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Abstract: Nitrous oxide (N2O) is not only recognized as a potent greenhouse gas, but it is also
used in industry as a clean energy source. In this study, different electrode materials of carbon felt
and graphite were equipped in the ∆nosZ P. aeruginosa/microbial electrolysis cell (MEC) systems
to explore the optimization mechanism for long-term N2O recovery during incineration leachate
treatment. The carbon felt group showed a better performance in N2O recovery across 45 days of
operation. The N2O conversion efficiency was above 80% and the proportion of N2O in biogas
accounted for 80.6% in the carbon felt group. qRT-PCR analysis was conducted to evaluate the
expression of genes involved in denitrification (norB) and electroactivity (phzG, phzM, and phzH) of
∆nosZ P. aeruginosa. The results showed a significant upregulation in the suspended biomass (day
21) and the electron-attached biomass (day 45) from the carbon felt-equipped reactor, which was
highly related to the opportunity of biomass exposed to the phenazine derivatives. By the carbon
felt optimization in the system, 82.6% of the Pseudomonas genus survived after 45 days of operation.
These results indicate that the carbon felt electrode has a more sustainable performance for N2O
recovery in the ∆nosZ P. aeruginosa/MEC system.

Keywords: nitrous oxide; incineration leachate; Pseudomonas aeruginosa; denitrification; electroactivity

1. Introduction

Incineration leachate is a type of wastewater that contains high concentrations of or-
ganic matter (COD, 30,000~70,000 mg/L) and nitrogen (mainly NH4

+-N, 1000~2000 mg/L),
with a complex composition [1]. Typically, it is treated using a composite process of
“pretreatment-biological treatment-advanced treatment” [2]. Organic matter and ammonia
in the incineration leachate are primarily removed through the “anaerobic digestion-aerobic
nitrification-anoxic denitrification” process in the biochemical treatment section. With the
continuous advancement of wastewater resource research, most organic matter in incin-
eration leachate can be converted into energy through optimized anaerobic digestion
to produce methane [3,4]. However, research on the recovery of nitrogen resources is
relatively scarce.

In the commonly used nitrification–denitrification process for nitrogen removal, a
portion of the ammonia is converted into a controversial intermediate product known as
nitrous oxide (N2O). N2O is a recognized potent greenhouse gas, but it has a higher calorific
value when burned with CH4 than O2 and is also a clean energy source [5]. In unregu-
lated wastewater treatment, the conversion efficiency of N2O is only 0.11~1.90% [6–10],
which cannot be recovered as energy and also causes the greenhouse effect. Therefore, by
regulating the microbial metabolism involved in the nitrification–denitrification process,
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ammonia, nitrate, and nitrite in wastewater can be efficiently converted into N2O and then
collected. This not only achieves energy recovery of N2O during wastewater denitrification
treatment but also reduces greenhouse gas emissions from wastewater treatment plants.

Currently, some research is attempting to recover N2O from wastewater. Coupled
aerobic–anoxic nitrous decomposition operation (CANDO) induces heterotrophic denitrify-
ing bacteria to store carbon sources in the form of polyhydroxyalkanoates (PHAs) in cells by
alternately providing carbon and nitrogen sources in pulses. PHA does not easily provide
electrons, resulting in the accumulation of N2O, with a conversion rate of up to 87% [11].
A photocatalytic autotrophic denitrification system based on the combination of semicon-
ductor CdS and Thiobacillus denitrificans can also achieve efficient conversion of N2O. By
utilizing the characteristic that sulfides can react with metal active centers, the activity of
nitrous oxide reductase (Nos) was inhibited, resulting in a high N2O conversion efficiency
of 71% to 73.2% [12]. In a sulfur autotrophic denitrifying bacteria-dominated reactor, the
NO, which was fixed by Fe(II)EDTA as the electron acceptor for denitrification, can inhibit
the activity of Nos within an appropriate threshold, and achieved a 41% conversion of
N2O [13]. However, the above processes will also inhibit the activity of other enzymes while
regulating the nitrogen converted to N2O and limiting the efficiency of nitrogen removal.
This defect will be further magnified when dealing with complex wastewater in practice. In
a previous study, a denitrifying strain with high N2O conversion performance, Pseudomonas
aeurginosa PAO1, was constructed by knocking out nosZ (gene coding for Nos) [14]. With
the nosZ-deficient strain of P. aeurginosa (∆nosZ P. aeurginosa) supplied into the incineration
leachate nitrogen removal process for microflora optimization, denitrification efficiency of
99% was achieved, and the N2O conversion efficiency was as high as 95% [15]. The above
results demonstrate the ability of ∆nosZ P. aeurginosa to deal with complex wastewater.

However, in order to efficiently convert N2O by supplying ∆nosZ P. aeruginosa in the
denitrification process, it is necessary to strengthen the dominant position of this functional
bacterium. During long-term operation in a moving bed biofilm reactor (MBBR), the
abundance of ∆nosZ P. aeruginosa was observed to decrease to 38% [15]. Subsequent research
has found that using an MEC to stimulate ∆nosZ P. aeruginosa to secrete more phenazine
derivatives can greatly improve its denitrification ability, biofilm formation rate, and
survival advantage through the electron transfer ability, signaling molecule function, and
antibacterial ability of phenazine derivatives [16]. Its abundance can be maintained at 66%
in the ∆nosZ P. aeruginosa/MEC system. The process of indirect electron transfer between
phenazine derivatives and electrodes by ∆nosZ P. aeruginosa may be a key factor in affecting
its dominant position in the ∆nosZ P. aeruginosa/MEC system. Recent studies showed
that phenazine could enhance the electron transport between P. aeruginosa PAO1 and a
poised-potential electrode under anaerobic conditions [17]. Different electrode surfaces
also influence phenazine production when P. aeruginosa requires electrode respiration [18].
However, few studies focus on the relationship between electroactivity and denitrification
of P. aeruginosa. In a previous study, the electroactivity of P. aeruginosa was enhanced by
supplying a quorum-sensing signal molecule, which resulted in a higher nitrogen removal
efficiency and more stable N2O conversion efficiency [19]. This method allows P. aeruginosa
to generate more phenazines to transfer electrons, but the role of the electrode as the
electron receiver is ignored. Therefore, the next step to improve the sustainability of this
system for recovering N2O is reveal the effect of electrode materials on the denitrification
of ∆nosZ P. aeurginosa.

In this study, a carbon felt electrode and graphite electrode were set up in two ∆nosZ
P. aeurginosa/MEC systems to investigate the effect of electrode materials on nitrogen con-
version performance, gene expression involved in related processes, and the bacterial com-
munity structure in the ∆nosZ P. aeurginosa/MEC system. The goal is to further strengthen
the dominant position of ∆nosZ P. aeurginosa from the perspective of electrode material
optimization and achieve more efficient conversion of N2O from incineration leachate.
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2. Materials and Methods
2.1. Configuration of the ∆nosZ P. Aeruginosa/MEC System

The bioreactors used in this study were based on a two-chamber MEC construc-
tion (Figure 1). Each chamber of the reactors contains a liquid volume of 250 mL and a
headspace volume of 150 mL. The working electrodes equipped in the anode chamber
and the counter electrodes equipped in the cathode chamber were adopted with the same
size of 60 × 30 × 5 mm whether formed with graphite material or carbon felt material.
The specific surface area of graphite material and carbon felt material was 1.82 m2/g and
2.34 m2/g, respectively. Both the electrode materials were connected with a nickel rod
before being applied into the microbial electrochemical system. Additionally, Ag/AgCl
electrodes (+199 mv vs. SHE) saturated with KCl were also supplied in the anode chamber
and reserved as the reference electrode. The anode potential was controlled using a poten-
tiostat (Chil1030C, Shanghai, China). The anode and cathode chambers were separated by
a 9.6 cm2 anion exchange membrane (AEM, ASTOM Co., Tokyo, Japan).
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Figure 1. Schematic diagram of the ∆nosZ P. aeruginosa/MEC system.

The ∆nosZ P. aeruginosa strain was enriched in LB medium for 24 h at 37 ◦C and
subsequently inoculated into a laboratory-scale MBBR for biofilm formation until the
biomass attached to the polypropylene fillers (embedded with a cross-shaped carrier)
reached 0.31 ± 0.02 mg per filler. Each anode chamber of the MEC reactors was supplied
with 30 fillers immobilized with ∆nosZ P. aeruginosa. The raw incineration leachate was
collected from an MSW energy incineration plant in Beijing and sterilized using a 0.22 µm
filter to remove any microbes present in the leachate. The pre-treated incineration leachate
was then supplied to the anode chamber as a carbon source for denitrification by ∆nosZ P.
aeruginosa. The cathode chamber was continuously fed with partially nitrification-treated
leachate, and nitrite that was able to pass through the AEM served as an electron acceptor
for denitrification in the anode chamber. Characteristics of experimental wastewater used
in this study are summarized in Table 1.
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Table 1. Characteristics of experimental wastewater used in this study.

Item COD
(mg/L)

BOD5
(mg/L)

NH4
+-N

(mg/L)
NO3−-N
(mg/L)

NO2−-N
(mg/L) pH

Raw leachate 57,686–75,480 23,858–33,710 968 ± 1368 N/A N/A 6.01–6.37
Anaerobically

treated leachate 1820–4625 879–3182 1029–1458 N/A N/A 7.95–8.45

Partial nitrification-treated
leachate 1524–2123 97–334 178–204 21.78–35.53 945–1125 7.27–7.93

2.2. Experimental Set-Up

Two ∆nosZ P. aeruginosa/MEC systems with carbon felt electrodes and graphite elec-
trodes were used in this study. Both experimental groups were used under the same manner.
The operation temperature was maintained in the range of 30 ± 1 ◦C. The anode potential
applied in this study was +0.8 V. The concentration of NO2

−-N in partial nitrification-
treated leachate was ~1000 mg/L when it served as the inflow of the cathode chamber.

In the process of the experiment, the hydraulic retention time (HRT) was gradually
shortened, and it depended on the NO2

−-N removal efficiency of ∆nosZ P. aeruginosa of
each group. The NO2

−-N concentrations of the anode chamber and cathode chamber
in each group were monitored daily. The NO2

−-N removal efficiency, which reflected
the overall nitrite removal performance of the ∆nosZ P. aeruginosa/MEC system, and the
N2O conversion efficiency, which reflected the N2O conversion capabilities of the ∆nosZ P.
aeruginosa, were calculated with the equation described in a previous study [16].

2.3. RNA Extraction and Quantitative Reverse Transcription PCR (qRT-PCR)

Microbial cells in a suspended state and the anode electrode were harvested on day
21 and day 45, respectively. A centrifuge operating at 8000 rpm for 10 min was used to
concentrate the cells, which were then used for RNA extraction using the RNAprep Bacteria
Kit (Aidlab Biotechnologies, China). To ensure RNA purity, an additional step was taken
to remove residual DNA using DNA-free DNase (New England Biolabs, Beijing, China)
following the manufacturer’s instructions.

Purified RNA (1 µg) was used to synthesize cDNA through reverse transcription using
the THERMOscript 1st Strand cDNA Synthesis Kit (Aidlab Biotechnologies, Beijing, China)
according to the manufacturer’s instructions. The resulting cDNA products were used
as templates for quantitative polymerase chain reaction (qPCR) with primers targeting
genes involved in denitrification and phenazine biosynthesis, as well as the constitutively
expressed housekeeping gene proC. qPCR detection was performed using a real-time PCR
system (7500 FAST, USA), as previously described [15,16,19].

2.4. DNA Extraction and Sequence Analysis

On days 21 and 45, microbial cells growing in the anode chamber of the ∆nosZ P.
aeruginosa/MEC system were harvested for DNA extraction using the RNeasy PowerSoil
DNA elution kit (QIAGEN), following the manufacturer’s instructions. The concentration
and purity of the extracted DNA samples were determined using the Nanodrop UV
spectrophotometer (Thermo Fisher Scientific, Delaware).

Bacterial 16S rRNA gene fragments were amplified via PCR using the 338F/806R
primer set. The resulting amplicons were sequenced on an Illumina Hiseq 2000 platform
(Illumina, San Diego, CA, USA) by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai,
China). The sequences were then sorted into various operational taxonomic units using
Pyrosequencing Pipeline software (https://pyro.cme.msu.edu) accessed on 3 July 2021.
The raw sequence files have been deposited in the NCBI Sequence Read Archive database
under accession NO. PRJNA974214.

https://pyro.cme.msu.edu
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2.5. Analytical Methods

In this study, the water quality index, including NO2
−-N and COD concentrations,

was determined using standard methods (APHA, 2005). The measurement of N2O followed
a previous study [16]. To measure the biomass in the middle of a continuous experiment,
two parallel reactors of carbon felt and graphite were used. When measuring the biomass,
the biomass of all states was collected from the parallel reactors. The immobilized biomass
and the biomass on the electrode were measured for dry weight after scraping or squeezing
until cells were no longer obtained from the carriers. The biomass in suspended state was
measured through the linear relation between OD600 and biomass [19]. Phenazine deriva-
tives in the anode chamber were extracted using chloroform and then re-extracted using
deionized water with different pH levels. The concentration of phenazine-1-carboxylic acid
(PCA), 1-hydrophenazine(1-OH-PHZ), and pyocyanin (PYO) were determined using the
linear relation between the standard substance and absorbency under 252 nm (neutral),
520 nm (alkaline), and 520 nm (acidic), respectively [20,21].

3. Results
3.1. Performance of ∆nosZ P. aeruginosa/MEC Reactors with Carbon Felt Electrodes and
Graphite Electrodes

The ∆nosZ P. aeruginosa/MEC systems with carbon felt electrodes and graphite elec-
trodes were operated for 45 days, and the influent NO2

−-N concentration of partial
nitrification-treated incineration leachate was about 1000 mg/L (Figure 2). From day
1 to day 9, the NO2

−-N removal efficiency of two groups of reactors gradually increased to
83.3% and 78.1%, respectively, through the enrichment of ∆nosZ P. aeruginosa in the anode
chamber. In the subsequent stage (from day 9 to day 33), the HRT was reduced to 6 days,
and the average cathode NO2

−-N effluent concentrations of the carbon felt group and
graphite group reactors were 183.3 mg/L and 234.9 mg/L, respectively. The carbon felt
group exhibited an average TN removal rate of 81.92%, which was 6.63% higher than that
of the graphite group (Figure 2). On day 33, the HRT was further shortened to 3 days. At
this point, the cathode NO2

−-N effluent concentration of the two groups of MEC reactors
increased due to the mass transfer capacity of the anion exchange membrane reaching
its upper limit, with average values of 239.3 mg/L and 294.4 mg/L, respectively. The
average NO2

−-N removal rate decreased to 76.22% and 69.66%, but the carbon felt group
still exhibited a 6.56% higher NO2

−-N removal rate than the graphite group (Figure 2).
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Based on the N2O conversion performance of the ∆nosZ P. aeruginosa/MEC system
with two different electrode materials (Figure 3), there was no significant difference in
gaseous N2O production (4.05 ± 0.04 mmol) between the carbon felt and graphite groups
from day 1 to day 21. However, the N2O conversion efficiency of the carbon felt group was
5.18% lower than that of the graphite group, indicating that the N2O conversion process
by ∆nosZ P. aeruginosa in the carbon felt group reactor was interfered with during this
stage. Subsequently, after day 21, the N2O conversion performance of the carbon felt
group reactor gradually surpassed that of the graphite group. The average gaseous N2O
production was higher in the carbon felt group than in the graphite group by 0.51 ± 0.02
mmol, with the highest difference observed on day 45 (0.83 ± 0.03 mmol). Additionally,
the N2O in the carbon felt group remained above 80%, while there was a downward trend
in the graphite plate group after day 39 of operation (Figure 3). The proportion of N2O
in biogas production represents its recovery potential, and on day 45, N2O accounted for
80.6% of biogas production in the carbon felt group, which was 16.8% higher than that in
the graphite group (Figure 3).
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Figure 3. Nitrous oxide conversion of ∆nosZ P. aeruginosa/MEC systems with carbon felt electrodes
and graphite electrodes. (a) N2O production; (b) N2O conversion efficiency; (c) N2O proportion in
biogas. Error bars represent standard deviations of triplicate measurements.

The above findings suggest that the carbon felt may be a more effective anode electrode
material for the ∆nosZ P. aeruginosa/MEC system in terms of N2O conversion performance
and recovery potential. Further research is needed to investigate the underlying mecha-
nisms behind these observations.

3.2. Effect of Electrode Materials on Denitrification, Electroactivity, and Biomass of
∆nosZ P. aeruginosa

qRT-PCR analysis was performed for expression of denitrification and electroactivity
genes in ∆nosZ P. aeruginosa/MEC systems with carbon felt electrodes and graphite elec-
trodes (Figure 4). The transcription of the norB gene of the terminal nitric oxide reductase
of ∆nosZ P. aeruginosa is shown in Figure 4a. Gene expression of norB in both groups of reac-
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tors increased on day 45 compared to day 21, indicating that electric stimulation gradually
enhanced the effect on ∆nosZ P. aeruginosa. By comparing the gene expression of suspended
bacteria, it can be observed that the difference multiple of norB expression between the
carbon felt group and the graphite group gradually decreased from 3.08 times on day 21 to
1.11 times on day 45 (Figure 4a). The expression levels of phzG, phzM, and phzH involved
in regulating phenazine derivative synthesis in suspended bacteria in the carbon felt group
decreased on day 45 compared to day 21, but the opposite was true for the graphite group.
The biomass results indicate that the gap between the biomass of suspended bacteria in
both groups increased on day 45, with 74.83 ± 2.21 mg and 56.28 ± 2.54 mg for the carbon
felt group and graphite group, respectively (Figure 5a). On day 45, the value of total
phenazine derivative per unit biomass accessible by the carbon felt group (0.096 ± 0.002)
was not significantly different from that of the graphite group (0.085 ± 0.006) (Figure 5b).
The reason for this result may be that the biomass attached to the surface of the carbon felt
electrode is higher (2.42 times that of the graphite group), which excessively occupies the
opportunity for suspended bacteria to use phenazine derivatives for electron transfer with
electrodes. The advantage of the carbon felt group over the graphite group for suspended
bacteria lies mainly in higher synthesis of phenazine in early operation, which promotes
biomass increase.
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∆nosZ P. aeruginosa/MEC systems with carbon felt electrodes and graphite electrodes on day 21 and
45. (a) Biomass; (b) phenazine derivative content/biomass. Error bars represent standard deviations
of triplicate measurements.

On day 45 of operation, the norB gene expression of electrode-attached and suspended
∆nosZ P. aeruginosa was compared. The norB gene expression of ∆nosZ P. aeruginosa on
the carbon felt electrode was found to be much higher than that of the suspended state
(2.73 times), as shown in Figure 4a. Additionally, the gene expression levels of phzG, phzM,
and phzH of ∆nosZ P. aeruginosa attached to the carbon felt electrode were 7.64 times,
10.61 times, and 2.59 times that of the graphite plate group, respectively (Figure 4b). The
total phenazine derivative per unit biomass accessible by the carbon felt group was more
than twice that of the graphite plate group. These results suggest that the carbon felt
electrode is more effective than the graphite electrode in promoting the denitrification
process and electrode respiration of ∆nosZ P. aeruginosa.

3.3. Bacterial Community Analysis

The bacterial community structure enriched under the influence of two different
electrode materials is analyzed in Figure 6. On day 21 of operation, the abundance of
the Pseudomonas genus in the carbon felt group was high, at 91.7%, while that in the
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graphite group was 82.9%. Furthermore, it was observed that more genera appeared in the
carbon felt group, such as Alkaliphilus (4.57%), Eubacterium (2.94%), and Citrobacter (0.76%).
Alkaliphilus can convert nitrite nitrogen in the system into ammonia nitrogen through
dissimilatory nitrate reduction [22] and has been found to be enriched in heterotrophic
denitrifying microbial fuel cells [23], but it does not have denitrifying function. Therefore,
the decrease in N2O conversion rate in the carbon felt group in Figure 3 is due to Alkaliphilus
in the community converting part of the nitrite into ammonia nitrogen. Eubacterium does
not have any genes related to denitrification, but it is related to AI-2 type signal molecule-
induced quorum sensing [24,25], which may be related to the lux quorum-sensing system
regulated by the luxS gene carried by Eubacterium [26]. This has a synergistic effect on
quorum sensing with the Pseudomonas genus.
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Figure 6. Bacterial community analysis on anode of the ∆nosZ P. aeruginosa/MEC systems on day 21
and 45.

On day 45 of operation, the abundance of Pseudomonas genus in the carbon felt group
and graphite group was 82.6% and 73.8%, respectively, both decreased compared to day
21. The abundance of Pseudomonas genus in the carbon felt group remained relatively high,
and it was found that the Alkaliphilus and Citrobacter originally present in the community
disappeared, indicating that these invading genera gradually became unsuitable for the
environment within the MEC reactor with its operation, which may be related to the
antibacterial effect of some secondary metabolites secreted by Pseudomonas. In addition,
Eubacterium still exists as a heterotrophic bacterium producing N2O from denitrification
in both MEC reactors, indicating that there is indeed a synergistic symbiotic relationship
between Eubacterium and Pseudomonas genus.

4. Discussion

The ∆nosZ P. aeruginosa/MEC system with carbon felt electrodes has shown 5~6%
improvement of nitrite removal and N2O conversion efficiencies compare to the one
equipped with graphite electrodes. In this system, as described in Figure 1, nitrite in
partial nitrification-treated leachate needs to pass through the AEM and then be utilized
by the ∆nosZ P. aeruginosa as the electron acceptor for denitrification. There are two ways
to impact the nitrite consumption, that is, the electrode attraction by the anode and the
denitrification ability of ∆nosZ P. aeruginosa. However, a previous study confirmed that
the electrode attraction showed little effect on nitrite transfer from the cathode chamber to
the anode chamber. Therefore, the denitrification ability of ∆nosZ P. aeruginosa is the major



Fermentation 2023, 9, 607 10 of 12

approach to illustrate the improvement by carbon felt electrodes. In the denitrification
pathway of ∆nosZ P. aeruginosa, norB is the terminal gene which regulates the NO con-
verted to N2O. qRT-PCR results of the norB can represent the denitrification ability of the
individual ∆nosZ P. aeruginosa cell and showed a high expression in the carbon felt group
at the early operation phase (day 21, biomass in suspended state) and the end of operation
(day 45, biomass attached on electrode). It revealed that the carbon felt may better enhance
the denitrification of the ∆nosZ P. aeruginosa cell by establishing a more efficient electron
transfer chain. Otherwise, the cells with higher expression of norB will not be found in the
conditions that possess the maximum chance of contact with the electrode. Meanwhile,
this could easily imply that the nitrogen removal performance not only depends on the
ability of individual cells but also relates to the biomass quantity of ∆nosZ P. aeruginosa.
Fortunately, the biofilm formation of ∆nosZ P. aeruginosa has a deep connection with a type
of signal molecule, called phenazine derivates [27,28]. Phenazine derivates also play an
important part in the indirect electron transfer between the ∆nosZ P. aeruginosa cells and
electrode [16,17,29,30]. The higher concentrations of phenazine derivates and much more
expressed genes of phenazine derivates synthesis were also found in the same conditions
(day 21, biomass in suspended state and day 45, biomass attached on electrode), in accor-
dance with norB expression and the biomass in the carbon felt group. The results showed
a strong correlation among the denitrification, electroactivity, and biomass in ∆nosZ P.
aeruginosa. Phenazine derivates are key compounds of the two electrode materials and
showed differences in the coupled systems.

The improvement of N2O conversion by using carbon felt electrodes in the ∆nosZ P.
aeruginosa/MEC system is the major finding for achieving the long-term recovery of N2O
from incineration leachate. A total of 82.6% of the Pseudomonas genus survived, with the
other genus eliminated in the carbon felt group. It may relate to the antibiotic character-
istics of phenazine derivates or the gradually enhanced advantages during the operation
process [31–34]. In conclusion, multiple results support the fact that carbon felt can op-
timize the ∆nosZ P. aeruginosa/MEC system predictably. Further study needs to explore
the microbial electrochemical characteristics when operating the ∆nosZ P. aeruginosa/MEC
system with the carbon felt electrode.

5. Conclusions

In this study, two ∆nosZ P. aeruginosa /MEC systems equipped with carbon felt
electrodes and graphite electrodes were operated to analyze the optimization mechanism
of electrode materials for N2O recovery during incineration leachate treatment. The carbon
felt group showed better performance in N2O recovery during the 45-day operation, with
N2O conversion efficiency above 80% and the proportion of N2O in biogas accounting for
80.6%. qRT-PCR analysis was conducted to evaluate the expression of genes involved in
denitrification (norB) and electroactivity (phzG, phzM, and phzH) of ∆nosZ P. aeruginosa.
The results showed significant upregulation in the suspended biomass (day 21) and the
electron-attached biomass (day 45) from the carbon felt-equipped reactor, which was
highly related to the opportunity of biomass exposed to the phenazine derivatives. The
carbon felt group also had a higher survival rate of 82.6% of the Pseudomonas genus after
45 days of operation (8.8% higher than the graphite group). These results indicate that
the carbon felt electrode has a more sustainable performance for N2O recovery in the
∆nosZ P. aeruginosa/MEC system.
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