Effects of Exogenous Melatonin on the Growth and Physiological Characteristics of Ginkgo biloba L. under Salinity Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Growth Parameters
2.3. Physio-Biochemical Attributes
2.4. Photosynthesis Attributes
2.5. Statistical Analysis
3. Results
3.1. Effect of Exogenous Melatonin on the Growth of Ginkgo Seedlings under Salinity Stress
3.2. Effects of Exogenous Melatonin on the Physiological and Biochemical Characteristics of Ginkgo under Salinity Stress
3.3. Effect of Exogenous Melatonin on Photosynthesis of Ginkgo Leaves under Salinity Stress
3.4. Comprehensive Analysis
4. Discussion
4.1. Relationship between Exogenous Melatonin and Growth of Ginkgo Plants under Salinity Stress
4.2. Relationship between Exogenous Melatonin and Osmoregulation in Ginkgo under Salinity Stress
4.3. Relationship between Exogenous Melatonin and Oxidative Stress and Antioxidant System of Ginkgo under NaCl Stress
4.4. Relationship between Exogenous Melatonin and Photosynthesis in Ginkgo under Salinity Stress
4.5. Correlation Analysis among Physiological Indicators of Young Ginkgo Trees
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Zelm, E.; Zhang, Y.; Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Pang, Y.; Wu, W.; Liao, Z.; Zhao, L.; Sun, X.-f.; Tang, K. Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme a reductase from ginkgo biloba. Mol. Biol. Rep. 2006, 33, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Qureshi, R.H.; Ahmad, N. Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use Manag. 2002, 18, 381–385. [Google Scholar] [CrossRef]
- Basak, N.; Rai, A.K.; Sundha, P.; Meena, R.L.; Bedwal, S.; Yadav, R.K.; Sharma, P.C. Assessing soil quality for rehabilitation of salt-affected agroecosystem: A comprehensive review. Front. Environ. Sci. 2022, 10, 935785. [Google Scholar] [CrossRef]
- Misganaw, A.; Aklil, M.; Kesete, N. Review on the effects of seed priming on performance of maize seedlings. J. Biol. Agric. Healthc. 2020, 10, 31–39. [Google Scholar] [CrossRef]
- Masteling, R.; Voorhoeve, L.; Ijsselmuiden, J.; Dini-Andreote, F.; de Boer, W.; Raaijmakers, J.M. Discount: Computer vision for automated quantification of Striga seed germination. Plant Methods 2020, 16, 6010. [Google Scholar] [CrossRef] [PubMed]
- Kijowska-Oberc, J.; Staszak, A.M.; Ratajczak, E. Climate change affects seed aging? Initiation mechanism and consequences of loss of forest tree seed viability. Trees 2021, 35, 1099–1108. [Google Scholar] [CrossRef]
- Kumar, A.; Gautam, R.D.; Kumar, A.; Singh, S.; Singh, S. Understanding the effect of different abiotic stresses on wild marigold (Tagetes minuta L.) and role of breeding strategies for developing tolerant lines. Front. Plant Sci. 2022, 12, 754457. [Google Scholar] [CrossRef]
- Bidalia, A.; Hanief, M.; Rao, K.S. Tolerance of Mitragyna parvifolia (Roxb.) Korth. seedlings to NaCl salinity. Photosynthetica 2017, 55, 231–239. [Google Scholar] [CrossRef]
- Oliveira, L.M.d.; Mendonça, V.; Moura, E.A.d.; Irineu, T.H.d.S.; Figueiredo, F.R.A.; Melo, M.F.; Celedônio, W.F.; Rêgo, A.L.B.; Mendonça, L.F.d.M.; Andrade, A.U.d. Salt stress and organic fertilization on the growth and biochemical metabolism of Hylocereus costaricensis (red pitaya) seedlings. Braz. J. Biol. Rev. Brasleira De Biol. 2022, 84, e258476–e258487. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, F.-P.; Yang, H.; Yue, L.; Hu, F.; Wang, J.; Luo, Y.; Cao, F. Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: Relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiol. Plant. 2014, 36, 3173–3187. [Google Scholar] [CrossRef]
- Eker, S.; Cömertpay, G.; Konuşkan, Ö.; Ülger, A.C.; Ozturk, L.; Cakmak, I. Effect of salinity stress on dry matter production and ion accumulation in hybrid maize varieties. Turk. J. Agric. For. 2006, 30, 365–373. [Google Scholar]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.S.; Nasim, W.; García-Sánchez, F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938–971. [Google Scholar] [CrossRef]
- Seemann, J.R.; Critchley, C.N.R. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 1985, 164, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Al-Huqail, A.A. Sustainable biochar and/or melatonin improve salinity tolerance in borage plants by modulating osmotic adjustment, antioxidants, and ion homeostasis. Plants 2022, 11, 765. [Google Scholar] [CrossRef]
- Sofy, M.R.; Elhindi, K.M.; Farouk, S.; Alotaibi, M.A. Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants 2020, 9, 119710. [Google Scholar] [CrossRef]
- Rus, A.M.; Yokoi, S.; Sharkhuu, A.; Reddy, M.P.; Lee, B.-h.; Matsumoto, T.K.; Koiwa, H.; Zhu, J.K.; Bressan, R.A.; Hasegawa, P.M. Athkt1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc. Natl. Acad. Sci. USA 2001, 98, 14150–14155. [Google Scholar] [CrossRef]
- Blumwald, E. Engineering salt tolerance in plants. Biotechnol. Genet. Eng. Rev. 2002, 20, 261–275. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M.A. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N.; Silk, W.K.; Läuchli, A. Growth and development of sorghum leaves under conditions of NaCl stress: Possible role of some mineral elements in growth inhibition. Planta 1995, 196, 699–705. [Google Scholar] [CrossRef]
- Grieve, C.M.; Francois, L.E.; Maas, E. Salinity affects the timing of phasic development in spring wheat. Crop Sci. 1994, 34, 1544–1549. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B.; Mittra, B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 2004, 18, 167–174. [Google Scholar] [CrossRef]
- van Beek, T.A.; Montoro, P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 2009, 1216, 2002–2032. [Google Scholar] [CrossRef] [PubMed]
- Defeudis, F.V.; Papadopoulos, V.; Drieu, K. Ginkgo biloba extracts and cancer: A research area in its infancy. Fundam. Clin. Pharmacol. 2003, 17, 405–417. [Google Scholar] [CrossRef]
- Spiegel, R.; Kalla, R.; Mantokoudis, G.; Maire, R.; Mueller, H.; Hoerr, R.; Ihl, R. Ginkgo biloba extract EGb 761® alleviates neurosensory symptoms in patients with dementia: A meta-analysis of treatment effects on tinnitus and dizziness in randomized, placebo-controlled trials. Clin. Interv. Aging 2018, 13, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Alía; Mustárdy, L.s.; Deshnium, P.; Ida, M.; Murata, N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. Cell Mol. Biol. 1997, 12, 133–142. [Google Scholar] [CrossRef]
- Sæbø, A.; Borzan, Ž.; Ducatillion, C.; Hatzistathis, A.; Lagerström, T.; Supuka, J.; García-Valdecantos, J.L.; Rego, F.C.; Slycken, J.v. The Selection of Plant Materials for Street Trees, Park Trees and Urban Woodland. In Urban Forests and Trees; Springer: Berlin, Germany, 2005; pp. 257–280. Available online: https://link.springer.com/chapter/10.1007/3-540-27684-X_11#citeas (accessed on 10 January 2024).
- Major, R.T. The Ginkgo, the Most Ancient Living Tree. Science 1967, 157, 1270–1273. [Google Scholar] [CrossRef]
- Curtis-Prior, P.; Vere, D.; Fray, P. Therapeutic value of ginkgo biloba in reducing symptoms of decline in mental function. J. Pharm. Pharmacol. 1998, 51, 535–541. [Google Scholar] [CrossRef]
- Smith, J.V.; Luo, Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol. 2004, 64, 465–472. [Google Scholar] [CrossRef]
- Yang, X.S.; Chen, G.X.; Wei, X.D.; Xie, K.B. Enhanced antioxidant protection at the early stages of leaf expansion in ginkgo under natural environmental conditions. Biol. Plant. 2011, 56, 181–186. [Google Scholar] [CrossRef]
- Wei, X.; Shi, D.W.; Chen, G. Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves. Plant Growth Regul. 2013, 69, 191–201. [Google Scholar] [CrossRef]
- Yu, Z.; Duan, X.; Luo, L.; Dai, S.; Ding, Z.; Xia, G. How plant hormones mediate salt stress responses. Trends Plant Sci. 2020, 25, 1117–1130. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 2014, 19, 789–797. [Google Scholar] [CrossRef]
- Erland, L.A.E.; Murch, S.J.; Reiter, R.J.; Saxena, P.K. A new balancing act: The many roles of melatonin and serotonin in plant growth and development. Plant Signal. Behav. 2015, 10, e1096469. [Google Scholar] [CrossRef] [PubMed]
- Erland, L.A.E.; Yasunaga, A.B.; Li, I.T.S.; Murch, S.J.; Saxena, P.K. Direct visualization of location and uptake of applied melatonin and serotonin in living tissues and their redistribution in plants in response to thermal stress. J. Pineal Res. 2018, 66, e12527. [Google Scholar] [CrossRef]
- Farouk, S.; Al-Amri, S.M. Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rosemary herb. Ecotoxicol. Environ. Saf. 2019, 180, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, X.; Li, C.-Z.; Wei, Z.; Liang, D.; Ma, F. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal Res. 2013, 54, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, V.S.; Shukla, M.R.; Sherif, S.M.; Murch, S.J.; Saxena, P.K. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J. Pineal Res. 2014, 56, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Cai, S.; Zhang, Y.; Wang, Y.; Ahammed, G.J.; Xia, X.; Shi, K.; Zhou, Y.; Yu, J.; Reiter, R.J.; et al. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J. Pineal Res. 2016, 61, 457–469. [Google Scholar] [CrossRef] [PubMed]
- LI, H. Modern Plant Physiology, 4th ed.; Higher Education Press: Beijing, China, 2019. [Google Scholar]
- Gao, J. Experimental Supervision of Plant Physiology; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Jiang, C.-q.; Cui, Q.; Feng, K.; Xu, D.; Li, C.; Zheng, Q. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol. Plant. 2016, 38, 82. [Google Scholar] [CrossRef]
- Raza, M.A.S.; Saleem, M.F.; Ashraf, M.Y.; Ali, A.; Asghar, H.N. Glycinebetaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.) plant. Soil Environ. 2012, 31, 67–71. [Google Scholar]
- Chen, Y.; Mao, J.-J.; Sun, L.; Huang, B.; Ding, C.; Gu, Y.; Liao, J.; Hu, C.; Zhang, Z.-w.; Yuan, S.; et al. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plant. 2018, 164, 349–363. [Google Scholar] [CrossRef]
- Chen, Z.C.; Yamaji, N.; Horie, T.; Che, J.; Li, J.; An, G.; Ma, J.F. A Magnesium Transporter OsMGT1 Plays a Critical Role in Salt Tolerance in Rice1[OPEN]. Plant Physiol. 2017, 174, 1837–1849. [Google Scholar] [CrossRef]
- Li, J.; Yuan, F.; Liu, Y.; Zhang, M.; Liu, Y.; Zhao, Y.; Wang, B.; Chen, M. Exogenous melatonin enhances salt secretion from salt glands by upregulating the expression of ion transporter and vesicle transport genes in Limonium bicolor. BMC Plant Biol. 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Zhang, J.; Luo, T.; Liu, J.; Rizwan, M.; Fahad, S.; Xu, Z.; Hu, L. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind. Crops Prod. 2019, 140, 111597. [Google Scholar] [CrossRef]
- Jiang, D.; Lu, B.; Liu, L.; Duan, W.-j.; Meng, Y.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Dong, H.; et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biol. 2021, 21, 331. [Google Scholar] [CrossRef]
- Antoniou, C.; Chatzimichail, G.; Xenofontos, R.; Pavlou, J.J.; Panagiotou, E.; Christou, A.; Fotopoulos, V. Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. J. Pineal Res. 2017, 62, e12401. [Google Scholar] [CrossRef] [PubMed]
- Rahdari, P.; Tavakoli, S.; Hosseini, S.M. Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in Purslane (Portulaca oleracea L. ) leaves. J. Stress Physiol. Biochem. 2012, 8, 182–193. [Google Scholar]
- Bano, S.; Iqbal, S.; Naqvi, B.; Abbasi, K.Z.; Siddiqui, K.; Sattar, H.; Aman, A. Antioxidant Enzymes and Germination Pattern: Upshot of High Salinity on Soluble Protein and Average Weight of Spinacia oleracea (Spinach) Seedlings. Asian Food Sci. J. 2021, 20, 112–122. [Google Scholar] [CrossRef]
- Cheng, W.S.; Zhang, N.; Zeng, H.; Shi, X.F.; Li, Y.; Sun, Y.H. The salicylic acid effect on the contents of citrullus lanatus l. sugar, protein and proline under salinity (nacl) stress. Adv. Mater. Res. 2014, 1048, 469–474. [Google Scholar]
- Ahmad, S.; Cui, W.; Kamran, M.; Ahmad, I.; Meng, X.; Wu, X.; Su, W.; Javed, T.; El-Serehy, H.A.; Jia, Z.-k.; et al. Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. J. Plant Growth Regul. 2020, 40, 1270–1283. [Google Scholar] [CrossRef]
- Sun, C.-C.; Zhao, H.-Y.; Zheng, C.-X. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling. Plant Physiol. J. 2017, 53, 470–476. [Google Scholar] [CrossRef]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Cui, G.; Zhao, X.; Liu, S.; Sun, F.; Zhang, C.; Xi, Y. Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiol. Biochem. 2017, 118, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.-X.; Hardeland, R.; Manchester, L.C.; Korkmaz, A.Ş.; Ma, S.; Rosales-Corral, S.A.; Reiter, R.J. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 2012, 63, 577–597. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.K.; Maitra, S.K. Response of gastrointestinal melatonin, antioxidants, and digestive enzymes to altered feeding conditions in carp (Catla catla). Fish Physiol. Biochem. 2018, 44, 1061–1073. [Google Scholar] [CrossRef]
- Li, H.; Chang, J.; Chen, H.; Wang, Z.; Gu, X.; Wei, C.; Zhang, Y.; Ma, J.; Yang, J.; Zhang, X. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front. Plant Sci. 2017, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Arora, D.; Bhatla, S.C. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biol. Med. 2017, 106, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Agastian, P.; Kingsley, S.J.; Vivekanandan, M. Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 2000, 38, 287–290. [Google Scholar] [CrossRef]
- Zeng, L.; Cai, J.; Li, J.; Lu, G.; Li, C.; Fu, G.-p.; Zhang, X.; Ma, H.; Liu, Q.; Xiling, Z.; et al. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. J. Integr. Agric. 2018, 17, 328–335. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Wang, W.X.; Sun, Y.F. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 2016, 54, 19–27. [Google Scholar] [CrossRef]
- Hu, C.-h.; Zheng, Y.; Tong, C.-l.; Zhang, D.-j. Effects of exogenous melatonin on plant growth, root hormones and photosynthetic characteristics of trifoliate orange subjected to salt stress. Plant Growth Regul. 2021, 97, 551–558. [Google Scholar] [CrossRef]
- Bethke, P.C.; Drew, M.C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of capsicum annuum during progressive exposure to NaCl salinity. Plant Physiol. 1992, 99, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Lovelli, S.; Rivelli, A.R.; Nardiello, I.; Perniola, M.; Tarantino, E. Growth, leaf ion concentration, stomatal behaviour and photosynthesis of bean (Phaseolus vulgaris L.) irrigated with saline water. Acta Hortic. 2000, 537, 679–686. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, N.; Sun, C.; Bai, Y.; Zheng, C. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings. J. Beijing For. Univ. 2018, 40, 28–41. [Google Scholar] [CrossRef]
- Kurt-Celebi, A.; Colak, N.; Torun, H.; Dosedělová, V.; Tarkowski, P.; Ayaz, F.A. Exogenous melatonin ameliorates ionizing radiation-induced damage by modulating growth, osmotic adjustment and photosynthetic capacity in wheat seedlings. Plant Physiol. Biochem. PPB 2022, 187, 67–76. [Google Scholar] [CrossRef]
- Zhang, Y.; Guanter, L.; Berry, J.A.; Joiner, J.; Tol, C.v.d.; Huete, A.R.; Gitelson, A.A.; Voigt, M.; Köhler, P. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Glob. Chang. Biol. 2014, 20, 3727–3742. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Huang, C.; Peng, F.; Xue, X.; Wang, T. Effect of salt stress on photosynthesis and related physiological characteristics of Lycium ruthenicum Murr. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 680–692. [Google Scholar] [CrossRef]
- Shahid, M.A.; Pervez, M.A.; Balal, R.M.; Ahmad, R.; Ayyub, C.M.; Abbas, T.; Akhtar, N. Salt stress effects on some morphological and physiological characteristics of okra (Abelmoschus esculentus L.). Soil Environ. 2011, 30, 66–73. [Google Scholar]
- Liang, D.; Zhiyou, N.; Xia, H.; Xie, Y.; Lv, X.-l.; Wang, J.; Lin, L.; Deng, Q.; Xian, L. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci. Hortic. 2019, 246, 34–43. [Google Scholar] [CrossRef]
- Xie, Q.W.; Luo, H.; Cheng, X.; Li, Z.; Lu, W.; He, Z.-q.; Zhou, X. Effects of melatonin on growth, non-photochemical quenching and related components in tomato seedlings under calcium nitrate stress. IOP Conf. Ser. Earth Environ. Sci 2021, 621, 012104. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Chen, K.; Cheng, T.-S.; Lee, C.; Lin, S.-H.; Tung, C.-W. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biol. 2019, 19, 403–420. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Y.; Yu, C.-L.; Lu, K.X.; Jiang, Q.S.; Fu, J.; Wang, G.M.; Jiang, D.-A. Photosynthesis and yield traits in different soybean lines in response to salt stress. Photosynthetica 2016, 54, 630–635. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Mi, P.; Yuan, F.; Guo, J.; Han, G.; Wang, B. Salt glands play a pivotal role in the salt resistance of four recretohalophyte Limonium Mill. species. Plant Biol. 2021, 23, 1063–1073. [Google Scholar] [CrossRef]
- Harris, B.N.; Sadras, V.O.; Tester, M.A. A water-centred framework to assess the effects of salinity on the growth and yield of wheat and barley. Plant Soil 2010, 336, 377–389. [Google Scholar] [CrossRef]
Treatment | Salinity (mmol·L−1) | Exogenous Melatonin (mmol·L−1) |
---|---|---|
CK | 0 | 0 |
N1 | 50 | 0 |
N1M1 | 50 | 0.02 |
N1M2 | 50 | 0.1 |
N1M3 | 50 | 0.5 |
N2 | 100 | 0 |
N2M1 | 100 | 0.02 |
N2M2 | 100 | 0.1 |
N2M3 | 100 | 0.5 |
N3 | 200 | 0 |
N3M1 | 200 | 0.02 |
N3M2 | 200 | 0.1 |
N3M3 | 200 | 0.5 |
Level of Stress | Treatments | Soil Salinity Content (mmol·L−1) | Ground Diameter (cm) | Branch Length (cm) | Branch Thickness (cm) |
---|---|---|---|---|---|
Low | CK | (13.587 ± 0.277) | (0.094 ± 0.029) | (0.424 ± 0.153) | (0.028 ± 0.012) |
N1 | (59.742 ± 6.525) | (0.069 ± 0.012) | (0.302 ± 0.100) | (0.024 ± 0.004) | |
N1M1 | (57.336 ± 2.322) | (0.168 ± 0.048) | (0.900 ± 0.094) | (0.067 ± 0.020) | |
N1M2 | (66.216 ± 10.378) | (0.121 ± 0.027) | (0.792 ± 0.036) | (0.059 ± 0.006) | |
N1M3 | (47.131 ± 0.714) | (0.078 ± 0.031) | (0.398 ± 0.047) | (0.024 ± 0.008) | |
Medium | CK | (13.587 ± 0.277) | (0.094 ± 0.029) | (0.424 ± 0.153) | (0.028 ± 0.012) |
N2 | (103.479 ± 1.459) | (0.040 ± 0.016) | (0.212 ± 0.076) | (0.016 ± 0.003) | |
N2M1 | (110.275 ± 3.896) | (0.076 ± 0.018) | (0.886 ± 0.159) | (0.044 ± 0.011) | |
N2M2 | (89.000 ± 2.031) | (0.080 ± 0.016) | (0.516 ± 0.073) | (0.042 ± 0.006) | |
N2M3 | (81.385 ± 3.502) | (0.053 ± 0.007) | (0.432 ± 0.099) | (0.024 ± 0.009) | |
High | CK | (13.587 ± 0.277) | (0.094 ± 0.029) | (0.424 ± 0.153) | (0.028 ± 0.012) |
N3 | (159.577 ± 6.661) | (0.028 ± 0.013) | (0.268 ± 0.078) | (0.021 ± 0.004) | |
N3M1 | (205.015 ± 1.679) | (0.050 ± 0.025) | (0.748 ± 0.119) | (0.045 ± 0.010) | |
N3M2 | (168.673 ± 8.82) | (0.058 ± 0.028) | (0.568 ± 0.073) | (0.035 ± 0.007) | |
N3M3 | (134.034 ± 4.653) | (0.018 ± 0.008) | (0.216 ± 0.050) | (0.012 ± 0.003) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Li, M.; Wang, X.; Li, H.; Li, Z.; Li, Q. Effects of Exogenous Melatonin on the Growth and Physiological Characteristics of Ginkgo biloba L. under Salinity Stress Conditions. Horticulturae 2024, 10, 89. https://doi.org/10.3390/horticulturae10010089
Zhou D, Li M, Wang X, Li H, Li Z, Li Q. Effects of Exogenous Melatonin on the Growth and Physiological Characteristics of Ginkgo biloba L. under Salinity Stress Conditions. Horticulturae. 2024; 10(1):89. https://doi.org/10.3390/horticulturae10010089
Chicago/Turabian StyleZhou, Dan, Meng Li, Xiujun Wang, Haiyan Li, Zihang Li, and Qingwei Li. 2024. "Effects of Exogenous Melatonin on the Growth and Physiological Characteristics of Ginkgo biloba L. under Salinity Stress Conditions" Horticulturae 10, no. 1: 89. https://doi.org/10.3390/horticulturae10010089
APA StyleZhou, D., Li, M., Wang, X., Li, H., Li, Z., & Li, Q. (2024). Effects of Exogenous Melatonin on the Growth and Physiological Characteristics of Ginkgo biloba L. under Salinity Stress Conditions. Horticulturae, 10(1), 89. https://doi.org/10.3390/horticulturae10010089