRef]
- Sarlaki, E.; Sharif, A.; Hossein, M. Extraction and puri fi cation of humic acids from lignite wastes using alkaline treatment and membrane ultra fi ltration. J. Clean. Prod. 2019, 235, 712–723. [Google Scholar] [CrossRef]
- Mohammad, S.H.; Bhukya, B. Biotransformation of toxic lignin and aromatic compounds of lignocellulosic feedstock into eco-friendly biopolymers by Pseudomonas putida KT2440. Bioresour. Technol. 2022, 363, 128001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xi, B.; Tan, W.; Li, X.; Dang, Q.; Li, R. On the applicability of the ‘humic acid’ nomenclature from natural ecosystems to engineering sciences. Environ. Sci. Ecotechnol. 2021, 6, 100082. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lyu, T.; Dong, R.; Liu, H.; Wu, S. Dynamic evolution of humic acids during anaerobic digestion: Exploring an effective auxiliary agent for heavy metal remediation. Bioresour. Technol. 2021, 320, 124331. [Google Scholar] [CrossRef]
- Wang, X.; Muhmood, A.; Lyu, T.; Dong, R.; Liu, H.; Wu, S. Mechanisms of genuine humic acid evolution and its dynamic interaction with methane production in anaerobic digestion processes. Chem. Eng. J. 2021, 408, 127322. [Google Scholar] [CrossRef]
- Noda, I.; Ozaki, Y. Two-Dimensional Correlation Spectroscopy Applications in Vibrational and Optical Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA; Procter and Gamble: Cincinnati, OH, USA, 2004. [Google Scholar]
- Bonetta, S.; Bonetta, S.; Ferretti, E.; Fezia, G.; Gilli, G.; Carraro, E. Agricultural Reuse of the Digestate from Anaerobic Co-Digestion of Organic Waste: Microbiological Contamination, Metal Hazards and Fertilizing Performance. Water Air Soil Pollut. 2014, 225, 2046. [Google Scholar] [CrossRef]
- Praveen, P.; Guo, Y.; Kang, H.; Lefebvre, C.; Loh, K. Enhancing microalgae cultivation in anaerobic digestate through nitri fi cation. Chem. Eng. J. 2018, 354, 905–912. [Google Scholar] [CrossRef]
- He, X.S.; Xi, B.D.; Gao, R.T.; Wang, L.; Ma, Y.; Cui, D.Y.; Tan, W.B. Using fluorescence spectroscopy coupled with chemometric analysis to investigate the origin, composition, and dynamics of dissolved organic matter in leachate-polluted groundwater. Environ. Sci. Pollut. Res. 2015, 22, 8499–8506. [Google Scholar] [CrossRef]
- Xiao, X.; Xi, B.D.; He, X.S.; Zhang, H.; Li, D.; Zhao, X.Y.; Zhang, X.H. Hydrophobicity-dependent electron transfer capacities of dissolved organic matter derived from chicken manure compost. Chemosphere 2019, 222, 757–765. [Google Scholar] [CrossRef]
- Wu, H.; Qi, Y.; Dong, L.; Zhao, X.; Liu, H. Revealing the impact of pyrolysis temperature on dissolved organic matter released from the biochar prepared from Typha orientalis. Chemosphere 2019, 228, 264–270. [Google Scholar] [CrossRef]
- Ma, S.; Hu, H.; Wang, J.; Liao, K.; Ma, H.; Ren, H. The characterization of dissolved organic matter in alkaline fermentation of sewage sludge with different pH for volatile fatty acids production. Water Res. 2019, 164, 114924. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, X.; Dong, B.; Huang, J.; Wei, Y.; Dai, X.; Dai, L. Effect of aromatic repolymerization of humic acid-like fraction on digestate phytotoxicity reduction during high-solid anaerobic digestion for stabilization treatment of sewage sludge. Water Res. 2018, 143, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Dai, Y.; Shi, Y.; Zhao, S.; Tian, H.; Zhu, K.; Jia, H. Mechanism of Cr (VI) reduction by humin: Role of environmentally persistent free radicals and reactive oxygen species. Sci. Total Environ. 2020, 725, 138413. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liang, X.; Mo, P.; Li, G. Purification and properties of bilirubin oxidase from Myrothecium verrucaria. App. Biochem. Biotechnol. 1991, 31, 135–143. [Google Scholar] [CrossRef]
- Anderson, K.I.; Hallett, S.G. Herbicidal spectrum and activity of Myrothecium verrucaria. Weed Sci. 2004, 52, 623–627. [Google Scholar] [CrossRef]
- Mendonsa, E.S.; Vartak, P.H.; Rao, J.U.; Deshpande, M.V. An enzyme from Myrothecium verrucaria that degrades insect cuticles for biocontrol of aedes aegypti mosquitio. Biotechnol. Lett. 1996, 18, 373–376. [Google Scholar] [CrossRef]
- Zhang, C.C.; Ding, S.S.; Shi, W.S.; Cao, F.; Zhu, H.J.; Wen, M.L. A new quinolinone from freshwater lake-derived fungus Myrothecium verrucaria. Nat. Prod. Res. 2017, 31, 99–103. [Google Scholar] [CrossRef]
- Xu, H.; Ji, L.; Kong, M.; Jiang, H.; Chen, J. Molecular weight-dependent adsorption fractionation of natural organic matter on ferrihydrite colloids in aquatic environment. Chem. Eng. J. 2019, 363, 356–364. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Value |
---|---|---|---|
pH | / | / | 7.6 ± 0.05 |
Total solids | TS | g/L | 4.3 ± 0.5 |
Volatile solids | VS | g/L | 1.9 ± 0.3 |
Soluble chemical oxygen demand | CODs | mg/L | 5010 ± 352 |
Ammonical nitrogen | NH4+-N | mg/L | 4890 ± 142 |
Free ammonia | NH3-N | mg/L | 30 ± 8 |
Orthophosphate | PO4−3-P | mg/L | 185 ± 18 |
Lignin | / | g/L | 2.3 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Gong, B.; Xu, J.; Sun, Y.; Tian, P.; Wang, X. Enhancing the Fertilizer Quality and Remediation Ability of Anaerobic Digestate via Myrothecium verrucaria Treatment. Fermentation 2023, 9, 484. https://doi.org/10.3390/fermentation9050484
Yang M, Gong B, Xu J, Sun Y, Tian P, Wang X. Enhancing the Fertilizer Quality and Remediation Ability of Anaerobic Digestate via Myrothecium verrucaria Treatment. Fermentation. 2023; 9(5):484. https://doi.org/10.3390/fermentation9050484
Chicago/Turabian StyleYang, Mingxin, Binbin Gong, Jiayi Xu, Yonglin Sun, Pengjiao Tian, and Xiqing Wang. 2023. "Enhancing the Fertilizer Quality and Remediation Ability of Anaerobic Digestate via Myrothecium verrucaria Treatment" Fermentation 9, no. 5: 484. https://doi.org/10.3390/fermentation9050484
APA StyleYang, M., Gong, B., Xu, J., Sun, Y., Tian, P., & Wang, X. (2023). Enhancing the Fertilizer Quality and Remediation Ability of Anaerobic Digestate via Myrothecium verrucaria Treatment. Fermentation, 9(5), 484. https://doi.org/10.3390/fermentation9050484