Horticulture Plants’ Stress Physiology
List of Contributions
- Stefanakis, M.K.; Giannakoula, A.E.; Ouzounidou, G.; Papaioannou, C.; Lianopoulou, V.; Philotheou-Panou, E. The Effect of Salinity and Drought on the Essential Oil Yield and Quality of Various Plant Species of the Lamiaceae Family (Mentha spicata L., Origanum dictamnus L., Origanum onites L.). Horticulturae 2024, 10, 265.
- He, Y.; Yadav, V.; Bai, S.; Wu, J.; Zhou, X.; Zhang, W.; Han, S.; Wang, M.; Zeng, B.; Wu, X.; et al. Performance Evaluation of New Table Grape Varieties under High Light Intensity Conditions Based on the Photosynthetic and Chlorophyll Fluorescence Characteristics. Horticulturae 2023, 9, 1035.
- Parri, S., Romi, M., Hoshika, Y., Giovannelli, A., Dias, M.C., Piritore, F.C., Cai, G. and Cantini, C. Morpho-physiological responses of three Italian olive tree (Olea europaea L.) cultivars to drought stress. Horticulturae 2023, 9, 830.
- Jing, J.; Liu, M.; Yin, B.; Liang, B.; Li, Z.; Zhang, X.; Xu, J.; Zhou, S. Effects of 10 Dwarfing Interstocks on Cold Resistance of ‘Tianhong 2’Apple. Horticulturae 2023, 9, 827.
- Ahmed, S.; Wan Azizan WA, S.; Akhond MA, Y.; Juraimi, A.S.; Ismail, S.I.; Ahmed, R.; Md Hatta, M.A. Optimization of In Vitro Regeneration Protocol of Tomato cv. MT1 for Genetic Transformation. Horticulturae 2023, 9, 800.
- Wu, J.; Abudureheman, R.; Zhong, H.; Yadav, V.; Zhang, C.; Ma, Y.; Liu, X.; Zhang, F.; Zha, Q.; Wang, X. The impact of high temperatures in the field on leaf tissue structure in different grape cultivars. Horticulturae 2023, 9, 731.
- Fu, B.; Tian, Y. Combined Study of Transcriptome and Metabolome Reveals Involvement of Metabolites and Candidate Genes in Flavonoid Biosynthesis in Prunus avium L. Horticulturae 2023, 9, 463.
- Park, B.M.; Jeong, H.B.; Yang, E.Y.; Kim, M.K.; Kim, J.W.; Chae, W.; Lee, O.J.; Kim, S.G.; Kim, S. Differential responses of cherry tomatoes (Solanum lycopersicum) to long-term heat stress. Horticulturae 2023, 9, 343.
- Taher, D.; Nofal, E.; Hegazi, M.; El-Gaied, M.A.; El-Ramady, H.; Solberg S, Ø. Response of warm season turf grasses to combined cold and salinity stress under foliar applying organic and inorganic amendments. Horticulturae 2023, 9, 49.
- Bantis, F.; Koukounaras, A. Ascophyllum nodosum and Silicon-Based Biostimulants differentially affect the physiology and growth of watermelon transplants under abiotic stress factors: The case of drought. Horticulturae 2022, 8, 1177.
- Reyad NE, H.A.; Azoz, S.N.; Ali, A.M.; Sayed, E.G. Mitigation of Powdery Mildew Disease by integrating Biocontrol Agents and Shikimic acid with modulation of antioxidant defense system, anatomical characterization, and improvement of Squash Plant Productivity. Horticulturae 2022, 8, 1145.
- Yang, L.; Li, P.; Qiu, L.; Ahmad, S.; Wang, J.; Zheng, T. Identification and comparative analysis of the rosaceae RCI2 gene family and characterization of the cold stress response in Prunus mume. Horticulturae 2022, 8, 997.
- Ahammed, G.J.; Li, X. Melatonin-induced detoxification of organic pollutants and alleviation of phytotoxicity in selected horticultural crops. Horticulturae 2022, 8, 1142.
References
- Varshney, R.K.; Singh, V.K.; Kumar, A.; Powell, W.; Sorrells, M.E. Can genomics deliver climate-change ready crops? Curr. Opin. Plant Biol. 2018, 45, 205–211. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Abiotic stress effects on performance of horticultural crops. Horticulturae 2019, 5, 67. [Google Scholar] [CrossRef]
- Lal, M.K.; Tiwari, R.K.; Gahlaut, V.; Mangal, V.; Kumar, A.; Singh, M.P.; Paul, V.; Kumar, S.; Singh, B.; Zinta, G. Physiological and molecular insights on wheat responses to heat stress. Plant Cell Rep. 2021, 41, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Lal, M.K.; Tiwari, R.K.; Altaf, M.A.; Kumar, A.; Kumar, R. Abiotic and biotic stress in horticultural crops: Insight into recent advances in the underlying tolerance mechanism. Front. Plant Sci. 2023, 14, 1212982. [Google Scholar] [CrossRef] [PubMed]
- Manghwar, H.; Hussain, A. Mechanism of tobacco osmotin gene in plant responses to biotic and abiotic stress tolerance: A brief history. Biocell 2022, 46, 623. [Google Scholar] [CrossRef]
- Kumar, R.; Tiwari, R.K.; Jeevalatha, A.; Siddappa, S.; Shah, M.A.; Sharma, S.; Sagar, V.; Kumar, M.; Chakrabarti, S.K. Potato apical leaf curl disease: Current status and perspectives on a disease caused by tomato leaf curl new delhi virus. J. Plant Dis. Prot. 2021, 128, 897–911. [Google Scholar] [CrossRef]
- Lal, M.K.; Tiwari, R.K.; Kumar, R.; Naga, K.C.; Kumar, A.; Singh, B.; Raigond, P.; Dutt, S.; Chourasia, K.N.; Kumar, D. Effect of potato apical leaf curl disease on glycemic index and resistant starch of potato (Solanum tuberosum L.) tubers. Food Chem. 2021, 359, 129939. [Google Scholar] [CrossRef] [PubMed]
- Gul, S.; Hussain, A.; Ali, Q.; Alam, I.; Alshegaihi, R.M.; Meng, Q.; Zaman, W.; Manghwar, H.; Munis, M.F.H. Hydropriming and osmotic priming induce resistance against aspergillus niger in wheat (Triticum aestivum L.) by activating β-1, 3-glucanase, chitinase, and thaumatin-like protein genes. Life 2022, 12, 2061. [Google Scholar] [CrossRef] [PubMed]
- Manghwar, H.; Hussain, A.; Ali, Q.; Saleem, M.H.; Abualreesh, M.H.; Alatawi, A.; Ali, S.; Munis, M.F.H. Disease severity, resistance analysis, and expression profiling of pathogenesis-related protein genes after the inoculation of fusarium equiseti in wheat. Agronomy 2021, 11, 2124. [Google Scholar] [CrossRef]
- Manzoor, M.A.; Xu, Y.; Xu, J.; Wang, Y.; Sun, W.; Liu, X.; Wang, L.; Wang, J.; Liu, R.; Whiting, M.D. Fruit crop abiotic stress management: A comprehensive review of plant hormones mediated responses. Fruit Res. 2023, 3, 30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manghwar, H. Horticulture Plants’ Stress Physiology. Horticulturae 2024, 10, 1263. https://doi.org/10.3390/horticulturae10121263
Manghwar H. Horticulture Plants’ Stress Physiology. Horticulturae. 2024; 10(12):1263. https://doi.org/10.3390/horticulturae10121263
Chicago/Turabian StyleManghwar, Hakim. 2024. "Horticulture Plants’ Stress Physiology" Horticulturae 10, no. 12: 1263. https://doi.org/10.3390/horticulturae10121263
APA StyleManghwar, H. (2024). Horticulture Plants’ Stress Physiology. Horticulturae, 10(12), 1263. https://doi.org/10.3390/horticulturae10121263