Management Information Systems for Tree Fruit—1: A Review
Abstract
:1. Introduction
1.1. MIS Definition and Need
1.2. Review Motivation
1.3. Structure
2. Review Protocol
2.1. Literature Survey
“(farm OR agri*) AND (manage* OR information) AND (software OR system* OR tool OR platform)”
“(orchard OR (fruit AND tree)) AND (manage* OR information) AND (software OR system* OR tool OR platform)”
“(orchard OR (fruit* AND tree*)) AND (“decision support” OR “information system*” OR software or platform)”
2.2. Orchard MIS Provider and User Survey
3. Literature Evaluation
3.1. Literature Trends
3.2. Adoption Barriers and Drivers
- (i)
- ‘Internal’ operational issues, including system ‘bugs’, feature incompleteness, poor user experience through poor wording of logic flow, the effort required for data entry, and poor system value as manifested in a low integration of system output into decision-making;
- (ii)
- ‘External’ operational issues, including poor system reactivity caused by limited internet connection, poor input data quality and poor lack of system integration and interoperability through failure to use standardised data formats;
- (iii)
- System maintenance issues, including low adaptation rates, high costs and poor user support resources;
- (iv)
- Lack of trust in system reliability and data security;
- (v)
- Affordability.
- (i)
- (ii)
- (iii)
- System maintenance issues, such as software features and poor support services and training [42];
- (iv)
- (v)
3.3. Orchard MIS Evaluation
3.4. Technological Features
3.5. Management Aims
3.5.1. Plant Health
3.5.2. Irrigation
3.5.3. Nutrition
3.5.4. Plant Development
4. Commercial Practice
4.1. Adoption Barriers and Drivers
4.2. Commercial Orchard MIS
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
ID | Extraction Element | Remarks |
---|---|---|
General Information | ||
1 | EID | |
2 | Title | |
3 | Abstract | |
4 | Year | |
5 | Authors | |
6 | Type | Journal/Article/Book Chapter/Conference |
7 | Source | Acta Horticulture/Compag/Agronomy |
8 | DoI | |
Specific Information | ||
9 | Country | The United States/China/Spain/etc. |
10 | Crop | Apple/mango/olive/orange/etc. |
11 | System type | DS/OFMIS |
12 | Application | Plant health/plant/irrigation/nutrition |
13 | Aim | Design/development/implementation/use |
14 | Platform | Mobile/web/desktop |
15 | Name of the system | A/B/C |
16 | Technological features | Data acquisition/management/analysis/visualise |
17 | Development tools | Frontend/backend/DBMS/Map Server |
18 | Operational challenges | Network connectivity/continuity of services/affordability/etc. |
19 | Evaluation | Efficacy/satisfaction/usability |
20 | Accessibility | Availability/distribution channel |
Appendix B. Database of Literature Search Metadata
Appendix C. Semi-Structured Interview Questions
References
- Tummers, J.; Kassahun, A.; Tekinerdogan, B. Obstacles and features of Farm Management Information Systems: A systematic literature review. Comput. Electron. Agric. 2019, 157, 189–204. [Google Scholar] [CrossRef]
- Tummers, J.; Kassahun, A.; Tekinerdogan, B. Reference architecture design for farm management information systems: A multi-case study approach. Precis. Agric. 2020, 22, 22–50. [Google Scholar] [CrossRef]
- Laudon, K.C.; Laudon, J.P. Section 13.2: Systems for Decision Support. In Management Information Systems: Managing the Digital Firm; Pearson Educatión: Hoboken, NJ, USA, 2004. [Google Scholar]
- Rossi, V.; Salinari, F.; Poni, S.; Caffi, T.; Bettati, T. Addressing the implementation problem in agricultural decision support systems: The example of vite. net®. Comput. Electron. Agric. 2014, 100, 88–99. [Google Scholar] [CrossRef]
- Singh, M.; Singh, P.; Singh, S.B. Decision support system for farm management. World Acad. Sci. Eng. Technol. 2008, 39, 346–349. [Google Scholar]
- Sørensen, C.; Fountas, S.; Nash, E.; Pesonen, L.; Bochtis, D.; Pedersen, S.M.; Basso, B.; Blackmore, S. Conceptual model of a future farm management information system. Comput. Electron. Agric. 2010, 72, 37–47. [Google Scholar] [CrossRef]
- Kim, J.Y.; Glenn, D.M. Multi-modal sensor system for plant water stress assessment. Comput. Electron. Agric. 2017, 141, 27–34. [Google Scholar] [CrossRef]
- Zapata, N.; Chalghaf, I.; Nerilli, E.; Latorre, B.; López, C.; Martínez-Cob, A.; Girona, J.; Playán, E. Software for on-farm irrigation scheduling of stone fruit orchards under water limitations. Comput. Electron. Agric. 2012, 88, 52–62. [Google Scholar] [CrossRef]
- Forcén-Muñoz, M.; Pavón-Pulido, N.; López-Riquelme, J.A.; Temnani-Rajjaf, A.; Berríos, P.; Morais, R.; Pérez-Pastor, A. Irriman platform: Enhancing farming sustainability through cloud computing techniques for irrigation management. Sensors 2021, 22, 228. [Google Scholar] [CrossRef]
- Román, C.; Peris, M.; Esteve, J.; Tejerina, M.; Cambray, J.; Vilardell, P.; Planas, S. Pesticide dose adjustment in fruit and grapevine orchards by DOSA3D: Fundamentals of the system and on-farm validation. Sci. Total Environ. 2022, 808, 152158. [Google Scholar] [CrossRef]
- Chambers, U.; Petit, B.; Jones, V. WSU-DAS-the online pest management support system for tree fruits in Washington State. In Proceedings of the IX International Symposium on Modelling in Fruit Research and Orchard Management, Saint-Jean-sur-Richelieu, QC, Canada, 19–23 June 2011; pp. 27–33. [Google Scholar]
- Wan, C.; Yang, J.; Zhou, L.; Wang, S.; Peng, J.; Tan, Y. Fertilization Control System Research in Orchard Based on the PSO-BP-PID Control Algorithm. Machines 2022, 10, 982. [Google Scholar] [CrossRef]
- Lakso, A.; Robinson, T. Decision support for apple thinning based on carbon balance modeling. In Proceedings of the IX International Symposium on Modelling in Fruit Research and Orchard Management, Saint-Jean-sur-Richelieu, QC, Canada, 19 June 2011; pp. 235–242. [Google Scholar]
- Al-Dilphi, J.M.; Wahjuni, S.; Suwarno, W. Decision Support System for In Situ Melon’s Fruit Harvesting Time Based on Fuzzy Logic and Single Shot Detector (SSD). In Proceedings of the World Congress on Engineering 2021, London, UK, 7–9 July 2021. [Google Scholar]
- Matthews, K.; Schwarz, G.; Buchan, K.; Rivington, M.; Miller, D. Wither agricultural DSS? Comput. Electron. Agric. 2008, 61, 149–159. [Google Scholar] [CrossRef]
- Fernández, J.E. Plant-based methods for irrigation scheduling of woody crops. Horticulturae 2017, 3, 35. [Google Scholar] [CrossRef]
- Siyal, A.A.; Dempewolf, J.; Becker-Reshef, I. Rice yield estimation using Landsat ETM+ Data. J. Appl. Remote Sens. 2015, 9, 095986. [Google Scholar] [CrossRef]
- Anderson, N.T.; Walsh, K.B.; Wulfsohn, D. Technologies for Forecasting Tree Fruit Load and Harvest Timing—From Ground, Sky and Time. Agronomy 2021, 11, 1409. [Google Scholar] [CrossRef]
- Fountas, S.; Carli, G.; Sørensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Vatsanidou, A.; Liakos, B.; Canavari, M.; Wiebensohn, J.; Tisserye, B. Farm management information systems: Current situation and future perspectives. Comput. Electron. Agric. 2015, 115, 40–50. [Google Scholar] [CrossRef]
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Neupane, C.; Pereira, M.; Koirala, A.; Walsh, K.B. Fruit Sizing in Orchard: A Review from Caliper to Machine Vision with Deep Learning. Sensors 2023, 23, 3868. [Google Scholar] [CrossRef]
- Amaral, M.H.; McConchie, C.; Dickinson, G.; Walsh, K.B. Growing Degree Day Targets for Fruit Development of Australian Mango Cultivars. Horticulturae 2023, 9, 489. [Google Scholar] [CrossRef]
- Walsh, K.; McGlone, V.; Han, D. The uses of near infra-red spectroscopy in postharvest decision support: A review. Postharvest Biol. Technol. 2020, 163, 111139. [Google Scholar] [CrossRef]
- Mazzetto, F.; Gallo, R.; Sacco, P. A farm configuration system to supply lca inventory analysis needs for the assessment of orchard performances. In Proceedings of the 3rd International Conference on Safety, Health and Welfare in Agriculture and Agro–Food Systems, Ragusa SHWA 2012, Ragusa, Italy, 3–6 September 2012; pp. 72–80. [Google Scholar]
- Li, L.; Sun, C.; Yue, Y.; Li, Y.; Peng, Z.; Zhao, Z. Development and application of information query service system for standardized orchard. Guizhou Agric. Sci. 2013, 7, 200–202. [Google Scholar]
- Jian-Ping, Q.; Bin, X.; Xiao-Ming, W.U.; Xin-Ting, Y.; Bao-Guo, W.U.; Yan-An, W. Digital Orchard Management System. Comput. Syst. Appl. 2012, 21, 14–18. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAOSTAT, Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 19 December 2023).
- International Olive Council. The World of Olive Oil. Available online: https://www.internationaloliveoil.org/the-world-of-olive-oil/ (accessed on 22 December 2023).
- Statista. Global Production of Fruit by Variety Selected 2021. Available online: https://www.statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/ (accessed on 22 December 2023).
- Mitra, S.; Pan, J. Litchi and longan production and trade in the world. In Proceedings of the VI International Symposium on Lychee, Longan and Other Sapindaceae Fruits, Hanoi, Vietnam, 7–11 June 2019; pp. 1–6. [Google Scholar]
- Fenech, M.; Amaya, I.; Valpuesta, V.; Botella, M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019, 9, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Ben-Gal, A.; Litaor, M.; Naor, A.; Peres, M.; Peeters, A.; Alchanatis, V.; Cohen, Y. A spatiotemporal decision support protocol based on thermal imagery for variable rate drip irrigation of a peach orchard. Irrig. Sci. 2022, 41, 215–233. [Google Scholar] [CrossRef]
- Oteyo, I.N.; Marra, M.; Kimani, S.; De Meuter, W.; Boix, E.G. A Survey on Mobile Applications for Smart Agriculture. SN Comput. Sci. 2021, 2, 293. [Google Scholar] [CrossRef]
- Carrer, M.J.; de Souza Filho, H.M.; Batalha, M.O. Factors influencing the adoption of Farm Management Information Systems (FMIS) by Brazilian citrus farmers. Comput. Electron. Agric. 2017, 138, 11–19. [Google Scholar] [CrossRef]
- Munz, J.; Gindele, N.; Doluschitz, R. Exploring the characteristics and utilisation of Farm Management Information Systems (FMIS) in Germany. Comput. Electron. Agric. 2020, 170, 105246. [Google Scholar] [CrossRef]
- Vilas, M.P.; Thorburn, P.J.; Fielke, S.; Webster, T.; Mooij, M.; Biggs, J.S.; Zhang, Y.-F.; Adham, A.; Davis, A.; Dungan, B. 1622WQ: A web-based application to increase farmer awareness of the impact of agriculture on water quality. Environ. Model. Softw. 2020, 132, 104816. [Google Scholar] [CrossRef]
- Giua, C.; Materia, V.C.; Camanzi, L. Management information system adoption at the farm level: Evidence from the literature. Br. Food J. 2021, 123, 884–909. [Google Scholar] [CrossRef]
- Bach, D.; Khmelevsky, Y.; Lembke, S.; Cartier, L. BC Tree Fruit System-of-Systems Information Architecture (Initial Design and Review). In Proceedings of the 2020 IEEE International Systems Conference (SysCon), Montreal, QC, Canada, 24 August–20 September 2020; pp. 1–6. [Google Scholar]
- Guillén-Navarro, M.A.; Martínez-España, R.; Bueno-Crespo, A.; Morales-García, J.; Ayuso, B.; Cecilia, J.M. A decision support system for water optimization in anti-frost techniques by sprinklers. Sensors 2020, 20, 7129. [Google Scholar] [CrossRef]
- Jones, V.P.; Brunner, J.F.; Grove, G.G.; Petit, B.; Tangren, G.V.; Jones, W.E. A web-based decision support system to enhance IPM programs in Washington tree fruit. Pest Manag. Sci. Former. Pestic. Sci. 2010, 66, 587–595. [Google Scholar] [CrossRef]
- Stöcklin, E.; Dequinze, X. www.agrimeteo.eu: Web platform combining weather data, IoT sensors and modelling for precision management of crops. In Proceedings of the International Symposium on Precision Management of Orchards and Vineyards 1314, Palermo, Italy, 7–11 October 2019; pp. 189–196. [Google Scholar]
- Buono, V.; Mastroleo, M.; Lucchi, C.; Amato, G.D.; Manfrini, L.; Morandi, B. Field-testing of a decision support system (DSS) to optimize irrigation management of kiwifruit in Italy: A comparison with current farm management. In Proceedings of the IX International Symposium on Irrigation of Horticultural Crops 1335, Matera, Italy, 17–20 June 2019; pp. 355–362. [Google Scholar]
- Zhang, X.; Zhang, J.; Li, L.; Zhang, Y.; Yang, G. Monitoring citrus soil moisture and nutrients using an IoT based system. Sensors 2017, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Haley, R.; Wortman, R. Cloud-based harvest management system for specialty crops. In Proceedings of the 2015 IEEE Fourth Symposium on Network Cloud Computing and Applications (NCCA), Munich, Germany, 11–12 June 2015; pp. 91–98. [Google Scholar]
- De La Concepcion, A.R.; Stefanelli, R.; Trinchero, D. A wireless sensor network platform optimized for assisted sustainable agriculture. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 10–13 October 2014; pp. 159–165. [Google Scholar]
- Jiang, J.-A.; Lin, T.-S.; Yang, E.-C.; Tseng, C.-L.; Chen, C.-P.; Yen, C.-W.; Zheng, X.-Y.; Liu, C.-Y.; Liu, R.-H.; Chen, Y.-F. Application of a web-based remote agro-ecological monitoring system for observing spatial distribution and dynamics of Bactrocera dorsalis in fruit orchards. Precis. Agric. 2013, 14, 323–342. [Google Scholar] [CrossRef]
- Carrer, M.J.; de Souza Filho, H.M.; Batalha, M.O.; Rossi, F.R. Farm Management Information Systems (FMIS) and technical efficiency: An analysis of citrus farms in Brazil. Comput. Electron. Agric. 2015, 119, 105–111. [Google Scholar] [CrossRef]
- Padma, T.; Mir, S.A.; Shantharajah, S. Intelligent decision support system for an integrated pest management in apple orchard. In Intelligent Decision Support Systems for Sustainable Computing, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 225–245. [Google Scholar] [CrossRef]
- Kaloxylos, A.; Eigenmann, R.; Teye, F.; Politopoulou, Z.; Wolfert, S.; Shrank, C.; Dillinger, M.; Lampropoulou, I.; Antoniou, E.; Pesonen, L. Farm management systems and the Future Internet era. Comput. Electron. Agric. 2012, 89, 130–144. [Google Scholar] [CrossRef]
- Miranda, J.C.; Gené-Mola, J.; Arnó, J.; Gregorio, E. AKFruitData: A dual software application for Azure Kinect cameras to acquire and extract informative data in yield tests performed in fruit orchard environments. SoftwareX 2022, 20, 101231. [Google Scholar] [CrossRef]
- Bazzi, C.L.; Martins, M.R.; Cordeiro, B.E.; Gebler, L.; de Souza, E.G.; Schenatto, K.; de Paula Filho, P.L.; Sobjak, R. Yield map generation of perennial crops for fresh consumption. Precis. Agric. 2022, 23, 698–711. [Google Scholar] [CrossRef]
- Buhrdel, J.; Walter, M.; Campbell, R.E. Geodata collection and visualisation in orchards: Interfacing science-grower data using a disease example (European canker in apple, Neonectria ditissima). N. Z. Plant Prot. 2020, 73, 57–64. [Google Scholar] [CrossRef]
- Xia, X.; Qiu, Y.; Hu, L.; Fan, J.; Guo, X.; Zhou, G. Cloud-Based Video Monitoring System Applied in Control of Diseases and Pests in Orchards. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 27–30 September 2015; pp. 275–284. [Google Scholar]
- Tsiropoulos, Z.; Fountas, S. Farm management information system for fruit orchards. In Precision Agriculture’15; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 44–55. [Google Scholar] [CrossRef]
- Xiang, G.; Lihua, Z.; Minzan, L.; Yao, Z. Intelligent data acquisition and cloud services for apple orchard. Int. J. Agric. Biol. Eng. 2014, 7, 146–153. [Google Scholar] [CrossRef]
- Osman, Y.; Dennis, R.; Elgazzar, K. Yield Estimation and Visualization Solution for Precision Agriculture. Sensors 2021, 21, 6657. [Google Scholar] [CrossRef]
- Shuen, Y.S.; Arbaiy, N.B.; Jusoh, Y.Y. Fertilizer information system for banana plantation. JOIV Int. J. Inform. Vis. 2017, 1, 204–208. [Google Scholar] [CrossRef]
- Ren, H.; He, Y.; Qi, X.; Zheng, X.; Zhang, S.; Yu, Z.; Hu, F. The bayberry database: A multiomic database for Myrica rubra, an important fruit tree with medicinal value. BMC Plant Biol. 2021, 21, 452. [Google Scholar] [CrossRef]
- González, Y.; Ahumada-García, R.; Möller-Acuña, P.; Reyes-Suárez, J.A. A system for online quality analysis for cherry harvest process inside the orchard. In Proceedings of the Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, Chile, 18–20 October 2017; pp. 1–4. [Google Scholar]
- Tan, L.; Haley, R.; Wortman, R.; Ampatzidis, Y.; Whiting, M. An integrated cloud-based platform for labor monitoring and data analysis in precision agriculture. In Proceedings of the 14th International Conference on Information Reuse & Integration (IRI), San Francisco, CA, USA, 14–16 August 2013; pp. 349–356. [Google Scholar]
- Ampatzidis, Y.; Tan, L.; Haley, R.; Wortman, R.; Whiting, M.D. Harvest Management Information System for Specialty Crops. In Proceedings of the 2013 ASABE Annual International Meeting, Kansas City, MO, USA, 21–24 July 2013; p. 1. [Google Scholar]
- Ampatzidis, Y.; Tan, L.; Haley, R.; Whiting, M.D. Cloud-based harvest management information system for hand-harvested specialty crops. Comput. Electron. Agric. 2016, 122, 161–167. [Google Scholar] [CrossRef]
- Zhang, X.; Toudeshki, A.; Ehsani, R.; Li, H.; Zhang, W.; Ma, R. Yield estimation of citrus fruit using rapid image processing in natural background. Smart Agric. Technol. 2022, 2, 100027. [Google Scholar] [CrossRef]
- Perondi, D.; Fraisse, C.W.; Dewdney, M.M.; Cerbaro, V.A.; Andreis, J.H.D.; Gama, A.B.; Junior, G.J.S.; Amorim, L.; Pavan, W.; Peres, N.A. Citrus advisory system: A web-based postbloom fruit drop disease alert system. Comput. Electron. Agric. 2020, 178, 105781. [Google Scholar] [CrossRef]
- Porto, S.M.; Arcidiacono, C.; Anguzza, U.; Cascone, G. Development of an information system for the traceability of citrus-plant nursery chain related to the Italian National Service for Voluntary Certification. Agric. Eng. Int. CIGR J. 2014, 16, 208–216. [Google Scholar]
- Cohen, Y.; Cohen, A.; Hetzroni, A.; Alchanatis, V.; Broday, D.; Gazit, Y.; Timar, D. Spatial decision support system for Medfly control in citrus. Comput. Electron. Agric. 2008, 62, 107–117. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, G.; Si, Y. Research on publishing system of fruit tree diseases and insect pests based on Webgis. In Proceedings of the Artificial Intelligence Applications and Innovations: IFIP TC12 WG12.5—Second IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI2005), Beijing, China, 7–9 September 2005; pp. 741–747. [Google Scholar]
- Kun, T.; Sanmin, S.; Liangzong, D.; Shaoliang, Z. Design of an intelligent irrigation system for a jujube orchard based on IoT. INMATEH-Agric. Eng. 2021, 63, 189–198. [Google Scholar] [CrossRef]
- Dhonju, H.; Walsh, K.; Bhattarai, T. Software architecture of OFMIS on tree fruit harvest timing and load. In Proceedings of the XXXI IHC—III International Symposium on Mechanization, Precision Horticulture and Robotics: Precision and Digital Horticulture in Field Environments, Angers, France, 14–20 August 2022; pp. 355–362. [Google Scholar]
- Walsh, K.; Wang, Z.; Subedi, P.; Koirala, A.; Anderson, N.T.; Lerud, R. Support tools for maturity estimation. In Proceedings of the XII International Mango Symposium, Baise, China, 10–16 July 2019; pp. 117–122. [Google Scholar]
- Iquebal, M.; Jaiswal, S.; Mahato, A.K.; Jayaswal, P.K.; Angadi, U.; Kumar, N.; Sharma, N.; Singh, A.K.; Srivastav, M.; Prakash, J. MiSNPDb: A web-based genomic resources of tropical ecology fruit mango (Mangifera indica L.) for phylogeography and varietal differentiation. Sci. Rep. 2017, 7, 14968. [Google Scholar] [CrossRef]
- Gkisakis, V.D.; Volakakis, N.; Kosmas, E.; Kabourakis, E.M. Developing a decision support tool for evaluating the environmental performance of olive production in terms of energy use and greenhouse gas emissions. Sustain. Prod. Consum. 2020, 24, 156–168. [Google Scholar] [CrossRef]
- Capraro, F.; Tosetti, S.; Rossomando, F.; Mut, V.; Vita Serman, F. Web-based system for the remote monitoring and management of precision irrigation: A case study in an arid region of Argentina. Sensors 2018, 18, 3847. [Google Scholar] [CrossRef]
- Capraro, F.; Tosetti, S.; Vita Serman, F. Supervisory control and data acquisition software for drip irrigation control in olive orchards: An experience in an arid region of Argentina. In Proceedings of the VII International Symposium on Olive Growing, San Juan, Argentina, 25–29 September 2014. [Google Scholar]
- Pontikakos, C.M.; Tsiligiridis, T.A.; Drougka, M.E. Location-aware system for olive fruit fly spray control. Comput. Electron. Agric. 2010, 70, 355–368. [Google Scholar] [CrossRef]
- Li, Y.-S.; Hong, L.-F. Development of a non-pollution orange fruit expert system software based on ASP. NET. Agric. Sci. China 2011, 10, 805–812. [Google Scholar] [CrossRef]
- Flores, C.I.; Holzapfel, E.A.; Lagos, O. A dynamic decision support system for farm water management in surface irrigation: Model development and application. Chil. J. Agric. Res. 2010, 70, 278–286. [Google Scholar] [CrossRef]
- Tan, L. Cloud-based decision support and automation for precision agriculture in orchards. IFAC-PapersOnLine 2016, 49, 330–335. [Google Scholar] [CrossRef]
- Tan, L.; Wortman, R. Cloud-based monitoring and analysis of yield efficiency in precision farming. In Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IRI), Redwood City, CA, USA, 13–15 August 2014; pp. 163–170. [Google Scholar]
- Liu, G.; Yang, X.; Ge, Y.; Miao, Y. An artificial neural network-based expert system for fruit tree disease and insect pest diagnosis. In Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, Ft. Lauderdale, FL, USA, 23–25 April 2006; pp. 1076–1079. [Google Scholar]
- Damos, P.; Soulopoulou, P.; Gkouderis, D.; Monastiridis, D.; Vrettou, M.; Sakellariou, D.; Thomidis, T. Implementation, customization and functional evaluation of a location aware decision support system for precise management of Lepidoptera in Greek peach orchards of Pella, Greece. In Proceedings of the X International Peach Symposium, Naoussa, Greece, 30 May–3 June 2022; pp. 509–516. [Google Scholar]
- Todorovic, M.; Riezzo, E.E.; Buono, V.; Zippitelli, M.; Galiano, A.; Cantore, V. Hydro-Tech: An automated smart-tech Decision Support Tool for eco-efficient irrigation management. Int. Agric. Eng. J. 2016, 25, 44–45. [Google Scholar]
- Zhu, G. The application of wireless sensor networks in management of orchard. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 14–17 October 2010; pp. 519–522. [Google Scholar]
- Pissonnier, S.; Lavigne, C.; Le Gal, P.-Y. A simulation tool to support the design of crop management strategies in fruit tree farms. Application to the reduction of pesticide use. Comput. Electron. Agric. 2017, 142, 260–272. [Google Scholar] [CrossRef]
- Uryasheva, A.; Kalashnikova, A.; Shadrin, D.; Evteeva, K.; Moskovtsev, E.; Rodichenko, N. Computer vision-based platform for apple leaves segmentation in field conditions to support digital phenotyping. Comput. Electron. Agric. 2022, 201, 107269. [Google Scholar] [CrossRef]
- Froese, J.; Hamilton, G. Rapid spatial risk modelling for invasion management under uncertainty. In Proceedings of the 22nd International Congress on Modelling and Simulation (MODSIM2017), Tasmania, Australia, 3–8 December 2017; pp. 929–935. [Google Scholar]
- Marsal, J.; Stöckle, C. Use of CropSyst as a decision support system for scheduling regulated deficit irrigation in a pear orchard. Irrig. Sci. 2012, 30, 139–147. [Google Scholar] [CrossRef]
- Irriman Life+. Available online: https://irrimanlife.eu/las-fincas/genil-cabra/parcela-1053/ (accessed on 26 June 2023).
- Ye, X.; Abe, S.; Zhang, S.; Yoshimura, H. Rapid and non-destructive assessment of nutritional status in apple trees using a new smartphone-based wireless crop scanner system. Comput. Electron. Agric. 2020, 173, 105417. [Google Scholar] [CrossRef]
- Qian, J.; Xing, B.; Wu, X.; Chen, M.; Wang, Y.A. A smartphone-based apple yield estimation application using imaging features and the ANN method in mature period. Sci. Agric. 2018, 75, 273–280. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Hao, H.; Han, J.; Liao, T. Growth monitoring and planting decision supporting for pear during the whole growth stage based on pie-landscape system. In Proceedings of the 7th International Conference on Agro-geoinformatics (Agro-geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–4. [Google Scholar]
- Farook, R.S.M.; Husin, Z.; Aziz, A.H.A.; Shakaff, A.Y.M.; Zakaria, A.; Kamarudin, L.M.; Jaafar, M.N. Agent-based decision support system for harumanis mango flower initiation. In Proceedings of the Third International Conference on Computational Intelligence, Modelling & Simulation, Langkawi, Malaysia, 20–22 September 2011; pp. 68–73. [Google Scholar]
- Walsh, K.; Subedi, P.; Tijskens, P. A case study of a decision support system on mango fruit maturity. In Proceedings of the VI International Conference on Managing Quality in Chains 1091, Cranfield, UK, 2–5 September 2013; pp. 195–204. [Google Scholar]
- Jianwei, S.; Yabin, F.; Shuomei, W.; Xiaoning, D. Research on growth model management system of fruit tree based on modern information technology. In Proceedings of the 2011 6th International Conference on Computer Science & Education (ICCSE), Singapore, 3–5 August 2011; pp. 1103–1106. [Google Scholar]
- Sousa, M.L.; Gonçalves, M.; Fialho, D.; Ramos, A.; Lopes, J.P.; Oliveira, C.M.; De Melo-Abreu, J.P. Apple and Pear Model for Optimal Production and Fruit Grade in a Changing Environment. Horticulturae 2022, 8, 873. [Google Scholar] [CrossRef]
- Ziosi, V.; Noferini, M.; Fiori, G.; Tadiello, A.; Trainotti, L.; Casadoro, G.; Costa, G. A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biol. Technol. 2008, 49, 319–329. [Google Scholar] [CrossRef]
- Walsh, K.; Anderson, N.T. Monitoring postharvest attributes: Instrumental techniques for measuring harvest maturity/fruit quality. In Advances in Postharvest Management of Horticultural Produce; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 355–390. [Google Scholar] [CrossRef]
- Márquez, A.J.; Maza, G.B. ‘In Situ’ olive ripening monitoritation by low-cost handheld NIR. Smart Agric. Technol. 2023, 5, 100233. [Google Scholar] [CrossRef]
- Sebastiani, L.; Marchi, S.; Michelazzo, C.; Guidotti, D.; Niccolai, M.; Ricciolini, M. Decision support systems for the optimisation of olive (Olea europaea L. ’Frantoio’) harvest period in Tuscany. In Proceedings of the VI International Symposium on Olive Growing 949, Évora, Portugal, 9–13 September 2008; pp. 403–408. [Google Scholar]
- Tamirat, T.W.; Pedersen, S.M. Precision irrigation and harvest management in orchards: An economic assessment. J. Cent. Eur. Agric. 2019, 20, 1009–1022. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Z.; Fu, L.; Gao, F.; Li, R.; Cui, Y. Real-time kiwifruit detection in orchard using deep learning on Android™ smartphones for yield estimation. Comput. Electron. Agric. 2020, 179, 105856. [Google Scholar] [CrossRef]
- Zheng, Z.; Xiong, J.; Wang, X.; Li, Z.; Huang, Q.; Chen, H.; Han, Y. An efficient online citrus counting system for large-scale unstructured orchards based on the unmanned aerial vehicle. J. Field Robot. 2023, 40, 552–573. [Google Scholar] [CrossRef]
- Andrieu, J.-B.; Bell, S.; Frugte, A.; Gibbons, S. Workers’ Accommodation: Processes and Standards—A Guidance Note by IFC and the EBRD; IFC E&S: Washington, DC, USA; World Bank Group: Washington, DC, USA, 2009. [Google Scholar]
- Queensland Government. Farm Nitrogen and Phosphorus Budget Guide Version 2; Queensland Department of Environment and Science: Brisbane, Queensland, Australia, 2022; p. 25.
- Queensland Government. Chemical Usage (Agricultural and Veterinary) Control Act 1988; Queensland Department of Environment and Science: Brisbane, Queensland, Australia, 2021; p. 71.
- HARPS—Harmonised Australian Retailer Produce Scheme. Available online: https://harpsonline.com.au/ (accessed on 20 February 2023).
- Paraforos, D.S.; Vassiliadis, V.; Kortenbruck, D.; Stamkopoulos, K.; Ziogas, V.; Sapounas, A.A.; Griepentrog, H.W. Multi-level automation of farm management information systems. Comput. Electron. Agric. 2017, 142, 504–514. [Google Scholar] [CrossRef]
- Scalisi, A.; O’Connell, M.G.; Islam, M.S.; Goodwin, I. A fruit colour development index (CDI) to support harvest time decisions in peach and nectarine orchards. Horticulturae 2022, 8, 459. [Google Scholar] [CrossRef]
- Rodriguez, H.G.; Popp, J.; Rom, C.; Friedrich, H.; McAfee, J. An interactive economic decision support tool for risk and return analysis of organic apple production. HortTechnology 2014, 24, 757–770. [Google Scholar] [CrossRef]
- Gouk, S.; Spink, M.; Laurenson, M. Firework-a windows-based computer program for prediction of fire blight on apples. In Proceedings of the VIII International Workshop on Fire Blight, Kusadasi, Trukey, 12–15 October 1998; pp. 407–412. [Google Scholar]
- Gouk, S. An Assessment of the Climatic Conditions for Fire Blight Infection Risks in Victoria, Australia. In Proceedings of the XI International Workshop on Fire Blight, Portland, OR, USA, 12–17 August 2007; pp. 485–494. [Google Scholar]
- Lightner, G. Applying computer programming to specific horticultural research problems. HortTechnology 1998, 8, 25–28. [Google Scholar] [CrossRef]
- Ghaemi, A.A.; Rafiee, M.R.; Sepaskhah, A.R. Tree-temperature monitoring for frost protection of orchards in semi-arid regions using sprinkler irrigation. Agric. Sci. China 2009, 8, 98–107. [Google Scholar] [CrossRef]
- García, C.; Amador, F. Simulation and multicriteria models for project appraisal under risk and uncertainty: Horticultural and fruit trees farms. In Proceedings of the II International Symposium on Application of Modelling as an Innovative Technology in the Agri-Food Chain; MODEL-IT, Palmerston North, New Zealand, 9–13 December 2001; pp. 91–96. [Google Scholar]
- Toldam-Andersen, T.; Korsgaard, M.; Nordling, J. The Pometum Apple Key-an Internet Tool for Genebank Data Including Cultivar Identification. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): III International Symposium on Plant Genetics Resources, Lisbon, Portugal, 22–27 August 2010; pp. 81–84. [Google Scholar]
- Paprštein, F.; Zrzavý, L. Information system on germplasm of sweet cherry. In Proceedings of the Eucarpia Symposium on Fruit Breeding and Genetics, Oxford, UK, 1 September 1996; pp. 115–118. [Google Scholar]
- Gómez-Ollé, A.; Bullones, A.; Hormaza, J.I.; Mueller, L.A.; Fernandez-Pozo, N. MangoBase: A genomics portal and Gene Expression Atlas for Mangifera indica. Plants 2023, 12, 1273. [Google Scholar] [CrossRef]
- Lang, G. Sweet cherry orchard management: From shifting paradigms to computer modeling. In Proceedings of the V International Cherry Symposium 795, Bursa, Turkey, 6–10 June 2005; pp. 597–604. [Google Scholar]
- Boshuizen, A.; Van der Maas, M. IRRY: A Decision Support System for the water supply in orchards. In Proceedings of the V International Symposium on Computer Modelling in Fruit Research and Orchard Management, Wageningen, The Netherlands, 28 July 1998; pp. 161–166. [Google Scholar]
- Maul, C.; Goodwin, I. FruitSim-a decision support system for apple and peach. In Proceedings of the VI International Symposium on Computer Modelling in Fruit Research and Orchard Management, Davis, CA, USA, 15 July 2001; pp. 185–189. [Google Scholar]
- Laurenson, M.; Buwalda, J.; Walker, J. Orchard 2000—A decision support system for New Zealand’s orchard industries. N. Z. J. Crop Hortic. Sci. 1994, 22, 239–250. [Google Scholar] [CrossRef]
- Miranda, M.Á.; Barceló, C.; Valdés, F.; Feliu, J.F.; Nestel, D.; Papadopoulos, N.; Sciarretta, A.; Ruiz, M.; Alorda, B. Developing and implementation of decision support system (DSS) for the control of olive fruit fly, bactrocera oleae, in mediterranean olive orchards. Agronomy 2019, 9, 620. [Google Scholar] [CrossRef]
- Röpke, B.; Bach, M.; Frede, H.-G. DRIPS—A DSS for estimating the input quantity of pesticides for German river basins. Environ. Model. Softw. 2004, 19, 1021–1028. [Google Scholar] [CrossRef]
- Goul, M.; Tonge, F. Project IPMA: Applying decision support system design principles to building expert-based systems. Decis. Sci. 1987, 18, 448–467. [Google Scholar] [CrossRef]
- Solomon, M.; Morgan, D. A forecasting system for orchard pests. In Proceedings of the International Conference on Integrated Fruit Production, Cedzyna, Poland, 28 August 1995; pp. 150–153. [Google Scholar]
- Samietz, J.; Hoehn, H.; Razavi, E.; Schaub, L.; Graf, B. Decision support for sustainable orchard pest management with the Swiss forecasting system SOPRA. In Proceedings of the II International Symposium on Horticulture in Europe, Angers, France, 1 June 2012; pp. 383–390. [Google Scholar]
- Graf, B.; Höpli, H.; Höhn, H.; Blaise, P. SOPRA: A forecasting tool for insect pests in apple orchards. In Proceedings of the VI International Symposium on Computer Modelling in Fruit Research and Orchard Management, Davis, CA, USA, 15 July 2001; pp. 207–214. [Google Scholar]
- Cristian, M.F.; Mihaela, S.; Mirela, C.; Emil, C.; Cristina, M.; Leinar, S. Use of expert software and pheromones traps for biocenotic stress monitoring and early warning of treatments against insects in orchards. Fruit Grow. Res. 2021, 37, 83–95. [Google Scholar] [CrossRef]
- Kalamatianos, R.; Karydis, I.; Avlonitis, M.; Gratsanis, P. Designing an e-Business Agricultural Decision Support Company: The Case of Olivenia. In Proceedings of the 9th International Conference on Information and Communication Technologies in Agriculture, Food & Environment (HAICTA 2020), Thessaloniki, Greece, 24–27 September 2020; pp. 398–406. [Google Scholar]
- Cittadini, E.D.; van Keulen, H.; Peri, P.L. FRUPAT: A tool to quantify inputs and outputs of patagonian fruit production systems. In Proceedings of the VII International Symposium on Modelling in Fruit Research and Orchard Management, Copenhagen, Denmark, 20 June 2004; pp. 223–230. [Google Scholar]
- Scalisi, A.; McClymont, L.; Peavey, M.; Morton, P.; Scheding, S.; Underwood, J.; Goodwin, I. Using Green Atlas Cartographer to investigate orchard-specific relationships between tree geometry, fruit number, fruit clustering, fruit size and fruit colour in commercial apples and pears. In Proceedings of the XXXI International Horticultural Congress (IHC2022): III International Symposium on Mechanization, Precision Horticulture, Angers, France, 14–20 August 2022; pp. 203–210. [Google Scholar]
- Pairtree. Sync Your Farm, Simplify Your Day. Available online: https://pairtree.co/ (accessed on 27 January 2023).
- eOrchard. Orchard Management Software. Available online: https://www.eorchardapp.com/ (accessed on 27 January 2023).
- Farmable. Simplify Your Life, Effortlessly Document Crop Treatments. Available online: https://farmable.tech/ (accessed on 27 January 2023).
- Growdata. GrowData Developments. Available online: https://www.growdata.com.au/ (accessed on 27 January 2023).
- FarmInOne. Farm in One, Comple Farm Management. Available online: https://farminone.com.au/ (accessed on 27 January 2023).
- TieUpFarming. Making Farms Smarter. Available online: https://www.tieupfarming.com/ (accessed on 27 January 2023).
- Tatou. Workforce Management Software for Vineyards, Orchards and Farms. Available online: https://www.tatou.app/ (accessed on 27 January 2023).
- Hectre. Award Winning Orchard Technologies Growers and Packers Love to Use. Available online: https://hectre.com/ (accessed on 27 January 2023).
- Onside. Farm Management Software. Available online: https://info.onside.co.nz/farm-management-software (accessed on 10 July 2023).
- Dataphyll. Bigger Harvest, Better Quality Fruit with Fewer Resources. Available online: https://dataphyll.com/solutions/ (accessed on 10 July 2023).
- Definitiv. Definitiv—True All-in-One Payroll & Workforce Management Software. Available online: https://www.theaccessgroup.com/en-au/products/definitiv/ (accessed on 10 July 2023).
- Muddy Boots. Connecting Agribusiness Value Chain. Available online: https://muddyboots.com/ (accessed on 20 February 2023).
- Freshtrack. For Packers, Growers, Marketers. Available online: https://www.freshtrack.com.au (accessed on 20 February 2023).
- Escavox. Quality Produce Has a Voice. Available online: https://www.escavox.com/ (accessed on 20 February 2023).
- XSense. Xsense—Intelligent Cold Chain Monitoring. Available online: https://www.xsense.co/xsense-system/ (accessed on 20 February 2023).
- HarvestAnt. Labour Management Harvest Traceability Platform. Available online: https://harvestant.com/ (accessed on 20 February 2023).
- Fair Work Commision. Horticulture Award 2020 [MA000028]. Available online: https://www.fwc.gov.au/documents/awardsandorders/pdf/pr763224.pdf (accessed on 19 December 2023).
- Alcon, F.; Zabala, J.A.; Martínez-Paz, J.M. Assessment of social demand heterogeneity to inform agricultural diffuse pollution mitigation policies. Ecol. Econ. 2022, 191, 107216. [Google Scholar] [CrossRef]
- MYOB. Payment Reminders. Available online: https://www.myob.com/au (accessed on 20 February 2023).
- XERO. Get Back to What You Love with Xero. Available online: https://www.xero.com/ (accessed on 20 February 2023).
- Moggia, C.; Pereira, M.; Yuri, J.A.; Torres, C.A.; Hernández, O.; Icaza, M.G.; Lobos, G.A. Preharvest factors that affect the development of internal browning in apples cv. Cripp’s Pink: Six-years compiled data. Postharvest Biol. Technol. 2015, 101, 49–57. [Google Scholar] [CrossRef]
Topic | Category | Definition |
---|---|---|
System type | method | A tool/app, method or model to support decision-making |
MIS | as above, with the associated information database and graphical user interface | |
Application | plant health | Pest, disease and weed management |
plant development | related to cultivar selection, management of plant growth, including flowering, fruiting, thinning and harvesting | |
irrigation and water stress | Irrigation management | |
nutrition | Plant nutritional status and fertilisation | |
Aim | design | Design of a solution or software system |
development | Development of a software system | |
implementation | Operationalisation of a software system | |
use | Farm use of a software system | |
Platform | desktop | Software or app operated on a desktop PC |
web | Software or app accessed via web browsers | |
mobile | Application operated on mobile devices | |
Technological features | capabilities | Features such as data acquisition, data management, analysis and visualisation |
Development tools | front-end | Tools for front-end developments, e.g., HTML/CSS, JavaScript, TypeScript or Bootstrap |
backend | Development tools for the backend, e.g., programming languages (PHP, Folium/Django python, .Net, RStudio, Ruby on Rails), DBMS (MySQL, PostgreSQL/PostGIS, MS SQL Server, Oracle) and geospatial (ArcGIS server, Geoserver/OpenLayers, Google Maps/API) Desktop (Pascal, Delphi, Visual Basic, Java, C++, .net) | |
Operational challenges | connectivity + continuity | connectivity of networks (3G, Wi-Fi, internet) and service continuity |
integration | Integration of different services from other vendors or upgrading with new technologies | |
scalability | Ability of the system to handle an increased volume | |
affordability | Cost of the service and the user’s willingness to pay | |
Evaluation | efficacy | ability of software to produce an intended result satisfactorily |
usability | Ease of use of software or app feature | |
Accessibility | availability of software | Distribution channels |
Country | Pub% | Prod (%) | Ratio | Crop | Pub% | Prod (%) | Ratio | MIS Type | Pub% |
---|---|---|---|---|---|---|---|---|---|
United States | 18 | 3 | 7 | Apple | 27 | 9 | 3 | Web | 41 |
China | 18 | 27 | 1 | Gen. orchard | 22 | - | - | Desktop | 32 |
Spain | 10 | 2 | 5 | Citrus | 9 | 28 | 0 | Mobile | 22 |
Italy | 8 | 2 | 4 | Olive | 8 | 2 | 4 | Web/Mobile | 12 |
Australia | 6 | 0 | 15 | Cherry | 6 | 0 | 15 | Desktop/Mobile | 4 |
Greece | 4 | 1 | 8 | Peach | 5 | 2 | 2 | Desktop/Web | 3 |
India | 3 | 12 | 0 | Mango | 5 | 5 | 1 | Desktop/Web/Mobile | 1 |
Portugal | 2 | 0 | 10 | Pear | 4 | 2 | 2 | ||
New Zealand | 2 | 0 | 11 | Grape | 3 | 7 | 0 | ||
Argentina | 2 | 1 | 3 | Kiwi | 3 | 0 | 7 | ||
Canada | 2 | 0 | 22 | Nut | 2 | - | - | Aim | Pub% |
Germany | 2 | 0 | 8 | Berry | 2 | 1 | 1 | Development | 75 |
Israel | 2 | 0 | 14 | Plum | 2 | 1 | 1 | Design | 23 |
Chile | 2 | 1 | 2 | Almond | 2 | - | - | Implementation | 14 |
Netherlands | 2 | 0 | 18 | Banana | 1 | 12 | 0 | Use | 10 |
Switzerland | 2 | 0 | 37 | Cecropia spp. | 1 | - | - | Other | 2 |
Malaysia | 2 | 0 | 12 | Jujube | 1 | 1 | 1 | ||
France | 2 | 1 | 2 | Litchi | 1 | 0 | 2 | ||
Belgium | 2 | 0 | 22 | Type | Pub% | ||||
Taiwan | 1 | 0 | 3 | M-IS | 62 | ||||
Czech Republic | 1 | 0 | 29 | M | 38 | ||||
Malawi | 1 | 0 | 2 | ||||||
Pakistan | 1 | 1 | 1 | ||||||
Japan | 1 | 0 | 2 | ||||||
UK | 1 | 0 | 9 | ||||||
Brazil | 0.8 | 4 | 0 | ||||||
Indonesia | 0.8 | 3 | 0 | ||||||
Iran | 0.8 | 2 | 0 | ||||||
Russia | 0.8 | 1 | 1 | ||||||
Colombia | 0.8 | 1 | 1 | ||||||
Denmark | 0.8 | 0 | 118 | ||||||
Romania | 0.8 | 0 | 2 |
Theme | Sub-Theme | # | ∑ | % | M-IS (%) |
---|---|---|---|---|---|
Plant health (pest/disease/weed) | Pest management | 29 | 55 | 42 | 48 |
Pest/disease/weed management | 13 | 85 | |||
Disease management | 7 | 57 | |||
Environment monitoring | 5 | 100 | |||
Activity monitoring | 1 | 100 | |||
Plant development (germplasm/breed/growth/yield) | Yield estimation | 14 | 49 | 38 | 57 |
Fruit harvesting | 7 | 71 | |||
Germplasm/cultivar/breeding management | 6 | 83 | |||
Growth and planting | 6 | 33 | |||
Orchard (spray/logger/fruit size/thinning/etc.) management | 3 | 67 | |||
Fruit maturity | 3 | 33 | |||
Production management | 3 | 67 | |||
Flower initiation/detection | 2 | 50 | |||
Labour management | 2 | 100 | |||
Carbon emission | 2 | 50 | |||
Financial analysis | 1 | 100 | |||
Irrigation | Irrigation management | 19 | 20 | 15 | 68 |
Water stress assessment | 1 | 0 | |||
Nutrition | Nutritional management | 3 | 5 | 4 | 0 |
Fertiliser calculator | 2 | 100 | |||
Other | Review of DSS | 1 | 1 | 1 | 0 |
Code | Features |
---|---|
1 | IoT/Sensor |
2 | Data acquisition |
3 | Data management |
4 | Data analysis/processing |
5 | Search engine |
6 | Prediction/computational model |
7 | Location-based service |
8 | Visualisation (charts/graphs) |
9 | Map visualisation/WebGIS |
10 | Notification/alert system (e.g., web/email/SMS) |
11 | Reporting |
12 | RESTful API/web services |
# | Study | Crop | Technological Features | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
1 | Miranda et al. [50] | apple | √ | √ | √ | √ | ||||||||
2 | Bazzi et al. [51] | apple | √ | √ | √ | √ | √ | |||||||
3 | Buhrdel et al. [52] | apple | √ | √ | √ | √ | √ | |||||||
4 | Padma et al. [48] | apple | √ | √ | √ | |||||||||
5 | Xia et al. [53] | apple | √ | √ | √ | √ | ||||||||
6 | Tsiropoulos et al. [54] | apple | √ | √ | √ | √ | √ | √ | √ | |||||
7 | Xiang et al. [55] | apple | √ | √ | √ | √ | √ | √ | ||||||
8 | Osman et al. [56] | apple, orange and pumpkin | √ | √ | √ | √ | ||||||||
9 | Shuen et al. [57] | banana | √ | √ | ||||||||||
10 | Ren et al. [58] | bayberry | √ | √ | ||||||||||
11 | González et al. [59] | cherry | √ | √ | √ | |||||||||
12 | Tan et al. [60] | cherry | √ | √ | √ | √ | √ | |||||||
13 | Ampatzidis et al. [61] | cherry, apple | √ | √ | √ | √ | √ | |||||||
14 | Ampatzidis et al. [62] | cherry, blueberry and apple | √ | √ | √ | √ | ||||||||
15 | Zhang et al. [63] | citrus | √ | √ | ||||||||||
16 | Perondi et al. [64] | citrus | √ | √ | √ | √ | √ | √ | ||||||
17 | Porto et al. [65] | citrus | √ | √ | √ | √ | √ | |||||||
18 | Cohen et al. [66] | citrus | √ | √ | √ | |||||||||
19 | Yang et al. [67] | fruit | √ | √ | √ | √ | ||||||||
20 | Kun et al. [68] | jujube | √ | √ | √ | √ | √ | |||||||
21 | Dhonju et al. [69] | mango | √ | √ | √ | √ | √ | √ | √ | √ | ||||
22 | Walsh et al. [70] | mango | √ | √ | √ | |||||||||
23 | Iquebal et al. [71] | mango | √ | √ | ||||||||||
24 | Gkisakis et al. [72] | olive | √ | √ | √ | |||||||||
25 | Capraro et al. [73] | olive | √ | √ | √ | √ | ||||||||
26 | Capraro et al. [74] | olive | √ | √ | √ | √ | ||||||||
27 | Pontikakos et al. [75] | olive | √ | √ | √ | √ | √ | √ | √ | √ | ||||
28 | Li et al. [76] | orange | √ | √ | ||||||||||
29 | Flores et al. [77] | orange | √ | √ | √ | √ | ||||||||
30 | Forcén-Muñoz et al. [9] | orchard | √ | √ | √ | √ | ||||||||
31 | Stöcklin et al. [41] | orchard | √ | √ | √ | √ | √ | √ | √ | |||||
32 | Tan [78] | orchard | √ | √ | ||||||||||
33 | Tan et al. [44] | orchard | √ | √ | √ | √ | √ | |||||||
34 | Tan et al. [79] | orchard | √ | √ | √ | √ | √ | |||||||
35 | Jiang et al. [46] | orchard | √ | √ | √ | √ | ||||||||
36 | Zapata et al. [8] | orchard | √ | √ | √ | √ | ||||||||
37 | Jones et al. [40] | orchard | √ | √ | √ | √ | ||||||||
38 | Liu et al. [80] | orchard | √ | √ | √ | |||||||||
39 | Damos et al. [81] | peach | √ | √ | √ | √ | ||||||||
40 | Todorovic et al. [82] | peach, olive | √ | √ | √ | √ | ||||||||
Total count | 7 | 32 | 31 | 35 | 2 | 4 | 1 | 28 | 14 | 8 | 1 | 5 |
Technology | Development Tools |
---|---|
Frontend | HTML, CSS, JavaScript, TypeScript, Angular.io, Bootstrap |
Backend | Ruby on Rails, PHP, Folium/Django python, .Net, RStudio, Java |
Database | NoSQL, SQLite, PostgreSQL/PostGIS, MySQL, MS SQL Server, Oracle |
WebGIS | ArcGIS Server, GeoServer/OpenLayers, OpenStreetMap, Google Maps |
Web services | RESTful API, PaaS, SaaS |
Desktop | Pascal, Delphi, Visual Basic, Java, C++, .Net |
Issue | Prevalence (% of Respondents) |
---|---|
What is your primary recording need? | 93% chemical records, 68% labour records |
Do you share data with the value chain? | 98% |
Do you use automated processes in data acquisition and processing? | 17% |
Do you use a commercial orchard MIS product? | 5% |
What are the barriers to the use of a commercial MIS product? | 71% difficulty of use, 44% cost |
# | Study | Crop | Name | Description |
---|---|---|---|---|
1 | Gkisakis et al. [72] | olive | CO2 Mputoliv | Carbon emission |
2 | Perondi et al. [64] | citrus | CAS | Disease management |
3 | Gouk et al. [110] | apple | Firework | Disease management |
4 | Gouk [111] | apple, pear | HortPlus MetWatch | Disease management |
5 | Lightner [112] | orchard | Maryblyt | Disease management |
6 | Ghaemi et al. [113] | peach, orange | FrostPro | Environment monitoring |
7 | García et al. [114] | fruit | PRAPPIS | Financial analysis |
8 | Toldam-Andersen et al. [115] | apple | Apple Key | Germplasm/cultivar/breeding |
9 | Paprštein et al. [116] | cherry | ISGOD | Germplasm/cultivar/breeding |
10 | Gómez-Ollé et al. [117] | mango | MangoBase | Germplasm/cultivar/breeding |
11 | Iquebal et al. [71] | mango | MiSNPDb | Germplasm/cultivar/breeding |
12 | Guo et al. [91] | pear | Pie-Landscape | Growth and planting |
13 | Lang [118] | cherry | Vcherry | Growth and planting |
14 | Buono et al. [42] | kiwi | Blueaf | Irrigation management |
15 | Marsal et al. [87] | pear | CropSyst | Irrigation management |
16 | Todorovic et al. [82] | peach, olive | Hydro-Tech | Irrigation management |
17 | Flores et al. [77] | orange | Innova Riego | Irrigation management |
18 | Forcén-Muñoz et al. [9] | orchard | Irriman | Irrigation management |
19 | Boshuizen et al. [119] | orchard | Irry | Irrigation management |
20 | Capraro et al. [73] | olive | PISys | Irrigation management |
21 | Zapata et al. [8] | orchard | Rideco | Irrigation management |
22 | Maul et al. [120] | apple, peach | FruitSim | Orchard (spray//fruit size/thinning/etc.) |
23 | Lakso et al. [13] | apple | MaluSim | Orchard (spray//fruit size/thinning/etc.) |
24 | Laurenson et al. [121] | apple, kiwi | Orchard 2000 | Orchard (spray/fruit size/thinning/etc.) |
25 | Pissonnier et al. [84] | apple | CoHort | Pest management |
26 | Miranda et al. [122] | olive | C-Plas | Pest management |
27 | Röpke et al. [123] | orchard | Drips | Pest management |
28 | Goul et al. [124] | pear | IPMA | Pest management |
29 | Cohen et al. [66] | citrus | MedCila | Pest management |
30 | Solomon et al. [125] | orchard | Pest-Man | Pest management |
31 | Samietz et al. [126] | apple, pear, cherry, plum | SOPRA | Pest management |
32 | Graf et al. [127] | apple | SOPRA | Pest management |
33 | Cristian et al. [128] | orchard | Specware | Pest management |
34 | Tan [78] | orchard | Agrilaxy | Pest/disease/weed management |
35 | Stöcklin et al. [41] | orchard | Agrimeteo | Pest/disease/weed management |
36 | Román et al. [10] | grape | DOSA3D | Pest/disease/weed management |
37 | Kalamatianos et al. [129] | olive | Olivenia | Pest/disease/weed management |
38 | Chambers et al. [11] | orchard, apple | WSU-DAS | Pest/disease/weed management |
39 | Cittadini et al. [130] | fruit | Frupat | Production management |
40 | Kim et al. [7] | apple | MMDAQ | Water stress assessment |
41 | Rodriguez et al. [109] | apple | AIEDST | Yield estimation |
42 | Miranda et al. [50] | apple | AKFruitData | Yield estimation |
43 | Zheng et al. [102] | citrus | Fly4Citrus | Yield estimation |
44 | Scalisi et al. [131] | apple, pear | Green Atlas Cartographer | Yield estimation |
45 | Zhou et al. [101] | kiwi | KiwiDetector | Yield estimation |
OFMIS | Tree Crop | Function | Company Headquarters |
---|---|---|---|
eOrchard [133] | Any | Activity tracking, pesticide use, irrigation, production cost, harvest labour management | Gronja Radgona, Germany |
Farmable [134] | Any | Activity tracking, scout, pesticide and fertiliser use, labour management, sales management | Oslo, Norway |
Growdata [135] | Any | Labour management, pesticide and fertiliser use, irrigation, production cost, harvest tracking | Shepperton, Australia |
FarmInOne [136] | Any | Irrigation, pesticide and fertiliser use | Atherton, Australia |
TieUpFarming [137] | Any | Spray diary, reporting, scout, harvest tracking, labour management with payroll integration, machinery check and tracking, cost per task | Cremorne, Australia |
Tatou [138] | Vineyard | Harvest and daily labour management with payroll integration | Blenheim, NZ |
Hectre [139] | Apple | Harvest QC, labour management with payroll integration, scout and fruit sizing | Auckland, NZ |
Onside [140] | Any | Check-in, inductions, incident reports | Christchurch, NZ |
Dataphyll [141] | Any | Monitoring worker harvest rate (quantity and quality) | Auckland, NZ |
Definitiv [142] | Any | Workforce management | Perth, Australia |
Muddy Boots [143] | Any | Farm management (pesticide and fertiliser use), postharvest—supply chain | Herefordshire, UK |
Pairtree [132] | Any | Integration of output of MIS systems | Molong, Australia |
Freshtrack [144] | Any | Crop monitoring, activity scheduling, crop forecasting, dispatch records | Boonah, Australia |
Escavox [145] | Any | Postharvest shelf life through temperature logging | Sydney, Australia |
XSense [146] | Any | Postharvest shelf life through temperature logging | Tefen, Israel |
HarvestAnt [147] | Any | Labour management and harvest traceability | Australia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhonju, H.K.; Walsh, K.B.; Bhattarai, T. Management Information Systems for Tree Fruit—1: A Review. Horticulturae 2024, 10, 108. https://doi.org/10.3390/horticulturae10010108
Dhonju HK, Walsh KB, Bhattarai T. Management Information Systems for Tree Fruit—1: A Review. Horticulturae. 2024; 10(1):108. https://doi.org/10.3390/horticulturae10010108
Chicago/Turabian StyleDhonju, Hari Krishna, Kerry Brian Walsh, and Thakur Bhattarai. 2024. "Management Information Systems for Tree Fruit—1: A Review" Horticulturae 10, no. 1: 108. https://doi.org/10.3390/horticulturae10010108
APA StyleDhonju, H. K., Walsh, K. B., & Bhattarai, T. (2024). Management Information Systems for Tree Fruit—1: A Review. Horticulturae, 10(1), 108. https://doi.org/10.3390/horticulturae10010108