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Abstract: Rosmarinic acid (RA) is a phenolic antioxidant naturally occurring in the plants of the
Lamiaceae family, including basil (Ocimum basilicum L.). Existing analytical methods for determining
the RA content in leaves are time-consuming and destructive, posing limitations on quality assessment
and control during cultivation. In this study, we aimed to develop non-destructive prediction
models for the RA content in basil plants using a portable hyperspectral imaging (HSI) system and
machine learning algorithms. The basil plants were grown in a vertical farm module with controlled
environments, and the HSI of the whole plant was captured using a portable HSI camera in the range
of 400–850 nm. The average spectra were extracted from the segmented regions of the plants. We
employed several spectral data pre-processing methods and ensemble learning algorithms, such as
Random Forest, AdaBoost, XGBoost, and LightGBM, to develop the RA prediction model and feature
selection based on feature importance. The best RA prediction model was the LightGBM model
with feature selection by the AdaBoost algorithm and spectral pre-processing through logarithmic
transformation and second derivative. This model performed satisfactorily for practical screening
with R2

P = 0.81 and RMSEP = 3.92. From in-field HSI data, the developed model successfully
estimated and visualized the RA distribution in basil plants growing in the greenhouse. Our findings
demonstrate the potential use of a portable HSI system for monitoring and controlling pharmaceutical
quality in medicinal plants during cultivation. This non-destructive and rapid method can provide
a valuable tool for assessing the quality of RA in basil plants, thereby enhancing the efficiency and
accuracy of quality control during the cultivation stage.

Keywords: AdaBoost; feature selection; LightGBM; machine learning; phenolics; Random Forest;
XGBoost

1. Introduction

Sweet basil (Ocimum basilicum L.) belongs to the Lamiaceae family and is a well-
known herb with significant economic value in culinary, cosmetic, industrial, and medici-
nal/pharmaceutical applications worldwide [1]. Notably, rosmarinic acid (RA), a major
phenolic compound in basil, is a caffeic acid ester and exhibits various biological and phar-
macological activities, including antioxidant, anti-inflammatory, antiviral, and antitumor
effects [2]. These benefits have been linked to reducing oxidative stress and inflammatory
symptoms associated with chronic diseases such as cardiovascular and neurodegenerative
diseases [3]. Several clinical studies confirmed the health benefits of RA in patients with
different medical conditions. One study confirmed the positive effect about pain reduction,
in which patients with knee osteoarthritis reduced the number of analgesics by consuming
approximately 280 mg of RA daily during 16 weeks as a spearmint tea [4]. In another study,
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RA-rich food, namely 0.3–0.6 g lemon balm extract with >6% of RA, improved cognitive
performance and had anti-stress effects in a young population [5]. A cream containing RA
helped patients with moderate atopic dermatitis to reduce erythema, crusting, edema, and
local pruritus [6].

Quality control is essential for the industrial application of RA for therapeutic use.
When natural RA is isolated from plants, it may contain non-medicinal parts in addition
to the medicinal parts of the herbal plant, which increases the variation in RA content.
One of the traditional analytical techniques is high-performance liquid chromatography
(HPLC), characterized by higher separation efficiency, less sample consumption, and a
wider application range [3]. Kiferle et al. [7] recommended the upscaling of RA production
in hydroponically grown sweet basil plants. However, conventional detection methods are
accurate but have limitations as they are time-consuming, destructive, and cannot provide
real-time feedback [8]. Novel monitoring techniques for RA content from the cultivation
field of herbal plants are needed to ensure the quality of natural products.

Hyperspectral imaging (HSI) is a powerful non-destructive tool for analyzing the
biophysical characteristics of plants. HSI techniques have been widely used in plant
phenotyping for detecting biotic and abiotic stresses, particularly in crops [9,10]. In recent
years, HSI has been extended to biochemical estimation, leaf monitoring, and species
identification [11]. HSI enables the acquisition of spectral information at high spatial and
spectral resolutions. However, extracting useful plant traits from the complex and vast HSI
data requires various approaches, including vegetation indices, multiple linear regression,
partial least square regression (PLSR), principal component regression, machine learning
algorithms, and radiative transfer modeling [12]. Vegetation indices have been developed
for the rapid monitoring of phytochemicals and nutrition status, such as the chlorophyll
content in corn leaves [13], potassium content in rice leaves [14], and anthocyanin content
in grape berries [15]. PLSR is a commonly used regression method for predicting the
metabolite content from HSI data. Burnett et al. (2021) provided a comprehensive guide
for using PLSR to estimate plant traits from hyperspectral data, covering best practices for
data collection and model development [16].

Machine learning techniques, particularly ensemble learning algorithms, have been
widely used for developing predictive models for plant status [17,18]. Ensemble learning
algorithms combine multiple learners to improve the prediction accuracy and robustness.
Two popular ensemble learning methods are bagging and boosting. Bagging (bootstrap
aggregation) involves creating multiple base models using the random subsets of training
data with the replacement and averaging of the predictions of all base models. Random
Forest (RF) is a popular bagging-based algorithm that employs multiple decision trees and
random subsets of features at each split [19]. RF algorithms for HSI data have been used
to predict the symptom classes of diseases caused by pathogens in sugar beet leaves [20]
and vegetation chlorophyll content [12]. Boosting involves creating multiple base models
sequentially, where each subsequent base model is trained on the data that the previous
models misclassified, and the predictions are combined through the weighted averaging
of all base models. Adaptive Boosting (AdaBoost) [21], gradient boosting decision tree,
Extreme Gradient Boosting (XGBoost) [22], Light Gradient Boosting Model (LightGBM) [23],
and categorical boosting are popular boosting-based algorithms. For example, XGBoost
algorithms have demonstrated higher accuracy in classifying the symptoms of barley leaves
inoculated with powdery mildew [24] and predicting potassium levels in pepper seedlings
than support vector machine algorithms [25].

To enhance the accuracy of HSI-based models, a variety of pre-processing techniques
are essential, which include image segmentation, spectral data pre-processing, and wave-
length selection. In HSI analysis, image segmentation is employed to identify the region of
interest. This can be achieved using various methods, such as histogram-based threshold-
ing [26], rectangular or polygon region selections [16,27], and classification algorithms [28].
Spectral data pre-processing methods are necessary to remove the undesired effects and
improve the quality of spectral data by eliminating noise and correcting scattering. Typi-
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cally, multiple pre-processing methods are compared and selected, such as normalization,
logarithmic transformation, the Savitzky–Golay filter, derivatives, multiplicative scatter
correction, and standard normal variate [13,29]. The process to select pre-processing for
a given datum is usually difficult and limited to trial-and-error. Combining them can be
a strategy to improve model accuracy compared to using them alone [30]. In addition,
feature selection is an essential step in reducing the dimensionality of HSI data by selecting
only the most informative wavelengths [27]. These pre-processing techniques are usually
used in combination [31].

This study aims to develop a non-destructive, rapid, and reliable method for predicting
rosmarinic acid content using HSI and machine learning. This approach could fill a
significant gap in current practices by providing a faster and more sustainable alternative
to traditional methods, which are impractical for real-time monitoring in a cultivation
stage. Previous studies that utilized HSI techniques to predict phytochemical content have
primarily concentrated on visible pigments like chlorophyll and anthocyanin. However,
many health-promoting phytochemicals that contribute to its pharmaceutical properties
are not visible, i.e., they are not directly linked to the reflectance spectrum in the visible
light region. For practical in-field monitoring applications, the model should be developed
using small and affordable equipment such as a portable HSI camera. Therefore, different
data analysis techniques should be explored to overcome the limited resolution in a narrow
spectral range and to identify invisible indirect correlations. The objective of this study
was to develop non-destructive prediction models for RA content in basil plants using
a portable HSI camera and machine learning techniques. To achieve this, we evaluated
various spectral pre-processing methods and ensemble learning algorithms such as RF,
AdaBoost, XGBoost, and LightGBM for feature selection and prediction.

2. Materials and Methods
2.1. Plant Materials and Growth Condition

Basil (O. basilicum L.) plants were cultivated using a vertical farming system installed in
the Smart U-FARM facility of Korea Institute of Science and Technology (KIST; Gangneung,
Republic of Korea) (Figure 1a). The sweet basil seeds were sown on moist rockwool cubes
(25 × 25 × 40 mm, W × L × H, respectively, Grodan Co., Roermond, The Netherlands) in
a plastic tray using water culture. The seedlings were irradiated with fluorescent lamps
(TL5 14 W/865, Philips, Amsterdam, The Netherlands) at a photosynthetic photon flux
density (PPFD) of 200 µmol m−2 s−1 for a 14 h light period and supplied with Hoagland’s
nutrient solution at an electrical conductivity (EC) of 1.0 dS m−1 two weeks after sowing.
After five weeks, the 528 seedlings were transplanted into a vertical farming module that
utilized a deep flow technique system (44 plants per plot, 12 plots), and they were supplied
with the nutrient solution at an EC of 2.0 dS m−1 (Figure 1a). The plants were subjected to
a full-spectrum light source with a PPFD of 300 µmol m−2 s−1 for a 14 h light period, and
the air temperature was maintained at 25/19 ± 1 ◦C (day/night). The CO2 concentration
was maintained at 800 µmol mol−1 during the day. At 42, 49, 56, and 63 days after sowing,
48 plants were harvested (4 plants per plot × 12 plots), resulting in a total of 144 plants
were harvested. All leaves from the aerial parts of harvested plants were collected for
chemical analysis.

2.2. Determination of RA Content

Basil leaves were freeze-dried at −80 ◦C for a week under vacuum, followed by fine
grinding using an IKA® A11 basic mill (IKA-Werke, Staufen, Germany). To extract the RA,
500 mg of lyophilized basil powder was mixed with 40 mL of 70% ethanol in a falcon tube
(50 mL) and sonicated at 60 ◦C in an ultrasonic water bath (UCP-10, Jeio Tech Co. Ltd.,
Daejeon, Republic of Korea) for 1 h. The mixture was then centrifuged at 3500 rpm for
15 min, and the supernatant was collected. All supernatant extracts were filtered through
a 0.45 µm PTFE syringe filter (Smartpor-ll, Woongki Science Co., Ltd., Seoul, Republic
of Korea) and evaporated using a nitrogen concentrator (Allsheng MD 200, Hangzhou



Horticulturae 2024, 10, 1156 4 of 15

Allsheng Instrument Co., Ltd., Hangzhou, China). The dried crude concentrates were
re-dissolved in dimethyl sulfoxide (DMSO), and the resulting solution was filtered through
a 0.2 µm Whatman PVDF syringe filter (67791302, Whatman, Maidstone, UK) prior to
chromatography analysis.
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Figure 1. Basil plants cultivated under the growing conditions (a) and the schematic diagram of
hyperspectral imaging system (b) in this study.

The RA content was quantified using an Agilent 1260 Infinity High-Performance
Liquid Chromatography (HPLC) system equipped with a diode array detector (DAD). The
RA in basil extracts was separated on a YMC Triart C18 column (4.6 × 250 mm, 5 µm; YMC
Co., Ltd., Kyoto, Japan). The mobile phases consisted of 0.2% formic acid in water (A) and
acetonitrile (B). The gradient program of the mobile phase was used as follows: 0–4 min,
0–20% (B); 4–10 min, 20-37% (B); 10–15 min, 37% (B); 15–18 min, 37–60% (B). The injection
volume was 10 µL, and the flow rate was 1 mL/min. The column oven temperature was
maintained at 40 ◦C. The detection of RA was conducted at 330 nm.

A calibration curve was drawn using six concentrations (5–200 µg/mL) of RA standard
purchased from Sigma-Aldrich (St. Louis, MO, USA). The RA had a linear regression
equation as Y = 35.223X − 62.422 with a high correlation coefficient (R2 = 0.9995).

2.3. HSI Data Collection

The hyperspectral images were collected using a portable Ultris 5 hyperspectral
imaging camera (Cubert GmbH, Ulm, Germany), which had 51 spectral bands ranging
from 450 to 850 nm, a spatial resolution of 290 × 275 pixels, and an integration time
of 40 ms. Two 15 W halogen lamps were used as the light source, placed on either side
of the camera (Figure 1b). The angle of the light sources was adjusted according to the
irradiation distance and measurement area of the camera. For each snapshot, one whole
basil plant was placed on a black tray and measured. The raw data were extracted using
perClass Mira 3 software (perClass BV, Delft, The Netherlands) and the Spectral library in
the Python 3.9 environment.

2.4. Image Segmentation and Spectral Extraction

To segment the basil plants from the background in the hyperspectral cube data,
a threshold technique was used to select the regions of interest (ROIs). A normalized
band difference (NBD) was calculated using reflectance values at 794 and 666 nm, where
NBD = (R794 − R666)/(R794 + R666) and R denote the reflectance values at the wavelength
in a unit pixel. A threshold was applied to the images to maximize the contrast between the
plants and the background, and pixels with NBD > 0.4 were selected as ROI. The average
spectral data with 51 bands were obtained for each of the 144 HSI data. The HSI data
processing workflow is illustrated in Figure 2.
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2.5. Spectral Data Pre-Processing Method

Multiple pre-processing methods in HSI analysis could enhance the data quality
and extract meaningful features. We classified the various methods into three stages: 1st
pre-processing, normalization (Norm), and logarithmic transformation (Log 1/R); 2nd pre-
processing, Savitzky–Golay filter (SG filter), first and second derivative after SG-filtering
(Der); 3rd pre-processing, multiplicative scatter correction (MSC) and standard normal vari-
ate (SNV). First pre-processing helps to minimize baseline differences due to environmental
or equipment variation. Log (1/R) is often used as an absorbance spectrum in near-infrared
spectroscopy when the medium has both scattering and absorption properties. The trans-
formation helps to normalize the data and improve the linearity of relationships between
variables. Second pre-processing reduces the noise and highlights specific spectral features.
SG filter is a window-based smoothing operation for spectral data, which involves fitting a
polynomial curve of the fixed order within specified points [32]. The SG filter was used for
smoothing the data and generating derivative transformations. The first derivative removes
an additive/constant baseline offset, while the second derivative removes linear/sloping
baseline effects [33]. Although the derivative transform emphasizes the spectral features of
the data, it can also promote an emphasis on the level of noise [34]. Third pre-processing
can involve advanced corrections or transformations that address complex non-linearities
or scatter effects, improving the model’s robustness and accuracy. MSC and SNV were
used to minimize light scattering effects due to surface heterogeneity [8]. MSC minimizes
physical light scattering and reveals the chemical light absorption by fitting a linear model
between a reference spectrum and other spectra [35]. The reference spectrum is often
chosen as the average of all spectra in the dataset. Typically, the reference spectrum is the
average of all spectra in the dataset, which was also the case in this study. SNV also aims
to separate the physical and chemical variance [36] in which each spectrum is scaled by
subtracting its mean and then dividing by its standard deviation.

We used the 1st, 2nd, and 3rd pre-processing methods alone or in combination, re-
sulting in a total of 36 methods, and details are given in Table S1. The SG filter was
implemented with a three-order polynomial fit with five data points using the SciPy pack-
age in Python 3.9.

2.6. Feature Selection and Modeling Methods

Feature selection is used to improve the performance of HSI-based model for the
following reasons: better accuracy, generalization, computational efficiency, interpretability,
less risk of overfitting, and the ease of practical application [33]. We employed an embedded
feature selection approach using the same ensemble algorithms as those in our prediction
models. Feature importance is a score of how much each feature was used to make key
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nodes for constructing a model. Tree-based ensemble algorithms inherently calculate and
provide them. We used four ensemble methods for feature importance extraction: Random
Forest (RF), Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGBoost), and
Light Gradient Boosting Model (LightGBM). In order to discard irrelevant features, we only
selected bands with feature importance greater than 1.25 times the average importance.

After selecting features for each spectral data, the prediction performance was evalu-
ated in prediction models with four algorithms using RF regression, AdaBoost regression,
XGBoost regression, and LightGBM regression. The hyperparameters of four algorithms
were optimized using the grid-search technique (Table S2). The implementation of model
development was programmed based on the scikit-learn, xgboost, and lightgbm packages
in Python 3.9.

2.7. Model Calibration and Evaluation

The dataset of the RA content and HSI data were randomly split into a calibration set
and a prediction set at a ratio of 8:2. Model performance was evaluated based on the coeffi-
cient of determination (R2) and root mean square error (RMSE) using Equations (1) and (2):

R2 = 1 −
∑n

i=1

(
ŷi − yi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
1
n∑n

i=1

(
ŷi − yi)

2 (2)

where yi is the measured value of component analysis, ŷi is the value predicted by the
model, y is the mean value of component analysis, and n is the number of samples.

We used 10-fold cross-validation results in the calibration set to determine the spectral
pre-processing methods and optimize the hyperparameters for the four algorithms. The
final models were determined by evaluation metrics in the prediction set, as a combination
of feature selection and prediction algorithms.

2.8. In-Field Application

To confirm the applicability of the developed model for monitoring, we tested it on
basil plants growing in an experimental plastic greenhouse at the KIST Gangneung Institute
of Natural Products (37.8◦ N, 128.8◦ E). The plants were transplanted into pots filled with a
horticultural soil substrate on 27 December 2022. HSI data were acquired from the top and
side views of plants under growing conditions using four halogen lamps on 6 February
2023 after sunset to exclude the influence of natural light. For ROI selection, pixels with
NBD > 0.5 were selected as ROIs. The other conditions of HSI data processing, spectral
pre-processing, feature band selection, prediction model, and hyperparameter tuning were
the same as the conditions of the final model. The prediction of RA content was applied
within the selected ROI using the final model.

2.9. Statistical Analysis

All data analysis and visualization were conducted using Python (Version 3.9). Li-
braries such as Spectral, NumPy, and Pandas were used for data handling and pre-
processing, while SciPy, Scikit-Learn, xgboost, and lightgbm were employed for model
development, validation, and evaluation metrics calculation (e.g., R2, RMSE). Matplotlib
package was used to visualize these results.

3. Results
3.1. Analysis of RA Content in Basil Plants

The HPLC-DAD analysis was used to quantify the RA content in 144 basil plants, and
the results are presented in Table 1. The analytical methods employed in this study are
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well-established procedures. To develop the model, we randomly divided the dataset of
RA content and HSI data into the calibration set and prediction set at an 8:2 ratio.

Table 1. Descriptive statistics for the rosmarinic acid content in basil plants.

Statistics
Rosmarinic Acid (mg g−1 DW)

Total Dataset Calibration Set Prediction Set

Number of samples 144 115 29
Minimum 1.892 1.892 2.991
Maximum 34.29 34.29 33.32

Mean 12.47 12.12 13.93
Standard deviation 7.966 7.624 9.204

3.2. Determination of Spectral Pre-Processing Methods

The spectral data for 144 basil plants were obtained by averaging the HSI data in
the ROI, followed by pre-processing either alone or in combination, as shown in Figure 3.
Prior to modeling, all algorithms with full spectra were tested using 36 pre-processing
methods (Table S1). The best pre-processing methods were determined according to
evaluation metrics, R2 of cross-validation (R2

CV), and RMSE of cross-validation (RMSECV).
We presented the top five pre-processing methods among 36 methods for each algorithm
based on high R2

CV and low RMSECV (Table 2). The pre-processing methods determined
for the RF, AdaBoost, and XGBoost algorithms were the combination of Log (1/R), 2nd Der,
and SNV (Figure 3j), while for the LightGBM algorithm, the combination of Log (1/R) and
2nd Der (Figure 3i) was chosen. In the XGBoost algorithm with the selected pre-processing
method, the R2 of the calibration (R2

C) was the largest, and the RMSEC was the smallest
among the four algorithms. However, the R2

CV was the smallest at 0.708, indicating that the
XGBoost algorithm had an overfitting problem. The AdaBoost algorithm with the selected
pre-processing methods had the lowest RMSECV of 3.822.
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Figure 3. Raw (a) and pre-processed (b–j) spectral data from the basil plants. The spectral pre-
processing methods used were normalization (Norm; (b)), logarithmic transformation (Log (1/R);
(c)), Savitzky–Golay filter (SG filter; (d)), derivative after SG filter (Der; (e,f)), multiplicative scatter
correction (MSC; (g)), and standard normal variate (SNV; (h)). For the prediction algorithms, the
combinations of Log (1/R) + 2nd Der (i) and Log (1/R), 2nd Der, and SNV (j) were chosen, as shown
in Table 2. Colored lines represent different leaf samples.
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Table 2. Performance of four prediction algorithms based on best pre-processing methods for
rosmarinic acid content in basil plants.

Prediction
Model

Pre-Processing Method
Calibration Cross-Validation

R2
C RMSEC R2

CV RMSECV

RF Log (1/R) + 2nd Der + SNV 0.966 1.407 0.737 3.889
Log (1/R) + 2nd Der 0.962 1.485 0.725 3.979

Log (1/R) + 1st Der + SNV 0.960 1.519 0.725 3.980
Log (1/R) + 1st Der + MSC 0.963 1.461 0.719 4.021

Log (1/R) + SNV 0.964 1.434 0.719 4.026
AdaBoost Log (1/R) + 2nd Der + SNV 0.950 1.698 0.746 3.822

Log (1/R) + 2nd Der 0.944 1.803 0.739 3.877
Log (1/R) + SNV 0.922 2.122 0.713 4.069
Raw reflectance 0.914 2.229 0.705 4.121

Log (1/R) + MSC 0.931 1.989 0.705 4.122
XGBoost Log (1/R) + 2nd Der + SNV 1.000 0.001 0.708 4.099

1st Der 1.000 0.001 0.700 4.155
Log (1/R) + SNV 1.000 0.001 0.697 4.179

Log (1/R) + SG filter + SNV 1.000 0.001 0.694 4.197
Log (1/R) + SG filter + MSC 1.000 0.001 0.686 4.254

LightGBM Log (1/R) + 2nd Der 0.965 1.423 0.733 3.924
Log (1/R) + 2nd Der + SNV 0.963 1.466 0.715 4.053
Log (1/R) + 1st Der + MSC 0.960 1.514 0.712 4.073
Log (1/R) + 2nd Der + MSC 0.964 1.448 0.711 4.082

1st Der + MSC 0.957 1.576 0.699 4.165

Only the top five pre-processing methods out of 36 methods for each algorithm are shown. R2, coefficient of
determination; RMSEC and RMSECV, root mean square error of calibration and cross-validation, respectively.
Bold indicates the pre-processing methods determined with the lowest RMSECV.

3.3. Selection of Characteristic Wavelength

The two combinations of spectral pre-processing methods, Log (1/R) + 2nd Der and
Log (1/R) + 2nd Der + SNV (Figure 3i,j), were used for wavelength selection, denoted
by X1 and X2, respectively. The characteristic wavelengths were selected depending on
the pre-processed spectral data and selection algorithms (Figure 4). In the spectral data
with X1, the feature importance was the highest at 834 and 802 nm among the 10, 8, and
5 bands selected based on RF, AdaBoost, and XGBoost algorithms, respectively. Similarly,
the feature importance in the X2 spectra was the highest at 834 nm among the five, seven,
and four bands selected based on the RF, AdaBoost, and XGBoost algorithms, respectively.
The feature importance based on the LightGBM algorithm was evenly distributed and was
the highest at 714–722 nm among 16 bands in the X1 data, and at 578 nm among 14 bands
in the X2 data.

3.4. Final Prediction Models

In order to improve model accuracy, reduce overfitting, and increase the generaliza-
tion performance, we fine-tuned hyperparameters such as learning rates, number and
depth of trees, and more. Table S2 provides details on the selected hyperparameters for
each prediction model and feature selection method used. We developed RF, Adaboost,
XGBoost, and LightGBM prediction models with waveband selection or the full band
(Table 3). The final model for each prediction algorithm was determined based on the
prediction performance, as measured by the R2 of prediction (R2

P) and RMSE of prediction
(RMSEP), as shown in Figure 5. The best model was found to be the LightGBM prediction
model with X1 spectral pre-processing and eight bands selected by the AdaBoost method
(R2

P = 0.812 and RMSEP = 3.924). The eight selected bands were 546, 674, 682, 730, 794,
802, 826, and 834 nm. Both the final RF and XGBoost models were developed using X2
pre-processing, and seven bands were selected by the AdaBoost algorithm (R2

P = 0.804 and
0.796, respectively). The seven selected bands were 506, 562, 682, 706, 802, 826, and 834 nm.
The final AdaBoost prediction model used X2 pre-processing, and 14 bands were selected
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by the LightGBM algorithm, which were 482, 506, 522, 554, 570, 578, 602, 650, 698, 706, 730,
778, 802, and 826 nm. The performance of the final AdaBoost model was slightly lower
than that of the other models, with R2

P = 0.792 and RMSEP = 4.124. While not all feature
selections performed better than the full band, the best models utilized selected variables.
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Figure 4. The feature importance of the feature selection algorithms for different spectral pre-
processing methods. The feature selection algorithms used were Random Forest (RF) (a,b), AdaBoost
(c,d), XGBoost (e,f), and LightGBM (g,h). The spectral pre-processing methods were Log (1/R) + 2nd
Der (X1) (a,c,e,g) and Log (1/R) + 2nd Der + SNV (X2) (b,d,f,h), as shown in Figure 3i and 3j,
respectively. The orange bars represent selected features, and the light blue bars represent unselected
features, i.e., not used in the prediction model.
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Table 3. Performance of the prediction models according to feature selection algorithms after
hyperparameter tuning.

Prediction
Model

Pre-Processing
Method

Feature Selection Calibration Cross-Validation Prediction

Method No.
Feature R2

C RMSEC R2
CV RMSECV R2

P RMSEP

RF
Log (1/R)
+ 2nd Der

+ SNV

Full band 51 0.968 1.368 0.742 3.853 0.790 4.148
RF 5 0.962 1.486 0.703 4.135 0.770 4.342

AdaBoost 7 0.968 1.364 0.732 3.927 0.804 4.003
XGBoost 4 0.966 1.399 0.750 3.792 0.787 4.173

LightGBM 14 0.966 1.405 0.733 3.921 0.788 4.161

AdaBoost
Log (1/R)
+ 2nd Der

+ SNV

Full band 51 0.949 1.716 0.750 3.792 0.770 4.335
RF 5 0.874 2.693 0.724 3.985 0.751 4.516

AdaBoost 7 0.917 2.193 0.764 3.686 0.766 4.376
XGBoost 4 0.906 2.330 0.758 3.731 0.758 4.446

LightGBM 14 0.930 2.013 0.750 3.798 0.792 4.124

XGBoost
Log (1/R)
+ 2nd Der

+ SNV

Full band 51 0.940 1.851 0.739 3.878 0.768 4.360
RF 5 0.895 2.455 0.719 4.021 0.773 4.312

AdaBoost 7 0.983 0.997 0.744 3.842 0.796 4.082
XGBoost 4 0.917 2.187 0.763 3.694 0.761 4.425

LightGBM 14 0.968 1.350 0.776 3.595 0.752 4.502

LightGBM Log (1/R)
+ 2nd Der

Full band 51 0.916 2.199 0.749 3.806 0.801 4.032
RF 10 0.872 2.718 0.760 3.719 0.789 4.154

AdaBoost 8 0.828 3.151 0.744 3.837 0.812 3.924
XGBoost 5 0.827 3.159 0.747 3.816 0.791 4.131

LightGBM 16 0.945 1.776 0.784 3.524 0.750 4.523

R2, coefficient of determination; RMSEC, RMSECV, and RMSEP, root mean square error of calibration, cross-
validation, and prediction, respectively. Bold indicates the best performance based on RMSEP for each
prediction algorithm.
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on ensemble algorithms. The ensemble algorithms used were Random Forest (RF) (a), Ad-
aBoost (b), XGBoost (c), and LightGBM (d), after selecting the spectral pre-processing method
and characteristic feature.
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3.5. In-Field Application for Monitoring RA Distribution

The HSI-based prediction model can be extended from single-pixel-level predictions
to visualize the spatial distribution of the compound content in plants. We used the best
LightGBM model to predict the RA distribution of basil plants grown in a greenhouse,
as shown in Figure 6. These models, which use a portable HSI camera and ensemble
learning algorithms, are fast and non-destructive, making it possible to continuously track
the compound distribution in plants.
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Figure 6. In-field application for monitoring rosmarinic (RA) acid content in basil plants growing in a
greenhouse. Using the same hyperspectral imaging system (a), hyperspectral images were acquired
after sunset (b). Spatial distribution of RA content (c) was predicted by the LightGBM model, as
shown in Table 3.

4. Discussion

The present study confirmed the potential of the HSI technique as a non-destructive,
rapid, and reliable method for predicting RA content. Machine learning algorithms with
various data processing techniques such as spectral pre-processing and feature selection
were employed to overcome the limited resolution and spectral range of the portable HSI
camera. These techniques in multiple steps enable a stable prediction performance under
outdoor or variable growing conditions and enhance robustness and practicality.

Multiple spectral pre-processing methods enhance data quality and highlight mean-
ingful features. Overall, the model performance was higher when combining two or three
pre-processing methods than when using a single method (Table 2). The Log (1/R) was
found to improve the cross-validation performance with derivative formation, MSC, or
SNV, regardless of the algorithms used. This method compresses the dynamic range of
the data, reducing the influence of extreme values and enhancing the visibility of weaker
features [37]. It helps to normalize the data and improve the linearity of relationships
between variables. In previous studies, the Log (1/R) transformation is used to predict the
anthocyanin content in grape skin [38] and the ABA content in zucchini leaves [39] from the
HSI data. Spectral pre-processing is a crucial step in HSI data analysis as it helps to mitigate
the effects of undesirable phenomena on spectral measurements. To account for unsteady
growing conditions during the in-field measurements of HSI data, proper pre-processing
methods were employed. In this study, the second Der transformation was included in the
selected pre-processing method for the four models (Table 2). The derivative method can
remove baseline offset and highlight the spectral features that differ between samples [33].
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Similarly, the second Der combined with MSC and feature selection was chosen to predict
the drought-induced components of tea plants based on the HSI data [40]. Despite the
second Der method being particularly sensitive to noise, we considered it suitable for
monitoring plant functional components in a controlled environment, with small changes
in light intensity.

Feature selection techniques in HSI analysis are commonly used to reduce dimension-
ality, improve the model accuracy, and identify important spectral features. Dimensionality
reduction by feature selection can be used to develop new multispectral imaging systems
as a practical alternative to overcome the expensive cost of HSI systems [41]. Although
the number of full wavebands used in this study was only 51, the model performance of
cross-validation and prediction was higher with feature selection than with a full band
(Table 3). The feature selection method employed in this study was similar to that used
by Luo et al. [42], in which bagging and boosting algorithms were used to select spectral
feature bands and predict tea polyphenols as regression models.

The feature importances in the same pre-processed data were generally similar across
algorithms, but the pattern in LightGBM was different (Figure 4). In RF algorithms, feature
importance is calculated through mean decrease in impurity (MDI), which contributes to a
reduction in impurity across all trees [19]. AdaBoost gives a high score to features that help
correct misclassification errors from previous rounds [21]. XGBoost uses ‘gain’, and Light
GBM can use ‘gain’ or ‘split’ for calculating feature importance, which indicate the quality
or frequency of each feature, respectively, for improving the model’s accuracy [22,23].
The gain importance could provide a clear view of which features have the most impact
on accuracy, but is sensitive to specific features and leads to overemphasis. The split
importance is useful for understanding which features are consistently considered useful
across different splits, but features that frequently add minimal predictive value may be
considered important. In this study, the feature importance in LightGBM was calculated
based on a ‘split’ due to distinguishing it based on ‘gain’ in XGBoost. Therefore, LightGBM
showed a different pattern because it judged how frequently the feature was used, while
other algorithms computed those based on quality across splits (Figure 4g,h). Ensemble
learning algorithms often rely on decision trees as weak learners, which can handle high-
dimensional data but are susceptible to overfitting. Feature selection can also reduce the
computational burden of the algorithms, leading to faster training and prediction times.

Hyperparameter tuning is another method that significantly affects the model per-
formance. The hyperparameters of all models in this study were optimized using the
grid-search technique (Table S2). The grid-search technique is a commonly used method
for hyperparameter tuning that finds the best combination by exhaustively searching over
a predefined hyperparameter space. The main parameter for RF is the number of trees,
and in general, more trees improve the generalization performance [25] but slow down
prediction times. For boosting algorithms, the learning rate is an important hyperparameter
that controls the contribution of each tree to the final prediction. For gradient boosting
algorithms such as XGBoost and LightGBM, the maximum tree depth should be limited, as
deeper trees make the model more complex and prone to overfitting [43].

The final models predicted RA satisfactorily for practical screening with an overall R2
P

of approximately 0.8 (Table 3). The model was utilized to generate a chemical distribution
map of basil plants based on HSI data obtained under normal growth conditions. However,
due to the placement of plants in the back, the RA content was also detected in the black
background area (Figure 6). To address this issue, alternative algorithms can only be used to
automatically detect plants in front of the camera, improving the accuracy of the chemical
distribution map.

The use of HSI techniques in the industry of medicinal plants offers numerous benefits,
including the rapid and non-destructive chemical analysis for the online monitoring of
quality and authenticity [44]. To ensure the quality assessment of the final product, quality
must be assessed at every step of the processing chain [8]. Recently, the novel technique of
the early or timely detection of root rot in ginseng caused by Cylindrocarpon destructans, a
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soil-borne fungus, from the HSI data of aerial parts was reported [28]. In medical cannabis,
the changes in cannabinoid composition could be monitored during the drying process
based on HSI data [45]. This technique enables real-time quality assurance, which is critical
for maintaining consistency in medicinal plant production. Our findings demonstrate the
potential use of a portable HSI system for the on-site monitoring of pharmaceutical quality
in medicinal plants during cultivation. These applications are non-destructive, rapid, and
efficient, supporting quality control and traceability, thereby maintaining the integrity of
medicinal products from cultivation to consumer use.

5. Conclusions

In conclusion, our study successfully developed HSI-based prediction models for
RA content, which is an important pharmaceutical property in basil plants. We overcame
the limitations of the portable HSI camera used in practical applications through the
use of various data processing techniques, including 36 spectral pre-processing methods
and four well-known ensemble learning algorithms for feature selection and prediction.
The developed models exhibited satisfactory performance and were able to generate a
distribution map of the RA content in in-field basil plants. These findings highlight the
potential of HSI-based monitoring and assessment technology for ensuring and controlling
the pharmaceutical quality in medicinal plants at the cultivation stage.

In addition, our study contributes to the existing knowledge on spectral pre-processing
and feature selection techniques in HSI analysis. Specifically, we demonstrated the effec-
tiveness of Log(1/R) transformation in normalizing the data and improving the linearity of
relationships between variables. We showed that feature selection can be used to reduce
the dimensionality of data and improve model accuracy, which may be particularly useful
for developing new multispectral imaging systems as a practical alternative to expensive
HSI systems.

Moving forward, our study suggests that HSI-based monitoring and assessment tech-
nology has the potential to be a valuable tool for the medicinal plant industry, particularly
for the online monitoring of quality and authenticity. To maximize productivity and uni-
formity, it is crucial to control medicinal quality at every step of the processing chain,
starting from the plant cultivation stage. We hope that our findings will pave the way for
future studies that investigate the feasibility and effectiveness of HSI-based monitoring and
assessment technology for a wide range of medicinal plants and pharmaceutical properties.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae10111156/s1, Table S1. List of pre-processing methods
for the hyperspectral data of basil plants. Table S2. Hyperparameter tuning results of final model
according to ensemble algorithms and feature selection methods.
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