Advances in the Application of Quorum Sensing to Regulate Electrode Biofilms in Bioelectrochemical Systems
Abstract
:1. Introduction
2. Electrode Biofilms in Bioelectrochemical Systems
2.1. Anode Electrogenic Biofilms
2.1.1. Pure-Culture Biofilms
2.1.2. Mixed-Culture Biofilms
2.1.3. Coculture Biofilms
2.1.4. Extracellular Electron Transfer Mechanisms in Electrogenic Biofilms
2.1.5. Main Factors Affecting Electrogenic Biofilm Formation
Temperature
pH
Electrode Modification
Electrode Potential
Signaling Molecules
2.2. Cathode Electrotrophic Biofilms
2.2.1. Electrotrophic Biofilms
2.2.2. Extracellular Electron Transfer Mechanisms in Electrotrophic Biofilms
2.2.3. Main Factors Affecting Electrotrophic Biofilm Formation
Electrode Modification
Electrode Potential
Signaling Molecules
Other Factors
3. Quorum Sensing Regulation for Biofilm Formation
3.1. Quorum Sensing Regulation Mechanisms
3.2. Strategies for Quorum Sensing Enhancement
3.2.1. Addition of Quorum Sensing Signaling Molecules
3.2.2. Addition of Synthetic Promoters for Quorum-Sensing Signaling Molecules
3.2.3. Cultivation of Quorum-Sensing Bacteria
3.3. Strategies for Quorum Sensing Inhibition
3.3.1. Cultivation of Quorum-Quenching Bacteria
3.3.2. Addition of Quorum Sensing Inhibitors
3.3.3. Use of Quorum Sensing Signaling Molecule-Degrading Enzymes
3.3.4. Use of Reactive Oxygen Species
QS Inhibition Strategy | Additive | Additive Amount | Bioreactor/Microorganisms | Performance Impact | Reference |
---|---|---|---|---|---|
Cultivation of QQ bacteria | Bacillus (SDC-U1 and SDC-A8) | OD6001.0/OD6000.5 | MBR/Mixed culture or P. aeruginosa PAO1 | Complete degradation of C8-HSL in the presence of tetramethylammonium hydroxide. | [90] |
Penicillium restrictum | 2.5, 5, and 10 mg | HF-MBR/Mixed culture | Sulfamethoxazole and erythromycin removal efficiencies increased by 4.39% and 4.86%, respectively. | [91] | |
Rhodococcus sp. BH4 | 20, 40, and 80 mg | MFC/Mixed culture | MPD increased by 181.7% in the MFC containing 40 mg BH4. | [46] | |
Bacillus methylotrophicus BT1, Klebsiella pneumoniae BT2, Lysinibacillus fusiformis BT3, and Achromobacter xylosoxidans BT4 | 60 mg | MABR/Mixed culture | COD removal efficiency increased by 74.5% in the MABR containing BT1. | [92] | |
Lactobacillus sp. SBR04MA | OD6001.0 | MBR/Mixed culture | Degrading 50 μM C6-HSL, achieving the highest critical membrane flux (24.25 L/m2/h), and reducing biofilm fouling rate. | [93] | |
Addition of QS inhibitors | 3,3′,4′,5- tetrachlorosalicylanilide | 100 μg/L | MBR/Mixed culture | The biofilm and AI-2 concentrations were reduced by 50% and 30%, respectively. | [94] |
Use of QS signaling molecule-degrading enzymes | Acylase | 0.05% v/v | MBR/Mixed culture | The maximum transmembrane pressure was reduced by 26 kPa. | [100] |
Acylase | 1 mg/mL | MBR/Mixed culture | The removal efficiencies of COD and ammonia nitrogen exceeded 95%; the fouling rate was 12% of that in the control. | [101] | |
Use of reactive oxygen species | Intermittent ultraviolet irradiation | 15 W (17% of total operation time) | UASB-PMR/Mixed culture | The control efficiency of membrane fouling was seven times higher than that with the UV photolysis system. | [102] |
Electric field | 0.8 V/cm | eMBR/Mixed culture | AHL degradation efficiency was twice that of the control. | [103] |
4. Application of Quorum Sensing Regulation for Electrode Biofilms in Bioelectrochemical Systems
4.1. Hydrogen Production
4.2. Electricity Generation
4.3. Chemical Synthesis
4.4. Pollution Treatment
4.5. Biosensor
Application | Additive | Additive Amount | Bioreactor/Microorganisms | Performance Impact | Reference |
---|---|---|---|---|---|
Hydrogen production | 3OC6-HSL | 10 mM | Single chamber MEC/Mixed culture | Hydrogen production increased by 5.57%, 38.68%, and 81.82% with applied voltages of 0.8 V, 0.6 V, and 0.4 V, respectively. | [83] |
3OC6-HSL | 10 μM | Single chamber MEC/Mixed culture | Hydrogen production increased by 32.7%. | [105] | |
Electricity generation | 3OC12-HSL | 10 μM | Dual chamber MFC/Mixed culture | Energy recovery efficiency improved by 76.6% and start-up time was reduced by 9 days. | [45] |
Phenylethanol and tryptophan (modified to anode electrode) | 10 μM | Single chamber MFC/Brewing yeast | MPD increased by 10.5% and 8.5%, respectively. | [106] | |
Quinolone | 100 nM | Single chamber MFC/H. praevalens | Energy density increased by 30%. | [107] | |
3OC6-HSL | 10 nM | Dual chamber MFC/S. oneidensis MR-1 | MPD increased by four times. | [108] | |
3OC6-HSL | 100 nM | Single chamber MEC/S. oneidensis MR-1 | EET enhanced by 4.8 times. | [109] | |
Chemical synthesis | C6-HSL | 50 μM | Dual chamber MEC/Mixed culture | Acetic acid production increased by 94.8%. | [72] |
C8-HSL | 10 μM | Dual chamber MEC/Mixed culture | Caproic acid concentration increased by 61.48%. | [11] | |
Pollution treatment | Electric field | 0.5 mA/cm (5 min on/20 min off) | eMBR/Mixed culture | Decreasing 76.3% of C8-HSL, 78.1% of the protein content in EPS, and 47.11% of TEP; ATZ and E1 efficiency increased by 36%. | [110] |
Rhodococcus sp. BH4 | 40 mg | Dual chamber MFC/Mixed culture | TOC removal efficiency increased by 23%. | [46] | |
Sludge EPS (containing C7-HSL, 3OC6-HSL, C4-HSL, and 3OC8-HSL) | EPS extracted from 23 mL of sludge | Dual chamber MFC/Mixed culture | CAP removal rate increased by 2.03 times. | [10] | |
Biosensor | C6-HSL and 3OC12-HSL | 10 μM | Single chamber MFC/Mixed culture | Sensitivity improved by 2.57 and 1.92 times, respectively; voltage recovery was about 62% under 10 mg/L Cu2+. | [113] |
Acylase | 5 μg/L | Dual chamber MXC/Mixed culture | Sensitivity improved by 40% and current output increased by 70%. | [114] |
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Lovley, D.R. Electromicrobiology. Annu. Rev. Microbiol. 2012, 66, 391–409. [Google Scholar] [CrossRef] [PubMed]
- Lanthier, M.; Gregory, K.B.; Lovley, D.R. Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol. Lett. 2008, 278, 29–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.A.; Hägerhäll, C.; Gorton, L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal. Rev. 2012, 4, 159–192. [Google Scholar] [CrossRef]
- Pous, N.; Balaguer, M.D.; Colprim, J.; Puig, S. Opportunities for groundwater microbial electro-remediation. Microb. Biotechnol. 2018, 11, 119–135. [Google Scholar] [CrossRef]
- Fessler, M.; Madsen, J.S.; Zhang, Y. Microbial interactions in electroactive biofilms for environmental engineering applications: A role for nonexoelectrogens. Environ. Sci. Technol. 2022, 56, 15273–15279. [Google Scholar] [CrossRef]
- Sun, Z.; Xi, J.; Yang, C.; Cong, W. Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review. Front. Environ. Sci. Eng. 2021, 16, 87. [Google Scholar] [CrossRef]
- Yeon, K.-M.; Cheong, W.-S.; Oh, H.-S.; Lee, W.-N.; Hwang, B.-K.; Lee, C.-H.; Beyenal, H.; Lewandowski, Z. Quorum sensing: A new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ. Sci. Technol. 2009, 43, 380–385. [Google Scholar] [CrossRef]
- Al-Shabib, N.A.; Husain, F.M.; Rehman, M.T.; Alyousef, A.A.; Arshad, M.; Khan, A.; Khan, J.M.; Alam, P.; Albalawi, T.A.; Shahzad, S.A. Food color ‘Azorubine’ interferes with quorum sensing regulated functions and obliterates biofilm formed by food associated bacteria: An in vitro and in silico approach. Saudi J. Biol. Sci. 2020, 27, 1080–1090. [Google Scholar] [CrossRef]
- Wagner, V.E.; Iglewski, B.H.P. aeruginosa biofilms in CF infection. Clin. Rev. Allergy Immunol. 2008, 35, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhuang, X.; Lv, Z.; Xin, F.; Dong, W.; Li, Y.; Jia, H. Quorum sensing signals from sludge improving the self-assembly of electrode biofilms in microbial fuel cells for chloramphenicol degradation. Environ. Sci. Water Res. Technol. 2022, 8, 2531–2544. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Wu, P.; Zhang, C.; Zhang, J. Quorum sensing signals stimulate biofilm formation and its electroactivity for chain elongation: System performance and underlying mechanisms. Sci. Total Environ. 2023, 859, 160192. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, L.; Zularisam, A.W. Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sust. Energ. Rev. 2016, 56, 1322–1336. [Google Scholar] [CrossRef] [Green Version]
- Nevin, K.P.; Richter, H.; Covalla, S.; Johnson, J.; Woodard, T.; Orloff, A.; Jia, H.; Zhang, M.; Lovley, D. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol. 2008, 10, 2505–2514. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, P.; Bry, T.; Popat, S.C.; Lusk, B.G.; Rittmann, B.E.; Torres, C.I. Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica. Environ. Sci. Technol. 2013, 47, 4934–4940. [Google Scholar] [CrossRef] [PubMed]
- Bretschger, O.; Obraztsova, A.; Sturm, C.A.; Chang, I.S.; Gorby, Y.A.; Reed, S.B.; Culley, D.E.; Reardon, C.L.; Barua, S.; Romine, M.F. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 2007, 73, 7003–7012. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, A.; Hashimoto, K.; Nakamura, R. Long-range electron conduction of Shewanella biofilms mediated by outer membrane C-type cytochromes. Bioelectrochemistry 2012, 85, 61–65. [Google Scholar] [CrossRef]
- Nor, M.H.M.; Mubarak, M.F.M.; Elmi, H.S.A.; Ibrahim, N.; Wahab, M.F.A.; Ibrahim, Z. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge. Bioresour. Technol. 2015, 190, 458–465. [Google Scholar] [CrossRef]
- Islam, M.A.; Ethiraj, B.; Cheng, C.K.; Yousuf, A.; Khan, M.M.R. Electrogenic and antimethanogenic properties of Bacillus cereus for enhanced power generation in anaerobic sludge-driven microbial fuel cells. Energy Fuels 2017, 31, 6132–6139. [Google Scholar] [CrossRef]
- Naina Mohamed, S.; Thota Karunakaran, R.; Manickam, M. Enhancement of bioelectricity generation from treatment of distillery wastewater using microbial fuel cell. Environ. Prog. Sustain. Energy 2018, 37, 663–668. [Google Scholar] [CrossRef]
- Kim, J.R.; Jung, S.H.; Regan, J.M.; Logan, B.E. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 2007, 98, 2568–2577. [Google Scholar] [CrossRef]
- Wang, V.B.; Sivakumar, K.; Yang, L.; Zhang, Q.; Kjelleberg, S.; Loo, S.C.J.; Cao, B. Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor. Sci. Rep. 2015, 5, 11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.A.; Ethiraj, B.; Cheng, C.K.; Yousuf, A.; Khan, M.M.R. An insight of synergy between Pseudomonas aeruginosa and Klebsiella variicola in a microbial fuel cell. ACS Sustain. Chem. Eng. 2018, 6, 4130–4137. [Google Scholar] [CrossRef]
- Islam, M.A.; Ethiraj, B.; Cheng, C.K.; Yousuf, A.; Thiruvenkadam, S.; Prasad, R.; Rahman Khan, M.M. Enhanced current generation using mutualistic interaction of yeast-bacterial coculture in dual chamber microbial fuel cell. Ind. Eng. Chem. Res. 2018, 57, 813–821. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, M.; Ling, W.; Yang, Y.; Zhou, X.; Li, B.-Z.; Chen, T.; Nie, Y.; Wang, M.; Zeng, B. A three-species microbial consortium for power generation. Energy Environ. Sci. 2017, 10, 1600–1609. [Google Scholar] [CrossRef]
- Sharma, S.C.D.; Li, J.; Hu, A.; Chang, C.-C.; Yu, C.-P. Integration of pre-colonized and mediator immobilized mixed culture for the improvement of electricity production of microbial fuel cells. Environ. Technol. Innov. 2021, 22, 101514. [Google Scholar] [CrossRef]
- Read, S.T.; Dutta, P.; Bond, P.L.; Keller, J.; Rabaey, K. Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol. 2010, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Snider, R.M.; Strycharz-Glaven, S.M.; Tsoi, S.D.; Erickson, J.S.; Tender, L.M. Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proc. Natl. Acad. Sci. USA 2012, 109, 15467–15472. [Google Scholar] [CrossRef] [Green Version]
- Bond, D.R.; Lovley, D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69, 1548–1555. [Google Scholar] [CrossRef] [Green Version]
- Myers, C.R.; Nealson, K.H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240, 1319–1321. [Google Scholar] [CrossRef]
- Reguera, G.; Nevin, K.P.; Nicoll, J.S.; Covalla, S.F.; Woodard, T.L.; Lovley, D.R. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 2006, 72, 7345–7348. [Google Scholar] [CrossRef] [Green Version]
- Reguera, G.; McCarthy, K.D.; Mehta, T.; Nicoll, J.S.; Tuominen, M.T.; Lovley, D.R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098–1101. [Google Scholar] [CrossRef]
- Xie, Q.; Lu, Y.; Tang, L.; Zeng, G.; Yang, Z.; Fan, C.; Wang, J.; Atashgahi, S. The mechanism and application of bidirectional extracellular electron transport in the field of energy and environment. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1924–1969. [Google Scholar] [CrossRef]
- Okamoto, A.; Saito, K.; Inoue, K.; Nealson, K.H.; Hashimoto, K.; Nakamura, R. Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species. Energy Environ. Sci. 2014, 7, 1357–1361. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.A.; Harnisch, F.; Kapadnis, B.; Schröder, U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance. Biosens. Bioelectron. 2010, 26, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, Y.; Yuan, Z.; Kong, X.; Li, Y. Effect of temperature change on power generation of microbial fuel cell. Environ. Technol. 2013, 34, 1929–1934. [Google Scholar] [CrossRef]
- Patil, S.A.; Harnisch, F.; Koch, C.; Hübschmann, T.; Fetzer, I.; Carmona-Martínez, A.A.; Müller, S.; Schröder, U. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition. Bioresour. Technol. 2011, 102, 9683–9690. [Google Scholar] [CrossRef]
- Samsudeen, N.; Radhakrishnan, T.; Matheswaran, M. Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Bioresour. Technol. 2015, 195, 242–247. [Google Scholar] [CrossRef]
- González, T.; Ureta-Zañartu, M.S.; Marco, J.F.; Vidal, G. Effect of Zeolite-Fe on graphite anode in electroactive biofilm development for application in microbial fuel cells. Appl. Surf. Sci. 2019, 467–468, 851–859. [Google Scholar] [CrossRef]
- Cornejo, J.A.; Lopez, C.; Babanova, S.; Santoro, C.; Artyushkova, K.; Ista, L.; Schuler, A.J.; Atanassov, P. Surface modification for enhanced biofilm formation and electron transport in shewanella anodes. J. Electrochem. Soc. 2015, 162, H597. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Freguia, S.; Dennis, P.G.; Chen, X.; Donose, B.C.; Keller, J.; Gooding, J.J.; Rabaey, K. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 2013, 47, 7563–7570. [Google Scholar] [CrossRef]
- Picot, M.; Lapinsonnière, L.; Rothballer, M.; Barrière, F. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosens. Bioelectron. 2011, 28, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, G.; Zhuang, Z.; Mai, Q.; Zhuang, L. Redox potential-induced regulation of extracellular polymeric substances in an electroactive mixed community biofilm. Sci. Total Environ. 2021, 797, 149207. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Huang, L.; Yu, Z.; Liu, X.; Chen, S.; Zeng, J.; Zhou, S.; Zhuang, L. Anode potentials regulate Geobacter biofilms: New insights from the composition and spatial structure of extracellular polymeric substances. Water Res. 2019, 159, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Xia, A.; Huang, Y.; Zhu, X.; Zhu, X.; Show, P.-L.; Liao, Q. Continuous electromethanogenesis of propionate wastewater: Effect of external voltage and hydraulic retention time. Chem. Eng. J. 2023, 454, 140267. [Google Scholar] [CrossRef]
- Chen, S.; Jing, X.; Tang, J.; Fang, Y.; Zhou, S. Quorum sensing signals enhance the electrochemical activity and energy recovery of mixed-culture electroactive biofilms. Biosens. Bioelectron. 2017, 97, 369–376. [Google Scholar] [CrossRef]
- Taşkan, B.; Taşkan, E. Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4. Chemosphere 2021, 285, 131538. [Google Scholar] [CrossRef]
- Zhou, L.; Li, T.; An, J.; Liao, C.; Li, N.; Wang, X. Subminimal inhibitory concentration (sub-MIC) of antibiotic induces electroactive biofilm formation in bioelectrochemical systems. Water Res. 2017, 125, 280–287. [Google Scholar] [CrossRef]
- Jing, X.; Chen, S.; Liu, X.; Yang, Y.; Rensing, C.; Zhou, S. Potassium channel mediates electroactive biofilm formation via recruiting planktonic Geobacter cells. Sci. Total Environ. 2022, 850, 158035. [Google Scholar] [CrossRef]
- Zhu, Q.; Hu, J.; Liu, B.; Liang, S.; Xiao, K.; Yu, W.; Yuan, S.; Yang, J.; Hou, H. Potassium channel blocker selectively enriched Geobacter from mixed-cultured electroactive biofilm: Insights from microbial community, functional prediction and gene expressions. Bioresour. Technol. 2022, 364, 128109. [Google Scholar] [CrossRef]
- Logan, B.E.; Rossi, R.; Ragab, A.A.; Saikaly, P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef]
- Liu, X.-W.; Li, W.-W.; Yu, H.-Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem. Soc. Rev. 2014, 43, 7718–7745. [Google Scholar] [CrossRef] [PubMed]
- Afsharian, Y.P.; Rahimnejad, M. Functional dynamics of microbial communities in bioelectrochemical systems: The importance of eco-electrogenic treatment of complex substrates. Curr. Opin. Electrochem. 2022, 31, 100816. [Google Scholar] [CrossRef]
- Matias, P.M.; Pereira, I.S.A.; Soares, C.M.; Carrondo, M.A. Sulphate respiration from hydrogen in Desulfovibrio bacteria: A structural biology overview. Prog. Biophys. Mol. Biol. 2005, 89, 292–329. [Google Scholar] [CrossRef] [PubMed]
- Cordas, C.M.; Guerra, L.T.; Xavier, C.; Moura, J.J. Electroactive biofilms of sulphate reducing bacteria. Electrochim. Acta 2008, 54, 29–34. [Google Scholar] [CrossRef]
- Uria, N.; Ferrera, I.; Mas, J. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol. 2017, 17, 208. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, M.; Aulenta, F.; Villano, M.; Angenent, L.T. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 2011, 102, 324–333. [Google Scholar] [CrossRef]
- Omidi, M.; Mashkour, M.; Biswas, J.K.; Garlapati, V.K.; Singh, L.; Rahimnejad, M.; Pant, D. From electricity to products: Recent updates on microbial electrosynthesis (MES). Top. Catal. 2021, 1–18. [Google Scholar] [CrossRef]
- Li, S.; Sakuntala, M.; Song, Y.E.; Heo, J.-O.; Kim, M.; Lee, S.Y.; Kim, M.-S.; Oh, Y.-K.; Kim, J.R. Photoautotrophic hydrogen production of Rhodobacter sphaeroides in a microbial electrosynthesis cell. Bioresour. Technol. 2021, 320, 124333. [Google Scholar] [CrossRef]
- Li, S.; Song, Y.E.; Baek, J.; Im, H.S.; Sakuntala, M.; Kim, M.; Park, C.; Min, B.; Kim, J.R. Bioelectrosynthetic conversion of CO2 using different redox mediators: Electron and carbon balances in a bioelectrochemical system. Energies 2020, 13, 2572. [Google Scholar] [CrossRef]
- Song, Y.E.; Mohamed, A.; Kim, C.; Kim, M.; Li, S.; Sundstrom, E.; Beyenal, H.; Kim, J.R. Biofilm matrix and artificial mediator for efficient electron transport in CO2 microbial electrosynthesis. Chem. Eng. J. 2022, 427, 131885. [Google Scholar] [CrossRef]
- Deutzmann, J.S.; Spormann, A.M. Enhanced microbial electrosynthesis by using defined co-cultures. ISME J. 2017, 11, 704–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, D.E.; Flynn, J.M.; Baron, D.B.; Gralnick, J.A.; Bond, D.R. Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 2011, 6, e16649. [Google Scholar] [CrossRef] [PubMed]
- Clauwaert, P.; Toledo, R.; van der Ha, D.; Crab, R.; Verstraete, W.; Hu, H.; Udert, K.; Rabaey, K. Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci. Technol. 2008, 57, 575–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryal, N.; Wan, L.; Overgaard, M.H.; Stoot, A.C.; Chen, Y.; Tremblay, P.-L.; Zhang, T. Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Bioelectrochemistry 2019, 128, 83–93. [Google Scholar] [CrossRef]
- Wang, G.; Huang, Q.; Song, T.-S.; Xie, J. Enhancing microbial electrosynthesis of acetate and butyrate from CO2 reduction involving engineered Clostridium ljungdahlii with a nickel-phosphide-modified electrode. Energy Fuels 2020, 34, 8666–8675. [Google Scholar] [CrossRef]
- Li, Q.; Fu, Q.; Kobayashi, H.; He, Y.; Li, Z.; Li, J.; Liao, Q.; Zhu, X. GO/PEDOT modified biocathodes promoting CO2 reduction to CH4 in microbial electrosynthesis. Sustain. Energy Fuels 2020, 4, 2987–2997. [Google Scholar] [CrossRef]
- Anwer, A.H.; Khan, N.; Khan, M.D.; Shakeel, S.; Khan, M.Z. Redox mediators as cathode catalyst to boost the microbial electro-synthesis of biofuel product from carbon dioxide. Fuel 2021, 302, 121124. [Google Scholar] [CrossRef]
- Ameen, F.; Alshehri, W.A.; Nadhari, S.A. Effect of electroactive biofilm formation on acetic acid production in anaerobic sludge driven microbial electrosynthesis. ACS Sustain. Chem. Eng. 2019, 8, 311–318. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, G.; Zhang, R.; Lu, Y.; Luo, H. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system. Bioresour. Technol. 2017, 241, 821–829. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Xiao, S.; Fu, Q.; Kobayashi, H.; Zhang, L.; Liao, Q.; Zhu, X. Startup cathode potentials determine electron transfer behaviours of biocathodes catalysing CO2 reduction to CH4 in microbial electrosynthesis. J. CO2 Util. 2020, 35, 169–175. [Google Scholar] [CrossRef]
- Fang, Y.; Deng, C.; Chen, J.; Lü, J.; Chen, S.; Zhou, S. Accelerating the start-up of the cathodic biofilm by adding acyl-homoserine lactone signaling molecules. Bioresour. Technol. 2018, 266, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zeng, C.; Liu, G.; Luo, H.; Zhang, R. Enhanced CO2 reduction and acetate synthesis in autotrophic biocathode by N-Hexanoyl-L-homoserine lactone (C6HSL)-based quorum-sensing regulation. Sci. Total Environ. 2022, 836, 155724. [Google Scholar] [CrossRef]
- Shi, K.; Cheng, W.; Cheng, D.; Xue, J.; Qiao, Y.; Gao, Y.; Jiang, Q.; Wang, J. Stability improvement and the mechanism of a microbial electrolysis cell biocathode for treating wastewater containing sulfate by quorum sensing. Chem. Eng. J. 2022, 455, 140597. [Google Scholar] [CrossRef]
- Yang, H.-Y.; Hou, N.-N.; Wang, Y.-X.; Liu, J.; He, C.-S.; Wang, Y.-R.; Li, W.-H.; Mu, Y. Mixed-culture biocathodes for acetate production from CO2 reduction in the microbial electrosynthesis: Impact of temperature. Sci. Total Environ. 2021, 790, 148128. [Google Scholar] [CrossRef] [PubMed]
- Leon-Fernandez, L.F.; Rodrigo, M.A.; Villaseñor, J.; Fernandez-Morales, F.J. Bio-electrocatalytic dechlorination of 2,4-dichlorophenol. Effect of pH and operational configuration. Electrochim. Acta 2021, 367, 137456. [Google Scholar] [CrossRef]
- Rago, L.; Cristiani, P.; Villa, F.; Zecchin, S.; Colombo, A.; Cavalca, L.; Schievano, A. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry 2017, 116, 39–51. [Google Scholar] [CrossRef]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal–response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef] [Green Version]
- Nealson, K.H.; Hastings, J.W. Bacterial bioluminescence: Its control and ecological significance. Microbiol. Rev. 1979, 43, 496–518. [Google Scholar] [CrossRef]
- Turan, N.B.; Chormey, D.S.; Büyükpınar, Ç.; Engin, G.O.; Bakirdere, S. Quorum sensing: Little talks for an effective bacterial coordination. Trends Analyt. Chem. 2017, 91, 1–11. [Google Scholar] [CrossRef]
- Sturme, M.H.; Kleerebezem, M.; Nakayama, J.; Akkermans, A.D.; Vaughan, E.E.; De Vos, W.M. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 2002, 81, 233–243. [Google Scholar] [CrossRef]
- Sahreen, S.; Mukhtar, H.; Imre, K.; Morar, A.; Herman, V.; Sharif, S. Exploring the function of quorum sensing regulated biofilms in biological wastewater treatment: A review. Int. J. Mol. Sci. 2022, 23, 9751. [Google Scholar] [CrossRef]
- Buck, B.; Azcarate-Peril, M.; Klaenhammer, T. Role of autoinducer-2 on the adhesion ability of Lactobacillus acidophilus. J. Appl. Microbiol. 2009, 107, 269–279. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, Z.; Ren, G.; Shen, Q.; Hou, Y.; Ma, A.; Deng, Y.; Wang, A.; Liu, W. Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells. Appl. Energy 2016, 183, 1133–1141. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhou, H.; Mei, X.; Liu, B.; Xing, D. Dual-edged character of quorum sensing signaling molecules in microbial extracellular electron transfer. Front. Microbiol. 2018, 9, 1924. [Google Scholar] [CrossRef]
- Xiong, F.; Zhao, X.; Wen, D.; Li, Q. Effects of N-acyl-homoserine lactones-based quorum sensing on biofilm formation, sludge characteristics, and bacterial community during the start-up of bioaugmented reactors. Sci. Total Environ. 2020, 735, 139449. [Google Scholar] [CrossRef] [PubMed]
- Cevik, E.; Tombuloglu, H.; Anıl, I.; Senel, M.; Sabit, H.; AbdulAzeez, S.; Borgio, J.F.; Barghouthi, M. Direct electricity production from microalgae Choricystis sp. and investigation of the boron to enhance the electrogenic activity. Int. J. Hydrog. Energy 2020, 45, 11330–11340. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.; Wang, F.; Tian, Z.; Wang, T.; Wang, S.; Wang, S.; Yan, Z. Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release in the anammox system. Sci. Total Environ. 2020, 704, 135285. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Guo, Y.; Zhang, Z.; Shi, W.; Cui, F.; Lens, P.N.; Tay, J.H. A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL-producing strains. Water Res. 2020, 169, 115193. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Ma, S.; Hu, H.; Wu, B.; Zhang, X.-X.; Ren, H. Distribution characteristics of N-acyl homoserine lactones during the moving bed biofilm reactor biofilm development process: Effect of carbon/nitrogen ratio and exogenous quorum sensing signals. Bioresour. Technol. 2019, 289, 121591. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.; Kim, H.; Kim, M.H.; Kim, K.; Lee, K.; Oh, H.-S. Quorum quenching bacteria isolated from industrial wastewater sludge to control membrane biofouling. Bioresour. Technol. 2022, 352, 127077. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, H.; Shahi, A.; Ovez, S.; Aydin, S. Bioaugmentation with immobilized endophytic Penicillium restrictum to improve quorum quenching activity for biofouling control in an aerobic hollow-fiber membrane bioreactor treating antibiotic-containing wastewater. Ecotoxicol. Environ. Saf. 2021, 210, 111831. [Google Scholar] [CrossRef] [PubMed]
- Taşkan, B.; Taşkan, E.; Hasar, H. New quorum quenching bacteria for controlling biofilm thickness in the membrane aerated biofilm reactor. Process Saf. Environ. Prot. 2022, 165, 57–65. [Google Scholar] [CrossRef]
- Kampouris, I.D.; Karayannakidis, P.D.; Banti, D.C.; Sakoula, D.; Konstantinidis, D.; Yiangou, M.; Samaras, P.E. Evaluation of a novel quorum quenching strain for MBR biofouling mitigation. Water Res. 2018, 143, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Guo, W.; Zheng, H.; Yang, S.; Du, J.; Wu, Q.; Luo, H.; Zhou, X.; Jin, W.; Ren, N. Inhibition of biofouling in membrane bioreactor by metabolic uncoupler based on controlling microorganisms accumulation and quorum sensing signals secretion. Chemosphere 2020, 245, 125363. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-J.; Zhou, J.-W.; Zhang, P.-P.; Luo, H.-Z.; Tang, S.; Li, J.-J.; Deng, S.-M.; Jia, A.-Q. Quorum sensing inhibition and tobramycin acceleration in Chromobacterium violaceum by two natural cinnamic acid derivatives. Appl. Microbiol. Biotechnol. 2020, 104, 5025–5037. [Google Scholar] [CrossRef] [PubMed]
- Alibi, S.; Selma, W.B.; Ramos-Vivas, J.; Smach, M.A.; Touati, R.; Boukadida, J.; Navas, J.; Mansour, H.B. Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr. Res. Transl. Med. 2020, 68, 59–66. [Google Scholar] [CrossRef]
- Li, T.; Sun, X.; Chen, H.; He, B.; Mei, Y.; Wang, D.; Li, J. Methyl anthranilate: A novel quorum sensing inhibitor and anti-biofilm agent against Aeromonas sobria. Food Microbiol. 2020, 86, 103356. [Google Scholar] [CrossRef]
- Parmar, P.; Shukla, A.; Rao, P.; Saraf, M.; Patel, B.; Goswami, D. The rise of gingerol as anti-QS molecule: Darkest episode in the LuxR-mediated bioluminescence saga. Bioorg. Chem. 2020, 99, 103823. [Google Scholar] [CrossRef]
- Siddiqui, M.F.; Rzechowicz, M.; Harvey, W.; Zularisam, A.W.; Anthony, G.F. Quorum sensing based membrane biofouling control for water treatment: A review. J. Water Process. Eng. 2015, 7, 112–122. [Google Scholar] [CrossRef]
- Yeon, K.-M.; Lee, C.-H.; Kim, J. Magnetic enzyme carrier for effective biofouling control in the membrane bioreactor based on enzymatic quorum quenching. Environ. Sci. Technol. 2009, 43, 7403–7409. [Google Scholar] [CrossRef]
- Jiang, W.; Xia, S.; Liang, J.; Zhang, Z.; Hermanowicz, S.W. Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors. Water Res. 2013, 47, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, C.T.; Waheed, H.; Tan, W.; Xiao, Y. Photocatalytic quorum quenching: A new antifouling and in-situ membrane cleaning strategy for an external membrane bioreactor coupled to UASB. J. Environ. Chem. Eng. 2021, 9, 105470. [Google Scholar] [CrossRef]
- Jiang, B.; Zeng, Q.; Hou, Y.; Li, H.; Liu, J.; Xu, J.; Shi, S.; Ma, F. Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater. Sci. Total Environ. 2020, 716, 137139. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, C.; Li, Y. Research and development of hydrogen energy safety. Emerg. Manag. Sci. Technol. 2022, 2, 3. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, A.; Wang, S.; Cheng, S.; Yin, X.; Yue, X. Quorum sensing shaped microbial consortia and enhanced hydrogen recovery from waste activated sludge electro-fermentation on basis of free nitrous acid treatment. Sci. Total Environ. 2021, 766, 144348. [Google Scholar] [CrossRef]
- Christwardana, M.; Frattini, D.; Duarte, K.D.; Accardo, G.; Kwon, Y. Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Appl. Energy 2019, 238, 239–248. [Google Scholar] [CrossRef]
- Monzon, O.; Yang, Y.; Li, Q.; Alvarez, P.J. Quorum sensing autoinducers enhance biofilm formation and power production in a hypersaline microbial fuel cell. Biochem. Eng. J. 2016, 109, 222–227. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Y.; Katz, E.; Song, H. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chem. Commun. 2015, 51, 4184–4187. [Google Scholar] [CrossRef]
- Li, F.-H.; Tang, Q.; Fan, Y.-Y.; Li, Y.; Li, J.; Wu, J.-H.; Luo, C.-F.; Sun, H.; Li, W.-W.; Yu, H.-Q. Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in Shewanella oneidensis. Proc. Natl. Acad. Sci. USA 2020, 117, 23001–23010. [Google Scholar] [CrossRef]
- Borea, L.; Naddeo, V.; Belgiorno, V.; Choo, K.-H. Control of quorum sensing signals and emerging contaminants in electrochemical membrane bioreactors. Bioresour. Technol. 2018, 269, 89–95. [Google Scholar] [CrossRef]
- Jouanneau, S.; Recoules, L.; Durand, M.; Boukabache, A.; Picot, V.; Primault, Y.; Lakel, A.; Sengelin, M.; Barillon, B.; Thouand, G. Methods for assessing biochemical oxygen demand (BOD): A review. Water Res. 2014, 49, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liang, P.; Liu, P.; Wang, D.; Miao, B.; Huang, X. A novel microbial fuel cell sensor with biocathode sensing element. Biosens. Bioelectron. 2017, 94, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Hu, J.; Liu, B.; Li, J.; Wang, D.; Bu, C.; Wang, X.; Xiao, K.; Liang, S.; Yang, J. Enhanced quorum sensing of anode biofilm for better sensing linearity and recovery capability of microbial fuel cell toxicity sensor. Environ. Res. 2020, 181, 108906. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.H.; Zakaria, B.S.; Meshref, M.N.A.; Dhar, B.R. Enhancing quorum sensing in biofilm anode to improve biosensing of naphthenic acids. Biosens. Bioelectron. 2022, 210, 114275. [Google Scholar] [CrossRef] [PubMed]
QS Enhancement Strategy | Additive | Additive Amount | Bioreactor/Microorganisms | Performance Impact | Reference |
---|---|---|---|---|---|
Addition of exogenous QS signaling molecules | 3OC12-HSL | 10 μM | MFC/Mixed culture | Energy recovery increased by 76.6% and start-up time was reduced by 9 days. | [45] |
C6-HSL | 50 μM | MES/Mixed culture | Current output increased by 29.3%, and acetic acid production increased by 94.8%. | [72] | |
3OC6-HSL | 10 mM | MEC/Mixed culture | Hydrogen production increased by 81.8%, and electron recovery efficiency increased by 98.3% with an applied voltage of 0.4 V. | [83] | |
C4-HSL | 10 μM | MFC/P. aeruginosa | The electricity generation of lasI and rhlI mutant strains increased to a level similar to that of wild-type strains (≈ 0.1 μA/cm2). | [84] | |
C6-HSL and 3OC6-HSL | 0.1 μM/1 μM | MBR/Mixed culture, and Paracoccus sp. BW001 | The protein content of biofilms increased by 62.4% (0.1 μM) and 80.1% (1 μM) on the 8th day. | [85] | |
Addition of synthetic promoters for QS signaling molecules | Boron | 60 μM | BEFC/Choricystis sp. | The voltage and MPD increased by 83.3% and 37.4%, respectively. | [86] |
Fulvic acid | 1 mM | Anammox system/Mixed culture | The total inorganic nitrogen removal efficiency increased by 52.8%. | [87] | |
Cultivation of QS bacteria | Seven AHLs producing bacteria (Z1, K5, K33, Z20, K46, K55, and K58) | 1/70 (v/v) | SBR/Mixed culture | The maximum concentrations of C6-HSL, C8-HSL, and 3OC8-HSL increased by 23%, 81%, and 27%, respectively. | [88] |
Pseudomonas aeruginosa | 1/10 (v/v) | MFC/P. aeruginosa | The current of PQS-overexpressing mutant strains decreased by about two times compared to that of PQS-deficient mutant strains. | [84] | |
Sphingomonas rubra sp. | 1/100 (v/v) | MBBR/Mixed culture | No significant improvement in COD and NH4+-N removal efficiencies. | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhuang, X.; Dong, W.; Xin, F.; Jia, H.; Wu, X. Advances in the Application of Quorum Sensing to Regulate Electrode Biofilms in Bioelectrochemical Systems. Fermentation 2023, 9, 625. https://doi.org/10.3390/fermentation9070625
Wang S, Zhuang X, Dong W, Xin F, Jia H, Wu X. Advances in the Application of Quorum Sensing to Regulate Electrode Biofilms in Bioelectrochemical Systems. Fermentation. 2023; 9(7):625. https://doi.org/10.3390/fermentation9070625
Chicago/Turabian StyleWang, Shen, Xinglei Zhuang, Weiliang Dong, Fengxue Xin, Honghua Jia, and Xiayuan Wu. 2023. "Advances in the Application of Quorum Sensing to Regulate Electrode Biofilms in Bioelectrochemical Systems" Fermentation 9, no. 7: 625. https://doi.org/10.3390/fermentation9070625
APA StyleWang, S., Zhuang, X., Dong, W., Xin, F., Jia, H., & Wu, X. (2023). Advances in the Application of Quorum Sensing to Regulate Electrode Biofilms in Bioelectrochemical Systems. Fermentation, 9(7), 625. https://doi.org/10.3390/fermentation9070625