Research on Pomegranate Germplasm, Breeding, Genetics and Multiomics
1. Introduction
2. Overview of Published Articles
2.1. Genetic Variation and Phenotypic Traits
2.2. Postharvest Physiology
2.3. Disease Resistance and Environmental Stress
2.4. Reproductive Biology
2.5. Phenotypic Diversity
3. Summary and Future Outlook
3.1. Integrating Multiomics Approaches
3.2. Functional Genomics and Gene Editing
3.3. Climate Resilience
3.4. Postharvest Biology
3.5. Breeding Meeting Consumer Preferences and Marketability
Acknowledgments
Conflicts of Interest
List of Contributions
- Huo, Y.; Yang, H.; Ding, W.; Yuan, Z.; Zhu, Z. Exploring the Relationship between Genomic Variation and Phenotype in Ornamental Pomegranate: A Study of Single and Double-Petal Varieties. Horticulturae 2023, 9, 361. https://doi.org/10.3390/horticulturae9030361.
- Ni, H.; Suo, H.; Zhang, X.; Hu, L.; Yuan, F.; Zhang, M.; Zhang, S. Genome-Wide Identification and Characterization of the ANS Gene Family in Pomegranate (Punica granatum L.). Horticulturae 2023, 9, 468. https://doi.org/10.3390/horticulturae9040468.
- Xu, X.; Wang, Y.; Zhao, X.; Yuan, Z. Uncovering the Expansin Gene Family in Pomegranate (Punica granatum L.): Genomic Identification and Expression Analysis. Horticulturae 2023, 9, 539. https://doi.org/10.3390/horticulturae9050539.
- Zhao, X.; Feng, Y.; Ke, D.; Teng, Y.; Chen, Y.; Langjia, R. Molecular Identification and Characterization of UDP-glycosyltransferase (UGT) Multigene Family in Pomegranate. Horticulturae 2023, 9, 540. https://doi.org/10.3390/horticulturae9050540.
- Suo, H.; Zhang, X.; Hu, L.; Ni, H.; Langjia, R.; Yuan, F.; Zhang, M.; Zhang, S. Unraveling the Pomegranate Genome: Comprehensive Analysis of R2R3-MYB Transcription Factors. Horticulturae 2023, 9, 779. https://doi.org/10.3390/horticulturae9070779.
- Shi, J.; Yao, J.; Tong, R.; Wang, S.; Li, M.; Song, C.; Wan, R.; Jiao, J.; Zheng, X. Genome-Wide Identification of Laccase Gene Family from Punica granatum and Functional Analysis towards Potential Involvement in Lignin Biosynthesis. Horticulturae 2023, 9, 918. https://doi.org/10.3390/horticulturae9080918.
- Wan, R.; Song, J.; Lv, Z.; Qi, X.; Feng, Z.; Yang, Z.; Cao, X.; Shi, J.; Jian, Z.; Tong, R.; et al. Effects of 1–MCP Treatment on Postharvest Fruit of Five Pomegranate Varieties during Low-Temperature Storage. Horticulturae 2023, 9, 1031. https://doi.org/10.3390/horticulturae9091031.
- Schaller, A.; Chater, J.M.; Vallad, G.E.; Moersfelder, J.; Heinitz, C.; Deng, Z. Pomegranate Cultivars with Diverse Origins Exhibit Strong Resistance to Anthracnose Fruit Rot Caused by Colletotrichum gloeosporioides, a Major Disease in Southeast United States. Horticulturae 2023 9, 1097. https://doi.org/10.3390/horticulturae9101097.
- Zhao, Y.; Huang, J.; Li, M.; Ren, H.; Jiao, J.; Wan, R.; Liu, Y.; Wang, M.; Shi, J.; Zhang, K.; et al. Exploring MicroRNAs Associated with Pomegranate Pistil Development: An Identification and Analysis Study. Horticulturae 2024, 10, 85. https://doi.org/10.3390/horticulturae10010085.
- Radunić, M.; Jukić Špika, M.; Gadže, J. Phenotypic Diversity of Pomegranate Cultivars: Discriminating Power of Some Morphological and Fruit Chemical Characteristics. Horticulturae 2024, 10, 563. https://doi.org/10.3390/horticulturae10060563.
References
- Levin, G.M. Pomegranate Roads: A Soviet Botanist’s Exile from Eden; Floreant Press: Forestville, CA, USA, 2006; pp. 27–35. [Google Scholar]
- Zohary, D.; Hopf, M.; Weiss, E. The Origin and Spread of Domesticated Plants in South-West Asia, Europe, and the Mediterranean Basin; Oxford University Press: Oxford, UK, 2013; pp. 134–135. [Google Scholar]
- Holland, D.; Bar-Ya’akov, I. Pomegranate (Punica granatum L.) Breeding. In Advances in Plant Breeding Strategies: Fruits; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer: Cham, Switzerland, 2018; pp. 601–647. [Google Scholar] [CrossRef]
- Yuan, Z.; Fang, Y.; Zhang, T.; Fei, Z.; Han, F.; Liu, C.; Liu, M.; Xiao, W.; Zhang, W.; Wu, S.; et al. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnol. J. 2018, 16, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Saparbekova, A.A.; Kantureyeva, G.O.; Kudasova, D.E.; Konarbayeva, Z.K.; Latif, A.S. Potential of phenolic compounds from pomegranate (Punica granatum L.) by-product with significant antioxidant and therapeutic effects: A narrative review. Saudi J. Biol. Sci. 2023, 30, 103553. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.L.; Yao, J.N.; Tong, R.R.; Wang, S.; Li, M.; Song, C.H.; Wan, R.; Zheng, X.B. Genome-Wide Identification of Laccase Gene Family from Punica granatum and Functional Analysis towards Potential Involvement in Lignin Biosynthesis. Horticulturae 2023, 9, 918. [Google Scholar] [CrossRef]
- Hernández, F.; Legua, P.; Martínez, R.; Melgarejo, P.; Martínez, J.J. Fruit quality characterization of seven pomegranate accessions (Punica granatum L.) grown in Southeast of Spain. Sci. Hortic. 2014, 175, 174–180. [Google Scholar] [CrossRef]
- Hooks, T.; Niu, G.; Masabni, J.; Sun, Y.; Ganjegunte, G. Performance and Phytochemical Content of 22 Pomegranate (Punica granatum) Varieties. Hortscience 2021, 56, 217–225. [Google Scholar] [CrossRef]
- Qin, G.H.; Xu, C.Y.; Ming, R.; Tang, H.B.; Guyot, R.; Kramer, E.M.; Hu, Y.D.; Yi, X.K.; Qi, Y.J.; Xu, Y.L.; et al. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. Plant J. 2017, 91, 1108–1128. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Li, H.X.; Wu, Z.K.; Yao, W.; Zhao, P.; Cao, D.; Yu, H.Y.; Li, K.D.; Cao, S.Y. The pomegranate (Punica granatum L.) draft genome dissects genetic divergence between soft- and hard-seeded cultivars. Plant. Biotechnol. J. 2018, 18, 955–968. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.H.; Liu, C.Y.; Li, J.Y.; Qi, Y.J.; Gao, Z.H.; Zhang, X.L.; Yi, X.K.; Pan, H.F.; Ming, R.; Xu, Y.L. Diversity of metabolite accumulation patterns in inner and outer seed coats of pomegranate: Exploring their relationship with genetic mechanisms of seed coat development. Hortic. Res. 2020, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xavier, K.V.; Vallad, G.E.; Deng, Z. Diseases resistance in pomegranates: Importance, sources, breeding approaches, and progress. Proc. Fla. State Hort. Soc. 2018, 131, 1–5. [Google Scholar]
- Rugienius, R.; Vinskienė, J.; Andriūnaitė, E.; Morkūnaitė-Haimi, Š.; Juhani-Haimi, P.; Graham, J. Genomic Design of Abiotic Stress-Resistant Berries. In Genomic Designing for Abiotic Stress Resistant Fruit Crops; Kole, C., Ed.; Springer: Cham, Switzerland, 2022; pp. 197–249. [Google Scholar] [CrossRef]
- Pourghayoumi, M.; Bakhshi, D.; Rahemi, M.; Kamgar-Haghighi, A.A.; Aalami, A. The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance. Sci. Hortic. 2017, 217, 164–172. [Google Scholar] [CrossRef]
- Ben-Simhon, Z.; Judeinstein, S.; Trainin, T.; Harel-Beja, R.; Bar-Ya’akov, I.; Borochov-Neori, H.; Holland, D. A “White” Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX.; ANS) Gene. PLoS ONE 2015, 10, e0142777. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Feng, Y.; Ke, D.; Teng, Y.; Yuan, Z.H. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. Plant Mol. Biol. 2024, 114, 51. [Google Scholar] [CrossRef] [PubMed]
- Gunnaiah, R.; Jagadeesha, R.C.; Cholin, S.; Prabhuling, G.; Govindaswamy Babu, A.; Fakrudin, B.; Murthy, S.B.N. Genetic diversity assessment and population structure analysis of pomegranate cultivars from different countries and Himalayan wild accessions. J. Hortic. Sci. Biotechnol. 2021, 96, 614–623. [Google Scholar] [CrossRef]
- Özgüven, A.I.; Dönmez, D.E.R.Y.A.; Zahid, G.; Şimşek, Ö.; Kaçar, Y.A. Breeding and plant improvement of pomegranate (Punica granatum L.). ISHS Acta Hortic. 2022, 1349, 27–38. [Google Scholar] [CrossRef]
- da Silva, J.A.T.; Rana, T.S.; Narzary, D.; Verma, N.; Meshram, D.T.; Ranade, S.A. Pomegranate biology and biotechnology: A review. Sci. Hortic. 2013, 160, 85–107. [Google Scholar] [CrossRef]
- Rout, G.R.; Peter, K.V. Omics in Horticultural Crops; Academic Press: Cambridge, MA, USA, 2022; pp. 193–203. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Qin, G.; Bartual, J. Research on Pomegranate Germplasm, Breeding, Genetics and Multiomics. Horticulturae 2024, 10, 1162. https://doi.org/10.3390/horticulturae10111162
Yuan Z, Qin G, Bartual J. Research on Pomegranate Germplasm, Breeding, Genetics and Multiomics. Horticulturae. 2024; 10(11):1162. https://doi.org/10.3390/horticulturae10111162
Chicago/Turabian StyleYuan, Zhaohe, Gaihua Qin, and Julián Bartual. 2024. "Research on Pomegranate Germplasm, Breeding, Genetics and Multiomics" Horticulturae 10, no. 11: 1162. https://doi.org/10.3390/horticulturae10111162
APA StyleYuan, Z., Qin, G., & Bartual, J. (2024). Research on Pomegranate Germplasm, Breeding, Genetics and Multiomics. Horticulturae, 10(11), 1162. https://doi.org/10.3390/horticulturae10111162