Physiological and Productivity Responses in Two Chili Pepper Morphotypes (Capsicum annuum L.) under Different Soil Moisture Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Location
2.2. Experimental Design and Treatments
2.3. Soil Moisture Content
2.4. Experimental Setup
2.5. Measured Variables
2.5.1. Climate and Soil Variables
2.5.2. Physiological Variables
2.5.3. Productive Variables
2.6. Statistical Analysis
3. Results
3.1. Climate Conditions
3.2. Physiological Variables
3.2.1. Relative Water Content (RWC)
3.2.2. Photosynthesis
3.2.3. Transpiration
3.2.4. Stomata Conductance
3.3. Productivity and Yield Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture for the United Nations (FAO). The International Year of Fruits and Vegetables (IYFV-2021). 2021. Available online: https://www.fao.org/fruits-vegetables-2021/en/ (accessed on 22 July 2022).
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef]
- Duguma, H.T. Wild Edible Plant Nutritional Contribution and Consumer Perception in Ethiopia. Int. J. Food Sci. 2020, 2020, 2958623. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery. Innov. Food Sci. Emerg. Technol. 2022, 77, 102974. [Google Scholar]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant-and Animal-Based Antioxidants’ Structure, Efficacy, Mechanisms, and Applications: A Review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, I.R.A.A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Mangmool, S.; Kunpukpong, I.; Kitphati, W.; Anantachoke, N. Antioxidant and Anticholinesterase Activities of Extracts and Phytochemicals of Syzygium antisepticum Leaves. Molecules 2021, 26, 3295. [Google Scholar]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, K. Preservation of sweet pepper purees: Effect on chemical, bioactive and microbial quality. J. Food Sci. Technol. 2021, 58, 3655–3660. [Google Scholar]
- Rodríguez, C.E. La diversidad genética de Capsicum annum de México. In Los Chiles que le Dan Sabor al Mundo; Aguilar-Meléndez, A., Vásquez-Dávila, M.A., Katz, E., Hernández-Colorado, M.R., Eds.; IRD Éditions: Marseille, France, 2018; pp. 52–67. [Google Scholar]
- Encyclopedia Britannica (EB). Chili Pepper. 2023. Available online: https://www.britannica.com/plant/chili-pepper (accessed on 18 November 2023).
- Anaya-Esparza, L.M.; Mora, Z.V.; Vázquez-Paulino, O.; Ascencio, F.; Villarruel-López, A. Bell Peppers (Capsicum annum L.) Losses and Wastes: Source for Food and Pharmaceutical Applications. Molecules 2021, 26, 5341. [Google Scholar] [CrossRef]
- Lopez-Vázquez, J.S. Evaluación agronómica de germoplasma de chile habanero (Capsicum chinense Jacq.). Agro Product. 2015, 1, 24–29. [Google Scholar]
- Sistema de Información Agropecuaria (SIAP). Avances de Siembras y Cosechas. Resumen por Cultivo. 2020. Available online: http://www.infosiap.siap.gob.mx (accessed on 17 July 2022).
- Sánchez Toledano, B.I.; Camarena Gómez, D.M.J.; López Santiago, M.A.; Cuevas Reyes, V. Consumer Preferences of Jalapeño Pepper in the Mexican Market. Horticulturae 2023, 9, 684. [Google Scholar] [CrossRef]
- Dhaliwal, M.S.; Sharma, S.P.S.; Jindal, S.K.; Dhaliwal, L.K.; Gaikwad, A.K. Growth and yield of bell pepper as influenced by growing environment, mulch, and planting date. J. Crop Improv. 2017, 31, 830–846. [Google Scholar] [CrossRef]
- Apurv, T.; Cai, X. Impact of droughts on water supply in U.S. watersheds: The role of renewable surface and ground-water resources. Earth’s Future 2020, 8, e2020EF001648. [Google Scholar] [CrossRef]
- FAO. Water Pollution from Agriculture: A Global Review. Water Land and Ecosystem Research Program; FAO: Rome, Italy, 2017. [Google Scholar]
- Ezquivel-Valenzuela, B.; Cueto-Wong, J.A.; Valdez-Cepeda, R.D.; Pedroza-Sandoval, A.; Trejo-Calzada, R.; Pérez-Veyna, O. Prácticas de manejo y análisis de riesgo por el uso de plaguicidas en la Comarca Lagunera, México. Rev. Int. Contam. Ambient. 2019, 35, 25–33. [Google Scholar]
- Fadiji, A.E.; Babalola, O.O.; Santoyo, G.; Perazzolli, M. The Potential Role of Microbial Biostimulants in the Amelio-ration of Climate Change-Associated Abiotic Stresses on Crops. Front. Microbiol. 2022, 12, 829099. [Google Scholar] [CrossRef]
- Sammi, R.K.; Wakchaure, G.C.; Wakchaure, G.C.; Pratapsingh, K.; Changan, S.S.C. Plant Bio-stimulants for Mitigating Abiotic Stresses in Agriculture. Indian J. Fertil. 2023, 19, 788–800. [Google Scholar]
- Yáñez-Chávez, L.G.; Pedroza-Sandoval, A.; Trejo-Calzada, R.; Sánchez-Cohen, I.; Velásquez-Valle, M.A. Growth, Physiology, and Productivity of Bouteloua gracilis and Cenchrus ciliaris Using Moisture Retainers under Different Planting Methods. Agriculture 2023, 13, 1134. [Google Scholar]
- Díaz, V.Y.; Lazo, R.H.O.; Portilla, L.J.P.; Ponce-Soto, L.A.; Marangoni, S. Respuesta fisiológica al déficit hídrico in vitro y análisis proteómico preliminar en callos de cuatro cultivares de Allium cepa L. (cebolla). Idesia 2012, 30, 11–21. [Google Scholar] [CrossRef]
- Luna-Flores, W.; Estrada-Medina, H.; Jiménez-Osornio, J.J.M.; Pinzón-López, L.L. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Terra Latinoam. 2012, 30, 343–353. [Google Scholar]
- Wubetie, A.; Wassie, A.M.; Andualem, A.E.; Zelalem, G.M.; Tarekegn, M.W.A.; Misganaw, T.A. Growth, Physiological, and Biochemical Responses of Ethiopian Red Pepper (Capsicum annum L.) Cultivars to Drought Stress. Sci. World J. 2023, 2023, 4374318. [Google Scholar]
- Goto, K.; Yabuta, S.; Ssenyonga, P.; Tamaru, S.; Sakagami, J.-I. Response of leaf water potential, stomatal conductance and chlorophyll content under different levels of soil water, air vapor pressure deficit and solar radiation in chili pepper (Capsicum chinense). Sci. Hortic. 2021, 281, 109943. [Google Scholar] [CrossRef]
- Baath, G.S.; Shukla, M.K.; Bosland, P.W.; Walker, S.J.; Saini, R.K.; Shaw, R. Water Use and Yield Responses of Chile Pepper Cultivars Irrigated with Brackish Groundwater and Reverse Osmosis Concentrate. Horticulturae 2020, 6, 27. [Google Scholar] [CrossRef]
- Ahmad, H.; Li, J. Impact of water deficit on the development and senescence of tomato roots grown under various soil textures of Shaanxi, China. BMC Plant Biol. 2021, 21, 241–257. [Google Scholar] [CrossRef]
- McCoy, L.J.E.; McHale, K.; Kantar, M.; Jardón-Barbolla, L.; Mercer, K.L. Environment of origin and domestication affect morphological, physiological, and agronomic response to water deficit in chile pepper (Capsicum sp.). PLoS ONE 2022, 17, e0260684. [Google Scholar] [CrossRef]
- Macias-Bobadilla, I.; Vargas-Hernandez, M.; Guevara-Gonzalez, R.G.; Rico-Garcia, E.; Ocampo-Velazquez, R.V.; Torres-Pacheco, I. Differential response to water deficit in chili pepper (Capsicum annuum L.) growing in two types of soil under different irrigation regimes. Agriculture 2020, 10, 381. [Google Scholar]
- Mahmood, T.; Rana, R.M.; Ahmar, S.; Saeed, S.; Gulzar, A.; Khan, M.A.; Wattoo, F.M.; Wang, X.; Branca, F.; Mora-Poblete, F.; et al. Effect of Drought Stress on Capsaicin and Antioxidant Contents in Pepper Genotypes at Reproductive Stage. Plants 2021, 10, 1286. [Google Scholar] [CrossRef]
- Agyemang, D.S.; Silva, S.C.; Nagy, Z.; Pék, Z.; Neményi, A.; Daood, H.G.; Vinogradov, S.; Helyes, L. Effect of Water Supply on Physiological Response and Phytonutrient Composition of Chili Peppers. Water 2021, 13, 1284. [Google Scholar] [CrossRef]
- Quintal, O.W.C.; Pérez-Gutiérrez, A.; Latournerie, M.L.; May-Lara, L.; Ruiz, S.E.; Martínez, C.A.J. Uso de agua, potencial hídrico y rendimiento de chile habanero (Capsicum chinense Jacq.). Rev. Fitotec. Mex. 2012, 35, 155–160. [Google Scholar]
- Yildirim, E.; Ekinci, M.; Turan, M.; Ağar, G.; Ors, S.; Dursun, A.; Kul, R. Physiological and Biochemical Changes of Pepper Cultivars Under Combined Salt and Drought Stress. Gesunde Pflanz. 2022, 74, 675–683. [Google Scholar] [CrossRef]
- Aguirre-Mancilla, C.L.; Iturriaga de la Fuente, G.; Ramírez-Pimentel, J.G.; Covarrubias-Prieto, J.; Chablé-Moreno, F.; Raya-Pérez, J.C. El chile (C. annuum L.), cultivo y producción de semilla. Cienc. Tecnol. Agropecu. México 2017, 5, 19–27. [Google Scholar]
- Hernández-Pérez, T.; Gómez-García, M.D.R.; Valverde, M.E.; Paredes-López, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2972–2993. [Google Scholar]
- Muñoz, Z.R. Diccionario Enciclopédico de la Gastronomía Mexicana; Ediciones Larousse: Azcapotzalco, Mexico, 2012; 648p. [Google Scholar]
- Narez-Jiménez, C.A.; de la Cruz-Lázaro, E.; Gómez-Vázquez, A.; Márquez-Quiroz, C.; García-Alamilla, P. Colecta y caracterización morfológica in situ de chiles (Capsicum spp.) cultivados en Tabasco, México. Rev. Chapingo Ser. Hortic. 2014, 20, 269–281. [Google Scholar]
- Medina, G.G.; Díaz, P.G.; López, H.J.; Ruiz, C.J.A.; Marín, S.M. Estadísticas Climatológicas Básicas del Estado de Durango. (Período 1961–2003). Libro Técnico Núm. 1. Campo Experimental Valle del Guadiana. CIRNOCINIFAP. 2005. p. 224. Available online: https://www.docplayer.es/53782106-Estadisticas-climatologicas-basicas-del-estado-de-durango-periodo.html (accessed on 22 August 2022).
- Richards, L.A. Porous plate apparatus for measuring moisture retention and transmission by soil. Soil Sci. 1948, 66, 105–110. [Google Scholar]
- Pedroza-Sandoval, A.; Sifuentes-Rodríguez, N.S.; Trejo-Calzada, R.; Zegbe-Domínguez, J.A.; Minjares-Fuentes, R.; Samaniego-Gaxiola, J.A. Leaf-production and gel quality of Aloe vera (L.) Burm. F. under irrigation regimens in northern Mexico. J. Prof. Assoc. Cactus Dev. 2022, 24, 139–149. [Google Scholar] [CrossRef]
- Rambabu, G.V.; Bridjesh, P.; Prabhu, K.N.; Shiva Sai, N. Design and development of a drip irrigation system. Mater. Today Proc. 2023; in press. [Google Scholar]
- Kramer, P.J. Water Relations of Plants; Academic Press: New York, NY, USA, 1983; p. 489. Available online: http://www.sciencedirect.com/science/book/9780124250406 (accessed on 14 July 2022).
- Grossman, J.J. Phenological physiology: Seasonal patterns of plant stress tolerance in a changing climate. New Phytol. 2023, 237, 1508–1524. [Google Scholar]
- Ievinsh, G. Water Content of Plant Tissues: So Simple That Almost Forgotten? Plants 2023, 12, 1238. [Google Scholar] [CrossRef]
- Ilyas, M.; Nisar, M.; Khan, N.; Hazrat, A.; Hamid, K.A.; Hayat, K.; Fahad, S.; Khan, A.; Ullah, A. Drought Tolerance Strategies in Plants: A Mechanistic Approach. J. Plant Growth Regul. 2021, 40, 926–944. [Google Scholar] [CrossRef]
- Pedroza-Parga, E.; Pedroza-Sandoval, A.; Velasquez-Valle, M.A.; Sánchez-Cohen, I.; Samaniego-Gaxiola, J.A. Effect of soil cover on the growth and productivity of buffel grass (Cenchrus ciliaris L.) in degraded soils of arid zones. Rev. Mex. Cienc. Pecu. 2022, 13, 866–878. [Google Scholar] [CrossRef]
- Fariñas, M.D.; Jimenez-Carretero, D.; Sancho-Knapik, D.; Peguero-Pina, J.J.; Gil-Pelegrín, E.; Álvarez-Arenas, T.G. Instantaneous and non-destructive relative water content estimation from deep learning applied to resonant ultrasonic spectra of plant leaves. Plant Methods 2019, 15, 128. [Google Scholar] [CrossRef] [PubMed]
- Mota-Ituarte, M.; Pedroza-Sandoval, A.; Minjares-Fuentes, R.; Trejo-Calzada, R.; Zegbe Jorge, A.; Quezada-Rivera, J.J. Water deficit and salinity modify some morphometric, physiological, and productive attributes of Aloe vera (L.). Bot. Sci. 2023, 101, 463–475. [Google Scholar]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.S.; Hussain, A.; Hussain, S.J.; Wani, O.A.; Nabi, S.Z.; Dar, N.A.; Baloch, F.S.; Mansoor, S. Plant drought stress tolerance: Understanding its physiological, biochemical and molecular mechanisms. Biotechnol. Biotechnol. Equip. 2021, 35, 1912–1925. [Google Scholar] [CrossRef]
- Soltys-Kalina, D.; Plich, J.; Strzelczyk-Żyta, D.; Śliwka, J.; Marczewski, W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed Sci. 2016, 66, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Rosales, M.M.; Maurel, C.; Nacry, P. Abscisic Acid Coordinates Dose-Dependent Developmental and Hydraulic Responses of Roots to Water Deficit. Plant Physiol. 2019, 180, 2198–2211. [Google Scholar] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Gagan, P.S.S.; Aditi, S.B.; Neha, H.; Dhriti, K.; Poonam, Y.; Kanika, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Urban, L.; Aarrouf, J.; Bidel, L.P.R. Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence. Front. Plant Sci. 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Buckley, N.T. How do stomata respond to water status? New Phytol. 2019, 224, 21–36. [Google Scholar] [CrossRef]
- Jalakas, P.; Takahashi, Y.; Waadt, R.; Schroeder, I.J.; Merilo, E. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. New Phytol. 2021, 232, 468–475. [Google Scholar] [CrossRef]
- Gil-Marín, J.A.; Rodríguez, R.; Jasso-Cantú, D.; Zermeño, A. Resistencia estomática, transpiración y potencial hídrico en sábila con diferentes condiciones ambientales. Terra Latinoam. 2006, 24, 355–365. [Google Scholar]
- Erice, G.; Louahlia, S.; Irigoyen, J.J.; Sánchez-Díaz, M.; Alami, I.T.; Avice, J.C. Water use efficiency, transpiration and net CO2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Environ. Exp. Bot. 2011, 72, 123–130. [Google Scholar] [CrossRef]
- Cao, J.; Jin, Q.; Kuang, J.; Wang, Y.; Xu, Y. Regulation of Flowering Timing by ABA-NnSnRK1 Signaling Pathway in Lotus. Int. J. Mol. Sci. 2021, 22, 3932. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xue, J.; Ahmadi, N.; Holloway, P.; Zhu, F.; Ren, X.; Zhang, X. Molecular characterization and expression patterns of PsSVP genes reveal distinct roles in flower bud abortion and flowering in tree peony (Paeonia suffruticosa). Can. J. Plant Sci. 2014, 94, 1181–1193. [Google Scholar] [CrossRef]
- Sun, X.; Qin, M.; Yu, Q.Y.; Ziwei, H.; Yue, X.; Yang, L.; Nan, M.; Junping, G. Molecular understanding of postharvest flower opening and senescence. Mol. Hortic. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Moriyah, Z.; Irish, F.V. Flower Development: Initiation, Differentiation, and Diversification. Annu. Rev. Cell Dev. Biol. 2003, 19, 119–140. [Google Scholar]
- Singh, M.; Singh, P.; Singh, S.; Saini, R.K.; Angadi, S.V. A global meta-analysis of yield and water productivity responses of vegetables to deficit irrigation. Sci. Rep. 2021, 11, 22095. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.L.P. Respuesta de las plantas al estrés por déficit hídrico. Una revisión. Agron. Colomb. 2009, 27, 179–191. [Google Scholar]
- Delpire, E.; Gognon, K.B. Chapter One—Water Homeostasis and Cell Volume Maintenance and Regulation. Curr. Top. Membr. 2018, 81, 3–52. [Google Scholar]
- Sifuentes-Rodríguez, N.S.; Pedroza-Sandoval, A.; Zegbe, J.A.; Trejo-Calzada, R. Indicadores de productividad y calidad de gel de sábila en condiciones de estrés salino. Rev. Fitotec. Mex. 2020, 43, 181–187. [Google Scholar]
Treatments: Chili Morphotypes—SMC | Number of Fruits per Plant | Weight of Harvested Fruits per Plant (g) | Chili Pepper Production * (kg/m2) |
---|---|---|---|
JA—20% ± 2 | 126.8 b | 718.8 bc | 2.99 bc |
CH—20% ± 2 | 90.9 c | 567.5 c | 2.36 c |
JA—25% ± 2 | 163.1 a | 947.3 b | 3.94 b |
CH—25% ± 2 | 107.1 b | 1191.6 a | 4.95 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedroza-Sandoval, A.; Minjares-Fuentes, J.R.; Trejo-Calzada, R.; Gramillo-Avila, I. Physiological and Productivity Responses in Two Chili Pepper Morphotypes (Capsicum annuum L.) under Different Soil Moisture Contents. Horticulturae 2024, 10, 92. https://doi.org/10.3390/horticulturae10010092
Pedroza-Sandoval A, Minjares-Fuentes JR, Trejo-Calzada R, Gramillo-Avila I. Physiological and Productivity Responses in Two Chili Pepper Morphotypes (Capsicum annuum L.) under Different Soil Moisture Contents. Horticulturae. 2024; 10(1):92. https://doi.org/10.3390/horticulturae10010092
Chicago/Turabian StylePedroza-Sandoval, Aurelio, José Rafael Minjares-Fuentes, Ricardo Trejo-Calzada, and Isaac Gramillo-Avila. 2024. "Physiological and Productivity Responses in Two Chili Pepper Morphotypes (Capsicum annuum L.) under Different Soil Moisture Contents" Horticulturae 10, no. 1: 92. https://doi.org/10.3390/horticulturae10010092
APA StylePedroza-Sandoval, A., Minjares-Fuentes, J. R., Trejo-Calzada, R., & Gramillo-Avila, I. (2024). Physiological and Productivity Responses in Two Chili Pepper Morphotypes (Capsicum annuum L.) under Different Soil Moisture Contents. Horticulturae, 10(1), 92. https://doi.org/10.3390/horticulturae10010092