Mathematical Modeling of Nitrification in Mixed Cultures: Insights into Nitrite-Oxidizing Bacteria Growth and Ammonia Starvation Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Enrichment of Nitrifying Microorganisms
2.2. Analytical Techniques
2.3. Model Development
2.4. Numerical Methods
3. Results
3.1. Determination of Kinetic Parameters—Non-Starved Cultures
3.2. Determination of Kinetic Parameters—Starved Cultures
3.3. Model Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmes, D.E.; Dang, Y.; Smith, J.A. Nitrogen Cycling during Wastewater Treatment. Adv. Appl. Microbiol. 2019, 106, 113–192. [Google Scholar]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Petrescu, A.M.R.; Leach, A.M.; de Vries, W. Consequences of Human Modification of the Global Nitrogen Cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [Green Version]
- Law, Y.; Ye, L.; Pan, Y.; Yuan, Z. Nitrous Oxide Emissions from Wastewater Treatment Processes. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1265–1277. [Google Scholar] [CrossRef] [Green Version]
- Keerio, H.A.; Bae, W.; Park, J.; Kim, M. Substrate Uptake, Loss, and Reserve in Ammonia-Oxidizing Bacteria (AOB) under Different Substrate Availabilities. Process Biochem. 2020, 91, 303–310. [Google Scholar] [CrossRef]
- Yao, Q.; Peng, D.-C. Nitrite Oxidizing Bacteria (NOB) Dominating in Nitrifying Community in Full-Scale Biological Nutrient Removal Wastewater Treatment Plants. AMB Express 2017, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Hayden, C.J.; Beman, J.M. High Abundances of Potentially Active Ammonia-Oxidizing Bacteria and Archaea in Oligotrophic, High-Altitude Lakes of the Sierra Nevada, California, USA. PLoS ONE 2014, 9, e111560. [Google Scholar] [CrossRef]
- Kowalchuk, G.A.; Stephen, J.R. Ammonia-oxidizing bacteria: A Model for Molecular Microbial Ecology. Annu. Rev. Microbiol. 2001, 55, 485–529. [Google Scholar] [CrossRef] [Green Version]
- Mullan, G.D.O.; Ward, B.B. Relationship of Temporal and Spatial Variabilities of Ammonia-Oxidizing Bacteria to Nitrification Rates in Monterey Bay, California. Appl. Environ. Microbiol. 2005, 71, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Hong, Y.; Li, M.; Gu, J.; Cao, H.; Hong, Y.; Li, M.; Gu, J. Lower Abundance of Ammonia-Oxidizing Archaea than Ammonia-Oxidizing Bacteria Detected in the Subsurface Sediments of the Northern South China Sea. Geomicrobiol. J. 2012, 29, 332–339. [Google Scholar] [CrossRef]
- Pedrouso, A.; Tocco, G.; Val del Río, A.; Carucci, A.; Morales, N.; Campos, J.L.; Milia, S.; Mosquera-Corral, A. Digested Blackwater Treatment in a Partial Nitritation-Anammox Reactor under Repeated Starvation and Reactivation Periods. J. Clean. Prod. 2020, 244, 118733. [Google Scholar] [CrossRef]
- Bollmann, A.; Bär-Gilissen, M.J.; Laanbroek, H.J. Growth at Low Ammonium Concentrations and Starvation Response as Potential Factors Involved in Niche Differentiation among Ammonia-Oxidizing Bacteria. Appl. Environ. Microbiol. 2002, 68, 4751–4757. [Google Scholar] [CrossRef] [Green Version]
- Soliman, M.; Eldyasti, A. Ammonia-Oxidizing Bacteria (AOB): Opportunities and Applications—A Review. Rev. Environ. Sci. Biotechnol. 2018, 17, 285–321. [Google Scholar] [CrossRef]
- Geets, J.; Boon, N.; Verstraete, W. Strategies of Aerobic Ammonia-Oxidizing Bacteria for Coping with Nutrient and Oxygen Fluctuations. FEMS Microbiol. Ecol. 2006, 58, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bollmann, A.; Schmidt, I.; Saunders, A.M.; Nicolaisen, M.H. Influence of Starvation on Potential Ammonia-Oxidizing Activity and AmoA MRNA Levels of Nitrosospira Briensis. Appl. Environ. Microbiol. 2005, 71, 1276–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, E.; Bollmann, A. Freshwater Ammonia-Oxidizing Archaea Retain AmoA MRNA and 16S RRNA during Ammonia Starvation. Life 2015, 5, 1396–1404. [Google Scholar] [CrossRef] [Green Version]
- Laanbroek, H.J.; Bär-Gilissen, M.J. Weakened Activity of Starved Ammonia-Oxidizing Bacteria by the Presence of Pre-Activated Nitrobacter Winogradskyi. Microbes Environ. 2002, 17, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Tappe, W.; Laverman, A.; Bohland, M.; Braster, M.; Rittershaus, S.; Groeneweg, J.; Van Verseveld, H.W. Maintenance Energy Demand and Starvation Recovery Dynamics of Nitrosomonas Europaea and Nitrobacter Winogradskyi Cultivated in a Retentostat with Complete Biomass Retention. Appl. Environ. Microbiol. 1999, 65, 2471–2477. [Google Scholar] [CrossRef]
- Jones, R.D.; Morita, R.Y. Survival of a Marine Ammonium Oxidizer Under Energy-Source Deprivation. Mar. Ecol. 1985, 26, 175–179. [Google Scholar] [CrossRef]
- Johnstone, B.H.; Jones, R.D. Recovery of a Marine Chemolithotrophic Ammonium-Oxidizing Bacterium from Long-Term Energy-Source Deprivation. Can. J. Microbiol. 1988, 34, 1347–1350. [Google Scholar] [CrossRef]
- Johnstone, B.; Jones, R. Physiological Effects of Long-Term Energy-Source Deprivation on the Survival of a Marine Chemolithotrophic Ammonium-Oxidizing Bacterium. Mar. Ecol. Prog. Ser. 1988, 49, 295–303. [Google Scholar] [CrossRef]
- Bollmann, A.; Laanbroek, H.J. Continuous Culture Enrichments of Ammonia-Oxidizing Bacteria at Low Ammonium Concentrations. FEMS Microbiol. Ecol. 2001, 37, 211–221. [Google Scholar] [CrossRef]
- Hastings, R.C.; Saunders, J.R.; Hall, G.H.; Pickup, R.W.; McCarthy, A.J. Application of Molecular Biological Techniques to a Seasonal Study of Ammonia Oxidation in a Eutrophic Freshwater Lake. Appl. Environ. Microbiol. 1998, 64, 3674–3682. [Google Scholar] [CrossRef]
- Speksnijder, A.G.C.L.; Kowalchuk, G.A.; Roest, K.; Laanbroek, H.J. Recovery of a Nitrosomonas-like 16S RDNA Sequence Group from Freshwater Habitats. Syst. Appl. Microbiol. 1998, 21, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbaszadeh, L.; Koutra, E.; Tsigkou, K.; Gaspari, M.; Kougias, P.G.; Kornaros, M. Nitrification upon Nitrogen Starvation and Recovery: Effect of Stress Period, Substrate Concentration and PH on Ammonia Oxidizers’ Performance. Fermentation 2022, 8, 387. [Google Scholar] [CrossRef]
- Gujer, W. Nitrification and Me—A Subjective Review. Water Res. 2010, 44, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.-J.; Ruscalleda, M.; Pellicer-Nacher, C.; Smets, B.F. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models. Environ. Sci. Technol. 2011, 45, 7768–7776. [Google Scholar] [CrossRef]
- Rausch, T. The Estimation of Micro-Algal Protein Content and Its Meaning to the Evaluation of Algal Biomass I. Comparison of Methods for Extracting Protein. Hydrobiologia 1981, 78, 237–251. [Google Scholar] [CrossRef]
- Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E.; Franson, M.A.H. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, USA, 2012. [Google Scholar]
- Ostace, G.S.; Cristea, V.M.; Agachi, P.Ş. Extension of Activated Sludge Model No 1 with Two-Step Nitrification and Denitrification Processes for Operation Improvement. Environ. Eng. Manag. J. 2011, 10, 1529–1544. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, Q.; Zu, B.; Bai, C.; Zhang, P. The Influence of Trace NO2 on the Kinetics of Ammonia Oxidation and the Characteristics of Nitrogen Removal from Wastewater. Water Sci. Technol. 2010, 62, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.; Giménez, J.B.; Ruano, M.V.; Ferrer, J.; Serralta, J. Effect of PH and Nitrite Concentration on Nitrite Oxidation Rate. Bioresour. Technol. 2011, 102, 8741–8747. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Xu, J.; Yang, R.; Alshammari, J.; Zhu, M.-J.; Sablani, S.; Tang, J. Moisture Content of Bacterial Cells Determines Thermal Resistance of Salmonella Enterica Serotype Enteritidis PT 30. Appl. Environ. Microbiol. 2021, 87, e02194-20. [Google Scholar] [CrossRef] [PubMed]
- Tsafrakidou, P.; Manthos, G.; Zagklis, D.; Mema, J.; Kornaros, M. Assessment of Substrate Load and Process PH for Bioethanol Production–Development of a Kinetic Model. Fuel 2022, 313, 123007. [Google Scholar] [CrossRef]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill Education: New York, NY, USA, 2001; ISBN 1260440591. [Google Scholar]
- Liu, X. Comparing Three Mathematical Models Using Different Substrates for Prediction of Partial Nitrification. Sci. Total Environ. 2020, 749, 141643. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Park, S.; Mo, K.; Lee, W.; Lee, H.; Kim, M. Experimentation and Mathematical Models for Partial Nitrification in Aerobic Granular Sludge Process. KSCE J. Civ. Eng. 2017, 21, 127–133. [Google Scholar] [CrossRef]
- Thalla, A.K.; Bhargava, R.; Kumar, P. Nitrification Kinetics of Activated Sludge-Biofilm System: A Mathematical Model. Bioresour. Technol. 2010, 101, 5827–5835. [Google Scholar] [CrossRef]
- Prosser, J.I. Autotrophic Nitrification in Bacteria. In Advances in Microbial Physiology; Rose, A.H., Tempest, D.W., Eds.; Academic Press: Cambridge, MA, USA, 1990; Volume 30, pp. 125–181. ISBN 0065-2911. [Google Scholar]
Parameter | Value | Units |
---|---|---|
μmax1,NO2 | 0.158 | d−1 |
μmax2,NO2 | 0.083 | d−1 |
μmax,ΝH4 | 0.091 | d−1 |
qmax,1 | 1.365 | gN-NO3 gbiomass−1 d |
qmax,2 | 0.788 | gN-NO3 gbiomass−1 d |
KS,NO2 | 0.003 | gN-NO2 L−1 |
KS,NH4 | 0.002 | gN-NH4 L−1 |
YAOB | 0.141 | gbiomass gN-NH4−1 |
KNH4 | 4 × 10−4 | gN-NH4 L−1 |
KSS,NH4 | 7.555 | gN-NH4 L−1 |
A | 6.758 | - |
K | 7.713 | - |
KNH3 | 7.819 | gN-NH3 L−1 |
kN | 25.07 | d−1 |
kD | 0.099 | gN gN-NH4−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manthos, G.; Abbaszadeh, L.; Zagklis, D.; Kornaros, M. Mathematical Modeling of Nitrification in Mixed Cultures: Insights into Nitrite-Oxidizing Bacteria Growth and Ammonia Starvation Effect. Fermentation 2023, 9, 681. https://doi.org/10.3390/fermentation9070681
Manthos G, Abbaszadeh L, Zagklis D, Kornaros M. Mathematical Modeling of Nitrification in Mixed Cultures: Insights into Nitrite-Oxidizing Bacteria Growth and Ammonia Starvation Effect. Fermentation. 2023; 9(7):681. https://doi.org/10.3390/fermentation9070681
Chicago/Turabian StyleManthos, Georgios, Leila Abbaszadeh, Dimitris Zagklis, and Michael Kornaros. 2023. "Mathematical Modeling of Nitrification in Mixed Cultures: Insights into Nitrite-Oxidizing Bacteria Growth and Ammonia Starvation Effect" Fermentation 9, no. 7: 681. https://doi.org/10.3390/fermentation9070681
APA StyleManthos, G., Abbaszadeh, L., Zagklis, D., & Kornaros, M. (2023). Mathematical Modeling of Nitrification in Mixed Cultures: Insights into Nitrite-Oxidizing Bacteria Growth and Ammonia Starvation Effect. Fermentation, 9(7), 681. https://doi.org/10.3390/fermentation9070681