Homologous Overexpression of Acyl-CoA Thioesterase 8 Enhanced Free Fatty Acid Accumulation in Oleaginous Fungus Mucor circinelloides WJ11
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms, Cultivation and Transformation Conditions
2.2. Construction of ACOT8 Overexpressing Strains of M. circinelloides
2.3. Fermentation of M. circinelloides Transformants
2.4. Analysis of Cell Dry Weight (CDW) and Culture Supernatant
2.5. Total Fatty Acid (TFA) Content and Lipid Composition Analysis
2.6. Gene Expression and RT-qPCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Identification and Protein Sequence Analysis of ACOT8 from M. circinelloides WJ11
3.2. Construction of Plasmids and Screening of Transformants
3.3. Effect of ACOT8’s Overexpression on Cell Growth in the Fermenter
3.4. Effect of ACOT8’s Overexpression on TFA Accumulation and Composition in M. circinelloides WJ11
3.5. Expression Levels of Different ACOT8 Genes in the Overexpressing Strains of M. circinelloides WJ11
4. Discussion
Acting Substrate | Sources | Gene Origin | Alterations in Lipids | References |
---|---|---|---|---|
Acyl-CoA | C. glutamicum ATCC 13032 | C. glutamicum ATCC 13032 | showed a 72% increase in production and produced fatty acids consisting mainly of oleic acid, palmitic acid and stearic acid | [30] |
Acyl-CoA | S. cerevisiae | M. musculus | accumulated more extracellular free fatty acid with higher unsaturated fatty acid | [15] |
Acyl-CoA | M. alpina ATCC 32222 | M. alpina ATCC 32222 | free fatty acid content increased by about 3-fold and the linoleic acid content in free fatty acid increased from 1.3% to 9.0% | [2] |
Acyl-CoA | M. circinelloides WJ11 | M. circinelloides WJ11 | TFA content was significantly increased by 30.3, 21.5 and 23.9%, respectively, and free fatty acid production increased with a maximum increase of 103.1% | this study |
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swarbrick, C.M.D.; Nanson, J.D.; Patterson, E.I.; Forwood, J.K. Structure, Function, and Regulation of Thioesterases. Prog. Lipid Res. 2020, 79, 101036–101067. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, H.; Yang, B.; Zhang, H.; Chen, Y.Q. The Role of Acyl-CoA Thioesterase ACOT8I in Mediating Intracellular Lipid Metabolism in Oleaginous Fungus Mortierella alpina. J. Ind. Microbiol. Biot. 2018, 45, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Voelker, T.A.; Jones, A.; Cranmer, A.M.; Davies, H.M.; Knutzon, D.S. Broad-range and Binary-range Acyl-acyl-carrier-protein Thioesterases Suggest an Alternative Mechanism for Medium-chain Production in Seeds. Plant Physiol. 1997, 114, 669–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisewood, M.J.; Hernandez Lozada, N.J.; Thoden, J.B.; Gifford, N.P.; Mendez-Perez, D.; Schoenberger, H.A.; Allan, M.F.; Floy, M.E.; Lai, R.Y.; Holden, H.M.; et al. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids. ACS Catal. 2017, 7, 3837–3849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, F.Y.; Cantu, D.C.; Tvaruzkova, J.; Chipman, J.P.; Nikolau, B.J.; Yandeau-Nelson, M.D.; Reilly, P.J. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem. 2011, 12, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Rutter, C.D.; Zhang, S.; Rao, C.V. Engineering Yarrowia lipolytica for Production of Medium-chain Fatty Acids. Appl. Microbiol. Biot. 2015, 99, 7359–7368. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.M.; Bowman, C.E.; Wolfgang, M.J. Metabolic and Tissue-Specific Regulation of Acyl-CoA Metabolism. PLoS ONE 2015, 10, e0116587. [Google Scholar] [CrossRef] [Green Version]
- Hunt, M.C.; Alexson, S.E. Novel Functions of Acyl-CoA Thioesterases and Acyltransferases as Auxiliary Enzymes in Peroxisomal Lipid Metabolism. Prog. Lipid Res. 2008, 47, 405–421. [Google Scholar] [CrossRef] [Green Version]
- Hunt, M.C.; Solaas, K.; Kase, B.F.; Alexson, S. Characterization of an Acyl-CoA Thioesterase that Functions as A Major Regulator of Peroxisomal Lipid Metabolism. J. Biol. Chem. 2002, 277, 1128–1138. [Google Scholar] [CrossRef] [Green Version]
- Ofman, R.; Mrabet, L.; Dacremont, G.; Spijer, D.; Wanders, R.J. Demonstration of Dimethylnonanoyl-CoA Thioesterase Activity in Rat Liver Peroxisomes Followed by Purification and Molecular Cloning of the Thioesterase Involved. Biochem. Biophys. Res. Commun. 2002, 290, 629–634. [Google Scholar] [CrossRef]
- Hung, Y.H.; Chan, Y.S.; Chang, Y.S.; Lee, K.T.; Hsu, H.P.; Yen, M.C.; Chen, W.C.; Wang, C.Y.; Lai, M.D. Fatty Acid Metabolic Enzyme Acyl-CoA Thioesterase 8 Promotes the Development of Hepatocellular carcinoma. Oncol. Rep. 2014, 31, 2797–2803. [Google Scholar] [CrossRef] [Green Version]
- Ishizuka, M.; Toyama, Y.; Watanabe, H.; Fujiki, Y.; Takeuchi, A.; Yamasaki, S.; Yuasa, S.; Miyazaki, M.; Nakajima, N.; Taki, S.; et al. Overexpression of Human Acyl-CoA Thioesterase Upregulates Peroxisome Biogenesis. Exp. Cell Res. 2004, 297, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Lennen, R.M.; Pfleger, B.F. Engineering Escherichia coli to Synthesize Free Fatty Acids. Trends Biotechnol. 2012, 30, 659–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilton, G.B.; Shockey, J.M.; Browse, J. Biochemical and Molecular Characterization of ACH2, an Acyl-CoA Thioesterase from Arabidopsis thaliana. J. Biol. Chem. 2004, 279, 7487–7494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhang, J.; Lee, J.; Chen, W.N. Enhancement of Free Fatty Acid Production in Saccharomyces cerevisiae by Control of Fatty Acyl-CoA Metabolism. Appl. Microbiol. Biot. 2014, 98, 6739–6750. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Frometa, R.A.; Gutierrez, A.; Torres-Martinez, S.; Garre, V. Malic Enzyme Activity is Not the Only Bottleneck for Lipid Accumulation in the Oleaginous Fungus Mucor circinelloides. Appl. Microbiol. Biot. 2013, 97, 3063–3072. [Google Scholar] [CrossRef]
- Tang, X.; Chen, H.; Gu, Z.; Zhang, H.; Chen, Y.Q.; Song, Y.; Chen, W. Comparative Proteome Analysis between High Lipid-Producing Strain Mucor circinelloides WJ11 and Low Lipid-Producing Strain CBS 277.49. J. Agric. Food Chem. 2017, 65, 5074–5082. [Google Scholar] [CrossRef]
- Yang, J.; Canovas-Marquez, J.T.; Li, P.; Li, S.; Niu, J.; Wang, X.; Nazir, Y.; Lopez-Garcia, S.; Garre, V.; Song, Y. Deletion of Plasma Membrane Malate Transporters Increased Lipid Accumulation in the Oleaginous Fungus Mucor circinelloides WJ11. J. Agric. Food Chem. 2021, 69, 9632–9641. [Google Scholar] [CrossRef]
- Khan, M.A.K.; Yang, J.; Hussain, S.A.; Zhang, H.; Garre, V.; Song, Y. Genetic Modification of Mucor circinelloides to Construct Stearidonic Acid Producing Cell Factory. Int. J. Mol. Sci. 2019, 20, 1683–1694. [Google Scholar] [CrossRef] [Green Version]
- Torres-Martinez, S.; Ruiz-Vazquez, R.M.; Garre, V.; Lopez-Garcia, S.; Navarro, E.; Vila, A. Molecular Tools for Carotenogenesis Analysis in the Zygomycete Mucor circinelloides. Methods Mol. Biol. 2012, 898, 85–107. [Google Scholar] [CrossRef]
- Kendrick, A.; Ratledge, C. Desaturation of Polyunsaturated Fatty Acids in Mucor circinelloides and the Involvement of a Novel Membrane-bound Malic Enzyme. FEBS J. 2010, 209, 667–673. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Zhang, Y.; Luan, X.; Zhang, H.; Garre, V.; Song, Y.; Ratledge, C. Improved Gamma-linolenic Acid Production in Mucor circinelloides by Homologous Overexpressing of Delta-12 and Delta-6 Desaturases. Microb. Cell Fact. 2017, 16, 113–122. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data using Real-Time Quantitative PCR. Methods 2002, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Tillander, V.; Alexson, S.E.H.; Cohen, D.E. Deactivating Fatty Acids: Acyl-CoA Thioesterase-Mediated Control of Lipid Metabolism. Trends Endocrin. Met. 2017, 28, 473–484. [Google Scholar] [CrossRef]
- Fan, L.; Liu, J.; Nie, K.; Liu, L.; Wang, F.; Tan, T.; Deng, L. Synthesis of Medium Chain Length Fatty Acid Ethyl Esters in Engineered Escherichia coli Using Endogenously Produced Medium Chain Fatty Acids. Enzym. Microb. Technol. 2013, 53, 128–133. [Google Scholar] [CrossRef]
- Lu, X.; Vora, H.; Khosla, C. Overproduction of Free Fatty Acids in E. coli: Implications for Biodiesel Production. Metab. Eng. 2008, 10, 333–339. [Google Scholar] [CrossRef]
- Tilton, G.; Shockey, J.; Browse, J. Two Families of Acyl-CoA Thioesterases in Arabidopsis. Biochem. Soc. Trans. 2000, 28, 946–947. [Google Scholar] [CrossRef]
- Ikeda, M.; Takahashi, K.; Ohtake, T.; Imoto, R.; Kawakami, H.; Hayashi, M.; Takeno, S. A Futile Metabolic Cycle of Fatty Acyl-CoA Hydrolysis and Resynthesis in Corynebacterium glutamicum and Its Disruption Leading to Fatty Acid Production. Appl. Environ. Microbiol. 2020, 87, e02469-20. [Google Scholar] [CrossRef] [PubMed]
TFA Content (%) | |||||||
---|---|---|---|---|---|---|---|
Strains | C14:0 | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 |
Mc2075 | 1.5 ± 0.3 a | 23.5 ± 0.2 cd | 2.2 ± 0.5 b | 7.0 ± 0.2 a | 38.3 ± 0.4 b | 14.7 ± 0.2 a | 12.9 ± 0.4 ab |
McACOT8a-1 | 1.5 ± 0.3 a | 25.2 ± 0.7 a | 1.2 ± 0.7 d | 4.8 ± 0.5 c | 39.2 ± 0.5 a | 15.0 ± 0.8 a | 13.1 ± 0.5 ab |
McACOT8b-2 | 1.5 ± 0.2 a | 22.6 ± 0.1 d | 1.5 ± 0.3 c | 6.7 ± 0.2 a | 39.4 ± 0.3 a | 15.1 ± 0.4 a | 13.2 ± 0.2 a |
McACOT8c-2 | 1.6 ± 0.9 a | 24.1 ± 1.3 b | 2.7 ± 0.8 a | 5.8 ± 0.6 b | 39.7 ± 1.2 a | 13.8 ± 0.7 b | 12.3 ± 0.3 b |
Free Fatty Acid Content (%) | |||||||
---|---|---|---|---|---|---|---|
Strains | C14:0 | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 |
Mc2075 | 2.9 ± 0.3 a | 40.6 ± 3.2 b | 3.1 ± 0.5 a | 14.2 ± 0.2 c | 34.0 ± 1.7 b | 5.2 ± 0.2 a | ND |
McACOT8a-1 | 2.5 ± 0.9 a | 45.2 ± 5.7 a | 2.1 ± 0.7 b | 15.8 ± 1.5 b | 31.5 ± 3.5 c | 2.9 ± 0.4 b | ND |
McACOT8b-2 | 2.4 ± 0.2 a | 38.1 ± 4.1 b | 2.1 ± 0.3 b | 13.0 ± 1.2 d | 36.4 ± 3.3 a | 6.3 ± 0.4 a | 1.7 ± 0.2 b |
McACOT8c-2 | 2.8 ± 0.5 a | 45.9 ± 4.3 a | 2.3 ± 0.8 b | 17.9 ± 1.6 a | 25.3 ± 2.2 d | 3.4 ± 0.7 b | 2.9 ± 0.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, F.; Gao, M.; Chang, Y.; Dang, W.; Wang, R.; Yuan, H.; Xie, Z.; Zhao, Y.; Song, Y.; Rong, C.; et al. Homologous Overexpression of Acyl-CoA Thioesterase 8 Enhanced Free Fatty Acid Accumulation in Oleaginous Fungus Mucor circinelloides WJ11. Fermentation 2023, 9, 545. https://doi.org/10.3390/fermentation9060545
Xin F, Gao M, Chang Y, Dang W, Wang R, Yuan H, Xie Z, Zhao Y, Song Y, Rong C, et al. Homologous Overexpression of Acyl-CoA Thioesterase 8 Enhanced Free Fatty Acid Accumulation in Oleaginous Fungus Mucor circinelloides WJ11. Fermentation. 2023; 9(6):545. https://doi.org/10.3390/fermentation9060545
Chicago/Turabian StyleXin, Feifei, Meng Gao, Yufei Chang, Wenrui Dang, Ruixue Wang, Hongjuan Yuan, Zhike Xie, Yanlei Zhao, Yuanda Song, Chunchi Rong, and et al. 2023. "Homologous Overexpression of Acyl-CoA Thioesterase 8 Enhanced Free Fatty Acid Accumulation in Oleaginous Fungus Mucor circinelloides WJ11" Fermentation 9, no. 6: 545. https://doi.org/10.3390/fermentation9060545
APA StyleXin, F., Gao, M., Chang, Y., Dang, W., Wang, R., Yuan, H., Xie, Z., Zhao, Y., Song, Y., Rong, C., & Zhang, H. (2023). Homologous Overexpression of Acyl-CoA Thioesterase 8 Enhanced Free Fatty Acid Accumulation in Oleaginous Fungus Mucor circinelloides WJ11. Fermentation, 9(6), 545. https://doi.org/10.3390/fermentation9060545