Optimization of In Vitro Regeneration of Pinus peuce (Gris.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Explant Source, Culture Medium and Culture Conditions
2.2. Axillary Shoot Induction
2.3. In Vitro Rooting
2.4. Acclimatization
2.5. Experimental Design and Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fukarek, P. Otkriće i današnja rasprostranetost molike (Pinus peuce Gris.) (in Macedonian) [Discovery and present-day distribution of Macedonian pine (Pinus peuce Gris.)]. In Proceedings of the Symposium on Pinus peuce, Skopje, North Macedonia, 2–6 September 1969; pp. 17–25. [Google Scholar]
- Gernandt, D.S.; López, G.G.; García, S.O.; Liston, A. Phylogeny and classification of Pinus. Taxon 2005, 54, 29–42. [Google Scholar] [CrossRef]
- Alexandrov, A.H.; Andonovski, V. Pinus peuce—EUFORGEN Technical guidelines for genetic conservation and use for Macedonian pine (Pinus peuce). Pinus peuce—EUFORGEN European forest genetic resources programme. In Proceedings of the Bioversity International, Rome, Italy, 17 October 2011. [Google Scholar]
- Savill, P.; Mason, B. Pinus peuce Griseb., Macedonian or Balkan pine. Q. J. For. 2015, 109, 245–252. Available online: https://rfs.org.uk/wp-content/uploads/2021/06/97-savill-mason-pinus-peuce-oct-2015.pdf (accessed on 20 November 2023).
- Farjon, A. Pinus peuce. The IUCN Red List of Threatened Species 2017, e.T34193A95751594. Available online: https://www.iucnredlist.org/species/34193/95751594 (accessed on 20 November 2023).
- IUCN (2022-2). The IUCN Red List of Threatened Species. Version 2022-2. Available online: https://www.iucnredlist.org (accessed on 20 November 2023).
- Vidaković, M. Četinjače. Morfologija i Varijabilnost [Conifers. Morphology and Variability, in Serbocroat]; Yugoslav Academy of Science and Arts: Zagreb, Croatia, 1982. [Google Scholar]
- Janković, M.; Bogojević, R. Neke karakteristike mikroklime munikovih šuma (Pinetum heldreichii—Seslerietum autumnalis M. Jank. Et R. Bog.) na Ošljaku, Šarplanina (in Serbian) [Some characteristics of microclimate in Pinus heldreichii forests—Pinetum heldreichii-Seslerietum autumnalis M. Jank. Et R. Bog.—on Ošljak, Šarplanina]. In Proceedings of the Symposium on Pinus heldreichii Christ., Dečani, Serbia,, 4–7 September 1972; pp. 134–145. [Google Scholar]
- Janković, M. Neki problemi ekologije, cenologije i rasprostranjenja endemoreliktne balkanske vrste Pinus peuce [Some problems of ecology, cenology and distribution of the endemorelic Balkan pine species Pinus peuce]. In Proceedings of the Symposium on Pinus peuce, Skopje, North Macedonia, 2–6 September 1969; pp. 173–178. [Google Scholar]
- Holzer, K. Intrinsic qualities and growth potential of Pinus cembra and Pinus peuce in Europe. In Biology of Rust Resistance in Forest Trees: Proceedings of a NATO-IUFRO Advanced Study Institute, 17–24 August 1969; U.S. Department of Agriculture, National Agricultural Library: Washington, DC, USA, 1972; US Department of Agriculture Miscellaneous Publication 1221; Available online: https://www.biodiversitylibrary.org/ (accessed on 1 December 2023).
- Jovanović, B. Dendrologija sa Osnovama Fitocenologije [Dendrology with Basics Phytocenology, in Serbian]; Naučna knjiga: Belgrade, Serbia, 1971; pp. 123–127. [Google Scholar]
- Stilinović, S. Semenarstvo šumskog i Ukrasnog Drveća i žbunja [Seed Production of Forest and Ornamental Trees and Shrubs, in Serbocroat]; Intitute of Forestry, Faculty of Forestry: Belgrade, Serbia, 1985. [Google Scholar]
- Gosling, P. Raising Trees and Shrubs from Seed; Forestry Commission: Edinburgh, UK, 2007. [Google Scholar]
- Đorđeva, M.; Ničota, B.; Stamenkov, M. Rtlivosta na semeto odmolika (Pinus peuce Gris.) i pojava na nerazvien inedorazvien embrion kajnego (in Macedonian) [Fertility of the seedof Macedonian pine (Pinus peuce Gris.) and the appearance of undeveloped and underdeveloped embryos]. In Proceedings of the Symposium on Pinus peuce, Skopje, North Macedonia, 2–6 September 1969; pp. 119–126. [Google Scholar]
- Sommer, H.E.; Brown, C.L.; Kormanik, P.P. Differentiation of plantlets in longleaf pine (Pinus palustris Mill) tissue cultured in vitro. Bot. Gaz. 1975, 136, 196–200. [Google Scholar] [CrossRef]
- Bonga, J.M.; Klimaszewska, K.K.; von Aderkas, P. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult. 2010, 100, 241–254. [Google Scholar] [CrossRef]
- Toribio, M.; Pardos, J.A. Scots pine (Pinus sylvestris L.). In Trees II. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; Volume 5, pp. 479–506. [Google Scholar] [CrossRef]
- Schwarz, O.J.; Schlarbaum, S.E.; Burns, J.A. Tissue culture micropropagation of conifers. In Proceedings of the Southern Regional Information Exchange Group Biennial Symposium on Forest Genetics “Applications of Vegetative Propagation in Forestry”, Huntsville, AL, USA, 8–10 July 1992; pp. 1–22. Available online: https://www.srs.fs.usda.gov/pubs/gtr/gtr_so108.pdf (accessed on 29 November 2023).
- de Oliveira, L.F.; Quoirin, M.; Koehler, H.S.; Amano, E.; Higa, A.R.; Ribas, L.L.F. Propagation from axillary buds and anatomical study of adventitious roots of Pinus taeda L. Afr. J. Biotechnol. 2013, 12, 5413–5422. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar]
- Gresshoff, P.M.; Doy, C.H. Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 1972, 107, 161–170. [Google Scholar]
- Stojičić, D.; Janošević, D.; Uzelac, B.; Čokeša, V.; Budimir, S. Micropropagation of Pinus peuce. Biol. Plant. 2012, 56, 362–364. [Google Scholar]
- Pospíšilová, J.; Tichá, L.; Kadleček, P.; Haisel, D.; Plzáková, Š. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 1999, 42, 481–497. [Google Scholar] [CrossRef]
- Burrows, G.E. Gymnosperm Resprouting—A Review. Plants 2021, 10, 2551. [Google Scholar] [CrossRef]
- Nour, K.A.; Yeung, E.C.; Thorpe, T.A. Shoot Bud Histogenesis from Mature Embryos and Shoots of Eastern White Cedar (Thuja occidentalis L.) Cultured In vitro. Int. J. Plant Sci. 1993, 154, 378–385. [Google Scholar] [CrossRef]
- Capuana, M.; Giannini, R. In Vitro Plantlet Regeneration from Embryonic Explants of Pinus pinea L. Vitro Cell. Dev. Biol.-Plant 1995, 31, 202–206. [Google Scholar]
- Stojičić, D.; Budimir, S.; Ćulafić, L. Micropropagation of Pinus heldreichii. Plant Cell Tissue Organ Cult. 1999, 59, 147–150. [Google Scholar] [CrossRef]
- Kowalski, B.; van Staden, J. Micropropagation of Podocarpus henkelii and P. elongatus. S. Afr. J. Bot. 2001, 67, 362–366. [Google Scholar] [CrossRef]
- Renau-Morata, B.; Ollero, J.; Arrillaga, I.; Segura, J. Factors influencing axillary shoot proliferation and adventitious budding in cedar. Tree Physiol. 2005, 25, 477–486. [Google Scholar] [CrossRef]
- Humánez, A.; Blasco, M.; Brisa, C.; Segura, J.; Arrillaga, I. Thidiazuron enhances axillary and adventitious shoot proliferation in juvenile explants of Mediterranean provenances of maritime pine Pinus pinaster. Cell. Dev. Biol.-Plant 2011, 47, 569–577. [Google Scholar] [CrossRef]
- Xiong, Y.P.; Chen, S.Y.; Guo, B.Y.; Niu, M.Y.; Zhang, X.H.; Li, Y.; Wu, K.L.; Zheng, F.; da Silva, J.A.T.; Zeng, S.J.; et al. An efficient micropropagation protocol for Metasequoia glyptostroboides Hu et Cheng from shoot segments of 2-year-old trees. Trees 2020, 34, 307–313. [Google Scholar] [CrossRef]
- Pereira, C.; Montalbán, I.A.; Pedrosa, A.; Tavares, J.; Pestryakov, A.; Bogdanchikova, N.; Canhoto, J.; Moncaleán, P. Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds. Forests 2021, 12, 363. [Google Scholar] [CrossRef]
- Wilms, H.; De Bièvre, D.; Longin, K.; Swennen, R.; Rhee, J.; Panis, B. Development of the first axillary in vitro shoot multiplication protocol for coconut palms. Sci. Rep. 2021, 11, 18367. [Google Scholar] [CrossRef]
- Bornman, C.H. Possibilities and constraints in the regeneration of trees from cotyledonary needles of Picea abies in vitro. Physiol. Plant. 1983, 57, 5–16. [Google Scholar]
- Goldfarb, B.; Howe, G.T.; Baily, L.M.; Strauss, S.H.; Zaerr, J.B. A liquid cytokinin pulse induces adventitious shoot formation from Douglas-fir cotyledons. Plant Cell Rep. 1991, 10, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Drake, P.M.W.; John, A.; Power, J.B.; Davey, M.R. Cytokinin pulse-mediated shoot organogenesis from cotyledons of Sitka spruce (Picea sitchensis (Bong.) Carr.) and high frequency in vitro rooting of shoots. Plant Cell Tissue Organ Cult. 1997, 50, 147–151. [Google Scholar] [CrossRef]
- Burns, J.A.; Schwarz, O.J.; Schlarbaum, S.E. Multiple shoot production from seedling explants of slash pine (Pinus elliottii Engelm.). Plant Cell Rep. 1991, 10, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Stojičić, D.; Budimir, S. Cytokinin-mediated axillary shoot formation in Pinus heldreichii. Biol. Plant. 2004, 48, 477–479. [Google Scholar] [CrossRef]
- George, E.F.; Debergh, P.C. Micropropagation: Uses and Methods. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.H., De Klerk, G.J., Eds.; Springer Press: Dordrecht, The Netherlands, 2008; Volume 1, pp. 29–64. [Google Scholar]
- Ragonezi, C.; Klimaszewska, K.; Castro, M.R.; Lima, M.; de Oliveira, P.; Zavattieri, M.A. Adventitious rooting of conifers: Influence of physical and chemical factors. Trees 2010, 24, 975–992. [Google Scholar] [CrossRef]
- Nunes, S.; Sousa, D.; Pereira, V.T.; Correia, S.; Marum, L.; Santos, C.; Dias, M.C. Efficient protocol for in vitro mass propagation of slash pine. Cell. Dev. Biol.-Plant 2018, 54, 175–183. [Google Scholar] [CrossRef]
Treatment Duration | BA (µM) | Explants Forming Shoots (%) | Number of Shoots per Explant | Shoot Length (mm) | BFC Index | Number of Shoots ≥ 10 mm |
---|---|---|---|---|---|---|
1 h | - | 90.00 ± 5.77 a | 0.22 ± 0.10 a | 5.17 ± 0.40 a | 0.19 | 0 |
4.4 | 83.33 ± 3.33 a | 0.40 ± 0.14 a | 8.00 ± 0.58 bc | 0.33 | 2 | |
11.5 | 80.00 ± 5.77 a | 0.88 ± 0.22 a | 8.29 ± 0.39 bc | 0.70 | 5 | |
22.5 | 86.67 ± 3.33 a | 1.65 ± 0.25 b | 9.12 ± 0.32 c | 1.43 | 21 | |
44.0 | 83.33 ± 8.82 a | 4.52 ± 0.34 d | 9.57 ± 0.30 c | 3.77 | 53 | |
222.0 | 80.00 ± 5.77 a | 5.50 ± 0.40 e | 6.69 ± 0.24 ab | 4.40 | 19 | |
444.0 | 76.67 ± 6.67 a | 3.17 ± 0.31 c | 5.34 ± 0.50 a | 2.43 | 6 | |
2 h | - | 83.33 ± 3.33 a | 0.28 ± 0.11 a | 4.43 ± 0.62 a | 0.23 | 0 |
4.4 | 86.67 ± 3.33 a | 0.65 ± 0.18 a | 7.12 ± 0.41 c | 0.63 | 0 | |
11.5 | 83.33 ± 8.82 a | 0.76 ± 0.19 a | 7.84 ± 0.62 c | 0.63 | 2 | |
22.5 | 80.00 ± 5.77 a | 2.13 ± 0.33 b | 9.78 ± 0.36 d | 1.70 | 24 | |
44.0 | 83.33 ± 3.33 a | 4.92 ± 0.36 c | 10.11 ± 0.28 d | 4.10 | 63 | |
222.0 | 83.33 ± 6.67 a | 5.96 ± 0.37 d | 6.85 ± 0.21 bc | 4.97 | 17 | |
444.0 | 80.00 ± 5.77 a | 2.63 ± 0.26 b | 5.41 ± 0.31 ab | 2.10 | 0 |
Treatment Duration | Auxins (mM) | Number of Shoots per Treatment | Rooting Percentage (%) | Number of Acclimatized Plants | |
---|---|---|---|---|---|
NAA | IBA | ||||
1 h | - | - | 20 | 5.00 ± 2.07 a | 1 |
0.27 | - | 21 | 19.05 ± 2.93 abc | 2 | |
1.08 | - | 21 | 19.05 ± 2.93 abc | 1 | |
- | 0.25 | 21 | 33.33 ± 3.16 bcd | 4 | |
- | 0.98 | 20 | 40.00 ± 2.15 d | 3 | |
2 h | - | - | 20 | 5.00 ± 2.07 a | 1 |
0.27 | - | 21 | 14.29 ± 2.93 ab | 1 | |
1.08 | - | 21 | 23.81 ± 2.67 abcd | 2 | |
- | 0.25 | 21 | 38.10 ± 2.67 cd | 4 | |
- | 0.98 | 21 | 28.57 ± 2.07 bcd | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojičić, D.; Budimir, S.; Čokeša, V.; Uzelac, B. Optimization of In Vitro Regeneration of Pinus peuce (Gris.). Horticulturae 2024, 10, 97. https://doi.org/10.3390/horticulturae10010097
Stojičić D, Budimir S, Čokeša V, Uzelac B. Optimization of In Vitro Regeneration of Pinus peuce (Gris.). Horticulturae. 2024; 10(1):97. https://doi.org/10.3390/horticulturae10010097
Chicago/Turabian StyleStojičić, Dragana, Snežana Budimir, Vlado Čokeša, and Branka Uzelac. 2024. "Optimization of In Vitro Regeneration of Pinus peuce (Gris.)" Horticulturae 10, no. 1: 97. https://doi.org/10.3390/horticulturae10010097
APA StyleStojičić, D., Budimir, S., Čokeša, V., & Uzelac, B. (2024). Optimization of In Vitro Regeneration of Pinus peuce (Gris.). Horticulturae, 10(1), 97. https://doi.org/10.3390/horticulturae10010097