The Application of Corynebacterium glutamicum in l-Threonine Biosynthesis
Abstract
:1. Introduction
2. Functions and Applications of l-Threonine
3. Application of C. glutamicum in Amino Acid Production
4. Metabolic Pathways of l-Threonine Production by C. glutamicum
4.1. l-Threonine Synthesis Pathway
4.2. Regulatory Mechanisms
4.3. Competitive Metabolic and Degradation Pathways
4.4. Mode of l-Threonine Transmembrane Transport
5. Metabolic Engineering Tools to Increase l-Threonine Production
5.1. Enhancing the l-Threonine Synthesis Pathway
5.2. Enhancing Threonine Transport Engineering
5.3. Reducing the Intracellular Metabolism of l-Threonine
5.4. Weakening Carbon Flux in the l-Threonine Synthesis Competitive Pathways
5.5. Systems Metabolic Engineering
6. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Usuda, Y.; Hara, Y.; Kojima, H. Toward Sustainable Amino Acid Production. Adv. Biochem. Eng. Biot. 2017, 159, 289–304. [Google Scholar]
- Zhou, X. Selection of high yielding strain of l-threonine and optimization of fermentation conditions. Mod. Food Sci. Technol. 2011, 27, 991–994. [Google Scholar]
- Zhang, L.; Yang, L.; Hou, S. Research progress on the effect of threonine on the intestinal health of livestock and poultry. Feed Wide Angle 2010, 12, 26–27. [Google Scholar]
- He, S. Amino acids in animal feed applications. China Livest. Poult. Breed. Ind. 2016, 12, 42–43. [Google Scholar]
- Zhang, S.; Zhang, Y.; Li, F. Metabolism of threonine and its nutrient physiological role. Feed. Res. 2012, 368, 14–16. [Google Scholar]
- Hou, Y.; Guo, Y.; Zhou, Y. Protein and amino acid nutrition and the immune function of the animal body. Feed Ind. 2000, 21, 5–7. [Google Scholar]
- Bampidis, V.; Azimonti, G.; Bastos, M.L. Safety and efficacy of l-threonine produced by fermentation with Corynebacterium glutamicum for all animal species. EFSA J. 2019, 17, e05603. [Google Scholar]
- Sasaki, M.; Jojima, T.; Inui, M.; Yukawa, H. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl. Microbiol. Biotechnol. 2008, 81, 691–699. [Google Scholar] [CrossRef]
- Kalinowski, J.; Bathe, B.; Bartels, D. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J. Biotechnol. 2003, 104, 5–25. [Google Scholar] [CrossRef]
- Wendisch, V.F. Metabolic engineering advances and prospects for amino acid production. Metab. Eng. 2020, 58, 17–34. [Google Scholar] [CrossRef]
- Dong, X.; Wang, X. Progress in metabolic engineering for the production of L_threonine by microorganisms. J. Food Biotechnol. 2013, 35, 1233–1240. [Google Scholar]
- Sauer, U.; Eikmanns, B.J. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. Fems Microbiol. Rev. 2005, 29, 765–794. [Google Scholar] [CrossRef] [PubMed]
- Peters-Wendisch, P.G.; Wendisch, V.F.; De-Graaf, A.A.; Eikmanns, B.J.; Sahm, H. C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum. Arch. Microbiol. 1996, 165, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Shiio, I.; Miyajima, R. Concerted Inhibition and Its Reversal by End Products of Aspartate Kinase in Brevibacterium Flavum. J. Biochem. Tokyo 1969, 65, 849–859. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, Y.; Zhao, J.; Wang, X. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of l-isoleucine biosynthesis. J. Ind. Microbiol. Biotechnol. 2016, 43, 873–885. [Google Scholar] [CrossRef]
- Ohnishi, J.; Mitsuhashi, S.; Hayashi, M.; Ando, S.; Yokoi, H.; Ochiai, K.; Ikeda, M. A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl. Microbiol. Biotechnol. 2002, 58, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Archer, J.A.C.; Solowcordero, D.E.; Sinskey, A.J. A C-Terminal Deletion in Corynebacterium-Glutamicum Homoserine Dehydrogenase Abolishes Allosteric Inhibition by l-Threonine. Gene 1991, 107, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, R.; Otsuka, S.; Shiio, I. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. I. inhibition by amino acids of the enzymes in threonine biosynthesis. J. Biochem. 1968, 63, 139–148. [Google Scholar] [CrossRef]
- Reinscheid, D.J.; Eikmanns, B.J.; Sahm, H. Analysis of a Corynebacterium glutamicum hom gene coding for a feedback-resistant homoserine dehydrogenase. J. Bacteriol. 1991, 173, 3228–3230. [Google Scholar] [CrossRef]
- Follettie, M.T.; Peoples, O.P.; Agoropoulou, C.; SINSKEY, A.J. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J. Bacteriol. 1993, 175, 4096–4103. [Google Scholar] [CrossRef]
- Mateos, L.M.; Pisabarro, A.; Patek, M.; Malumbres, M.; Guerrero, C.; Eikmanns, B.J.; Sahm, H.; Martin, J.F. Transcriptional Analysis and Regulatory Signals of the Hom-Thrb Cluster of Brevibacterium-Lactofermentum. J. Bacteriol. 1994, 176, 7362–7371. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.M.; Leguina, J.I.; Lazcano, A. Molecular evolution of the lysine biosynthetic pathways. J. Mol. Evol. 2002, 55, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Ruckert, C.; Puhler, A.; Kalinowski, J. Genome-wide analysis of the l-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J. Biotechnol. 2003, 104, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Simic, P.; Willuhn, J.; Sahm, H.; Eggeling, L. Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase l-threonine accumulation by Corynebacterium glutamicum. Appl. Environ. Microbiol. 2002, 68, 3321–3327. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, L.; Berns, D.; Kramer, R.; Eikmanns, M. Threonine diffusion and threonine transport in Corynebacterium glutamicum and their role in threonine production. Arch. Microbiol. 1996, 165, 48–54. [Google Scholar] [CrossRef]
- Kwong, S.C.W.; Rao, G. Utility of Culture Redox Potential for Identifying Metabolic State Changes in Amino-Acid Fermentation. Biotechnol. Bioeng. 1991, 38, 1034–1040. [Google Scholar] [CrossRef]
- Simic, P.; Sahm, H.; Eggeling, L. l-threonine export: Use of peptides to identify a new translocator from Corynebacterium glutamicum. J. Bacteriol. 2001, 183, 5317–5324. [Google Scholar] [CrossRef]
- Yen, M.R.; Tseng, Y.H.; Simic, P.; Sahm, H.; Ehheling, L.; Milyon, H. The ubiquitous ThrE family of putative transmembrane amino acid efflux transporters. Res. Microbiol. 2002, 153, 19–25. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Chen, Z.; Xu, G.; Zhang, X.; Li, H.; Shi, J.; Koffas-Matteos, A.G.; Xu, Z. High-yield production of l-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum. Microb. Cell Fact. 2020, 19, 115. [Google Scholar] [CrossRef]
- Ma, Q.; Xia, L.; Tan, M.; Sun, Q.; Yang, M.; Zhang, Y.; Chen, N. Advances and prospects in metabolic engineering for the production of amino acids. Sheng Wu Gong Cheng Xue Bao 2021, 37, 1677–1696. [Google Scholar]
- Wei, L.; Xu, N.; Wang, Y.; Zhou, W.; Han, G.; Ma, Y.; Liu, J. Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2018, 102, 4117–4130. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, H.; Liang, L.; Huang, Q.; Wu, S.; Huang, J. Effects of a targeted mutation of lysC and the accumulation of l-threonine in Corynebacterium glutamicum lysC, asdA. Biotechnol. Bull. 2019, 35, 93–100. [Google Scholar]
- Diesveld, R.; Tietze, N.; Furst, O.; Alexander, R.; Bathe, B.; Sahm, H.; Ehheling, L. Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase l-threonine production. J. Mol. Microbiol. Biotechnol. 2009, 16, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Ishida, M.; Kawashima, H.; Sato, K.; Hashiguchi, K.; Ito, H.; Enei, H.; Nakamori, S. Factors improving l-threonine production by a three l-threonine biosynthetic genes-amplified recombinant strain of Brevibacterium lactofermentum. Biosci. Biotechnol. Biochem. 1994, 58, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wu, Z.; Han, S.; Lin, Y.; Zheng, S. Construction of recombinant Corynebacterium glutamicum for l-threonine production. Biotechnol. Bioprocess Eng. 2012, 17, 16–21. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, Y.; Hu, J.; Li, Y.; Wang, X. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum. Enzym. Microb. Technol. 2016, 93, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, H.; Wang, T.; Xu, Q.; Zhang, C.; Fan, X.; Ma, Q.; Chen, N.; Xie, X. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour. Technol. 2017, 245, 1588–1602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, M.; Chen, S.; Liu, X.; Liu, J.; Zhu, D. The Application of Corynebacterium glutamicum in l-Threonine Biosynthesis. Fermentation 2023, 9, 822. https://doi.org/10.3390/fermentation9090822
Duan M, Chen S, Liu X, Liu J, Zhu D. The Application of Corynebacterium glutamicum in l-Threonine Biosynthesis. Fermentation. 2023; 9(9):822. https://doi.org/10.3390/fermentation9090822
Chicago/Turabian StyleDuan, Min, Shuo Chen, Xinli Liu, Jianhang Liu, and Deqiang Zhu. 2023. "The Application of Corynebacterium glutamicum in l-Threonine Biosynthesis" Fermentation 9, no. 9: 822. https://doi.org/10.3390/fermentation9090822
APA StyleDuan, M., Chen, S., Liu, X., Liu, J., & Zhu, D. (2023). The Application of Corynebacterium glutamicum in l-Threonine Biosynthesis. Fermentation, 9(9), 822. https://doi.org/10.3390/fermentation9090822