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Abstract: The quality of radish roots depends largely on its cultivar, production environment,
and postharvest management along the supply chain. Quality monitoring of fresh products is of
utmost importance during the postharvest period. The purpose of this study is to nondestructively
estimate the weight of a radish using random forests based on color and shape information obtained
from images, as well as volumetric information obtained by analyzing a point cloud obtained by
combining multiple forms of shape information. The explanatory variables were color and shape
information obtained through an image analysis of still images of radishes captured in a constructed
photographic environment. The volume information was calculated from the bounding box and
convex hull applied to the point cloud by combining the shape information obtained from the image
analysis. We then applied random forests to relate the radish weight to the explanatory variables. The
experimental results showed that the models using color, shape, or volume information all exhibited
good performance with a Pearson’s correlation coefficient (COR) > 0.80, suggesting the potential
of nondestructive monitoring of radish weight based on color, shape, and volume information.
Er;)edc:t?sr Specifically, the model using volume information showed very high performance, with a COR of 0.95
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1. Introduction
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Received: 16 January 2024 oriental radish, western small radish, or black radish. The radish is a rather new cultivar in

Revised: 26 January 2024
Accepted: 29 January 2024
Published: 31 January 2024

agriculture, differs from Japanese radish in origin and morphology, and is distinguished
from Western species. It is mainly consumed fresh because of its late bolting, low starch
content, and lack of storability. The root can be round to oblong in shape, with a cultivar of

colors such as red, white, purple, and pink, of which the most widespread cultivar has a
red root [1].

The shape and size of root crops, including radishes, are influenced not only by the
genotype but also by environmental conditions, especially the soil type [2]. The quality of
This article is an open access article ~ fadishes is based on color and shape and depends mainly on the cultivar; however, the
distributed under the terms and  final quality is determined by the production environment [2-5] and postharvest manage-
conditions of the Creative Commons ~ Ment [6]. In particular, postharvest sorting and management are important processes in
Attribution (CC BY) license (https://  the supply chain because they affect the quality of radishes during distribution. However,
creativecommons.org/licenses/by/  manual sorting of individual crops is labor-intensive. The weight of radish roots is one of
40/). the quality parameters that can be measured on a scale, but the labor cost is high when
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dealing with a large amount of radish roots harvested on farms or in plant factories. If a
large amount of measurement is required, automatic measurement using a belt conveyor
can be considered; however, this increases the equipment cost. Therefore, a nondestructive
method for estimating the weight of radishes after harvest on a large scale and in a short
time would be beneficial for improving the efficiency of sorting operations.

There are several methods for measuring the quality of fruits and vegetables, including
methods using information regarding the color of appearance [7-14], shape [2,15], and gas
emitted from vegetables and fruits [16]. The method using gas generated from vegetables
and fruits as a quality indicator is not easy to perform in practice because of the effects
of contamination and dilution during the gas measurement. Methods that use color
information include weight estimation [11,12] based on a colorimeter as a point datum and
weight estimation [7,8,13-15] using image analysis on a two-dimensional (2D) scale. The
color information in an image contains more information in space than that in a colorimeter.
Additionally, the image-based method can be used to evaluate the degree of bending of
vegetables and fruits. However, crops, including radishes, have three-dimensional (3D)
structures. Volume estimation has been explored in previous studies using images [17-19].
This is because volume is a three-dimensional piece of information that provides more data
than a simple 2D image. Most plants possess symmetrical shapes, but this may not always
be the case if they become deformed. Previous studies have utilized this characteristic to
infer the three-dimensional structure, including the volume, from 2D images. Nevertheless,
if the roots are deformed, the necessary color and structural information may not be present
in 2D images. Consequently, accurate reconstruction of the three-dimensional structure
requires the observation of colors and structures from 360° omnidirectional images.

Three-dimensional structures can be obtained using a three-dimensional scanner
(LiDAR) and a photogrammetric approach called structure-from-motion (5fM). These
methods allow for the measurement of plant structural parameters, such as leaf area, leaf
inclination angle, position, height, and volume [20,21], and SfM can produce a detailed
three-dimensional model of a plant with color information if a set of clear images of a
plant object can be captured [20]. However, three-dimensional structural reconstruction
is difficult for small objects without spherical features, such as radish roots. In addition,
although three-dimensional models with color information can be obtained using the SfM
method, there is a limitation in the discussion on exact color information unless images are
captured in a controlled light environment.

In this study, we introduce a novel method for three-dimensional structure recon-
struction using contour shapes derived from image analysis. Furthermore, we employ
random forests to assess the weight of radishes, incorporating color and shape information
obtained from image analysis, in addition to volumetric data obtained from the recon-
structed three-dimensional structure. This technology is expected to be valuable for harvest
selection and quality assessment for plant breeding. To interpret the results of the random
forests analyses, the importance of the variables and response curves are used to discuss
the applicability of color, shape, and volumetric information as quality indices.

2. Materials and Methods
2.1. Plant Material

In this experiment, we used radishes cultivated by the authors. The cultivation period
was from 3 April 2023 to 17 May 2023 in a greenhouse in Aoba ward, Yokohama city,
Kanagawa Prefecture, Japan (35.55° N, 139.55° E). The cultivars used were “Sakuranbo”
and “Red chime”. Only “Sakuranbo” was subjected to either full or half irrigation. Each
experimental plot consisted of three replications (nine in total). The parched soil during
harvest prevented the radishes from adhering to it, so they did not require washing. In
this study, we added cultivar and irrigation amounts as input variables along with other
variables for the random forests.
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2.2. Photographic Environment and Data Acquisition Methods

To collect data on temporal changes in the weight of the radish roots, the radishes
were stored in a refrigerator and the weight of each was measured at 22:00 each day. In
addition, images were captured in a fixed photographic environment. The photographic
environment was a box-type apparatus with a height, width, and depth of 900, 460, and
460 mm, respectively (Figure 1). In this study, white LED bulbs (color temperature: 5000 K)
were used at maximum brightness (illuminance: 5440 1x). A color chart (SCK100, Datacolor,
Inc., Lawrenceville, NJ, USA) and a rotating stand (NA2006, Yuanj, Shenzhen, China) were
installed in the photographic environment. Because each radish had a three-dimensional
structure and uneven coloration, it was fixed to a stand on a rotation table that rotated
once every 50 s and was captured every 2 s with a digital camera (DC-GX7MKS3, Panasonic
Corporation, Tokyo, Japan). There were instances in which the camera shutter was not
activated, resulting in an average of 23.5 images being captured. In this study, each image
was annotated using Labellmg [22] for a more accurate extraction of color information and
contour shapes.

LED
‘Yl ala
Radish
Fixed
stand | |Digita| Camera|
Color _’\‘ /
chart

—1

Turntable

Figure 1. Schematic diagram of the experimental device.

2.3. Color Information Collection

The color information (RGB, HSL, and HSV values) was obtained from the cropped
image based on the bounding box. The HSL and HSV values were calculated from RGB
values. The HSL values are those of the HSL color system, where H is hue, S is saturation,
and L is lightness. The values of H and S in the HSL color system are theoretically unaffected
by the amount of illuminance because the lighting conditions are summarized in L [23].
Thus, it is possible to perform a color analysis independent of uneven illuminance. There is
a report on the effect of lighting conditions on the HSL color system, and the saturation of
the HSL color system decreases slightly when the illuminance falls to an extreme level [23].
However, because the illuminance was fixed at 5440 1x in the photographic environment in
this study, the effect can be considered extremely small. The HSV color system is similar to
the HSL color system, where H is hue, S is saturation, and V is brightness. In the HSV color
system, the color changes to the strongest RGB color when saturation is decreased, and in
the HSL color system, the color changes between the strongest and weakest RGB colors.
The HSL or HSV color system ranges were H (0-360), S (0-100), and L or V (0-100). In
this study, the HSL and HSV values were calculated from each RGB value using a Python
library colormap [24]. The minimum, mean, median, and maximum values in the RGB,
HSL, and HSV color systems were calculated for each radish on each measurement date.
All color information was used as the model input for the random forests.

2.4. Shape Information Collection

After extracting the contour information of the main root of the radish from an image,
the contour shape was described using elliptic Fourier descriptors (EFD) [25]. The elliptic



Horticulturae 2024, 10, 142

40f14

Fourier descriptor analysis used in this study is a typical method for shape comparison
based on contours, in which a closed curve, which is the contour information, is considered
a periodic function and the shape is approximated and analyzed using Fourier coefficients
derived from a Fourier analysis. Elliptic Fourier descriptors have been applied for the
shape analysis of the Japanese radish [2] and radish [13] in previous studies. In this study,
the number of harmonics was set to five because the radish cultivar used in this study was
round cultivar, and the coefficients of 17 elliptic Fourier descriptors after normalization
from dO to d4 were used as input variables for the analysis in the random forests; a0, b0,
and c0 were excluded because they were the same for all shape approximations.

2.5. Three-Dimensional Structure Reconstruction from Contour Information

In this study, the three-dimensional structure was reconstructed by combining contour
information obtained from images captured from multiple directions. The radish was
rotated 360° and captured from multiple directions at a shutter speed of one image per
two seconds. Because the speed of the rotation table was one rotation per 50 s, it was
theoretically possible to recover the three-dimensional shape by rotating and combining
the contour shapes obtained by image analysis in three dimensions by 14.4°. This method
is faster and simpler than conventional point-cloud acquisition using SfM to reconstruct
three-dimensional structures. However, it is currently difficult to obtain accurate color
information. The reconstructed three-dimensional structure is illustrated in Figure 2.

Figure 2. Example of 3D structure reconstruction results: (a) front view, (b) downward view,
(c) lateral view.

2.6. Volume Information Collection

The volume information was calculated from the reconstructed point cloud by com-
bining the contour information obtained from the images. Two methods were used in this
study to obtain the volume information: The first method used a bounding box and the
second method used a convex hull. The second method provided a more accurate volume
estimation than the first method. In this study, the volume information obtained by these
two methods was used as an input variable for the random forests.

2.7. Modeling with Random Forests

The random forests [26] classifier is an ensemble learning algorithm that combines the
results of multiple parallel decision trees to perform classification and regression. First,
the algorithm extracts several bootstrap samples from the dataset. Second, a decision
tree model is generated for each bootstrap sample. Each decision tree model uses only
a few randomly selected variables as features. Finally, multiple decision tree models are
calculated and the output results are obtained using the mean value for the regression
tree models and majority voting for the classification tree models. The problem with
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decision trees is that the deeper the tree, the more complex the structure becomes and
the more prone it is to overtraining. However, the random forests algorithm has a better
generalization performance than decision trees because of bagging, which alleviates the
problem of overlearning. Additionally, two other important features of random forests
are their ability to evaluate the importance of each input variable [27] and visualize the
response curve.

In this study, 15 weight estimation models were constructed based on color, shape, and
volume information. Table 1 summarizes the variables used in the 15 weight estimation
models. The random forests of this study were implemented using Scikit-learn, a Python
library [28], and default values were used for the parameters of the random forests, except
for the random seed (i.e., random_state). The random seed was changed 50 times and the
mean score was calculated. In this study, five-fold cross-validation was conducted and
the reproducibility of the model was evaluated based on Pearson’s correlation coefficient
(COR), Nash-Sutcliffe coefficient (NSE) [29], and root mean squared error (RMSE) between
the observed weights and estimated weights of radishes.

Table 1. List of the constructed models and explanatory variables for weight estimation.

Explanatory Variables
Models
Cultivar Irrigation RGB HSL HSV EFD Volume_bbox Volume_convex hull
RGB * * *
RGB+EFD * * * *
RGB+3D_bbox * * * *
RGB+3D_convex hull * * * *
= 1) e
HSL+EFD * * * *
HSL+3D_bbox * * * *
HSL+3D_convex hull * * * ®
****** 7 (.72
HSV+EFD * * * *
HSV+3D_bbox * * * *
HSV+3D_convex hull * * * *
e - -7 s T T T Ty TS T T S T TS T T T T T o yT T T T T T T T oo T
EFD+3D_bbox * * * *
* * * *

EFD+3D_convex hull

The SHapley Additive exPlanations (SHAP) [30], Partial Dependence (PD) plots, and
Individual Conditional Expectation (ICE) plots were employed to interpret the models
constructed in this study. SHAP applies the Shapley value concept of the cooperative game
theory to deconstruct the difference between the predictions of an instance and the average
prediction of the contribution of each feature. However, SHAP cannot explain how the
predictions react to changes in the feature values. Thus, to visualize the structure of the
weight estimation models, the PD and ICE plots were used together. PD is an interpretation
method in which only certain features are moved, whereas other features are fixed, and
the predictions for each instance are averaged and visualized. ICE is an interpretation
method that does not average the relationship between features and model predictions for
each instance.

3. Results
3.1. Time-Series Changes in Root Color and Volume of Radish

Figures 3—6 show the time-series changes in the root color of the radishes. Figure 3b
shows that the maximum value of R decreased significantly with time and the maximum
value of GB decreased with time. Figure 4a shows that the mean value of S decreased
significantly with time in HSL values converted from RGB values, whereas the mean values
of H and L did not decrease. Similar to the HSL values in Figure 4, the mean value of S
decreased significantly with time (Figure 5a), as did the HSV values converted from the
RGB values (Figure 5b). The maximum H and S values remained constant, and only the
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V value decreased (Figure 5b). These time-series changes in color were partially different
from those observed in a previous study [13]. Figure 6 shows the time-series changes in
volume, which were the result of the calculation from the point cloud. Figure 7 shows
the time-series changes in mean weight. The volume decreased in the same manner as
the mean weight. The volume calculated from the bounding box was larger than that

calculated using the convex hull (Figure 6).
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Figure 3. Time-series changes in RGB values: (a) mean RGB values, (b) maximum RGB values.
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Figure 4. Time-series changes in HSL values: (a) mean HSL values, (b) maximum HSL values.
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Figure 5. Time-series changes in HSV values:

Mean =+ standard error is shown (n = 15).
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(a) mean HSV values, (b) maximum HSV values.

Figure 6. Time-series changes in volume: (a) volume from bbox, (b) volume from convex hull.
Mean =+ standard error is shown (n = 15).
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Figure 7. Time-series changes in mean weight. Mean = standard error is shown (n = 15).

3.2. Modeling Result

The results of weight estimation in the five-fold cross-validation with the random
forests showed good agreement with the changes in weight over time (Table 2, Figure 8).
Table 2 shows the mean and standard deviation of the evaluation results for each dataset in
the five-fold cross-validation, and Figure 8 shows the results of the five-fold cross-validation.
The CORs of all the models were greater than 0.8, indicating high performance in weight
estimation. Among them, the CORs of the models that used volume information were all
greater than 0.95, indicating that weight estimation was possible with very high accuracy.
Models that used color and shape information were more accurate than those that used
color information alone (Figure 8b,f,j). Models that used color and volume information
were more accurate than models that used color and shape information (Figure 8c,d,g,h k,1).
In addition, models that used color and volume information were more accurate when
volumes calculated from convex hulls were used than when volumes were calculated
from bounding boxes (Figure 8d,h,1). Compared with the estimations of the RGB and HSL
models, the HSV model improved COR, NSE, and RMSE. Models that used shape and
volume information were more accurate than those that used color and shape information
(Figure 8n,0).

Table 2. Model performance of random forests with respect to Pearson’s correlation coefficient (COR),
Nash-Sutcliffe Efficiency (NSE), and root mean squared error (RMSE), for which mean =+ standard
deviation values are presented (n = 250). Models were built using different sets of color information
(i.e., RGB, HSL, and HSV), shape information (EFD), and volume information.

Model Name COR NSE RMSE
RGB 0.829 + 0.0580 0.648 + 0.126 1.62 + 0.321
RGB+EFD 0.905 =+ 0.0582 0.793 £+ 0.109 1.21 + 0.261
RGB+3D_bbox 0.961 + 0.0274 0.915 £+ 0.0557 0.765 £+ 0.217
RGB+3D_convex hull 0.980 + 0.0109 0.955 4+ 0.0234 0.571 £ 0.147
HSL 0.856 + 0.0582 0.701 +0.113 1.49 £+ 0.325
HSL+EFD 0.908 + 0.0574 0.798 + 0.106 1.20 + 0.268
HSL+3D_bbox 0.970 £+ 0.0218 0.935 + 0.0449 0.671 4+ 0.201
HSL+3D_convex hull 0.984 + 0.00867 0.963 4+ 0.0196 0.519 4+ 0.140
HSV 0.870 £ 0.0571 0.726 +0.112 1.42 +0.318
HSV+EFD 0.912 £+ 0.0561 0.806 + 0.103 1.18 + 0.262
HSV+3D_bbox 0.972 +0.0213 0.939 4 0.0437 0.645 +0.198
HSV+3D_convex hull 0.984 + 0.00846 0.964 4+ 0.0188 0.509 + 0.137
EFD 0.887 £+ 0.0679 0.761 + 0.138 1.30 £+ 0.297
EFD+3D_bbox 0.963 + 0.0235 0.918 4 0.0492 0.760 4+ 0.218
EFD+3D_convex hull 0.980 + 0.00966 0.953 4+ 0.0233 0.585 4+ 0.159
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Figure 8. Results of weight estimation with random forests using color information, shape infor-
mation, and volume information: (a) RGB model, (b) RGB+EFD model, (¢) RGB+3D_bbox model,
(d) RGB+3D_convex hull model, (e) HSL model, (f) HSL+EFD model, (g) HSL+3D_bbox model,
(h) HSL+3D_convex hull model, (i) HSV model, (j) HSV+EFD model, (k) HSV+3D_bbox model,
(1) HSV+3D_convex hull model, (m) EFD model, (n) EFD+3D_bbox model, and (o) EFD+3D_convex
hull model.

3.3. Model Interpretation

Among the RGB+3D_convex hull model, HSL+3D_convex hull model, HSV+3D_convex
hull model, and EFD+3D_convex hull model that showed good model performance, the top
10 mean absolute SHAP values for each model are shown in Figure 9. Although the mean
absolute SHAP values could be calculated for other variables, only volume information
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was the most important. The PD and ICE plots for the top three variables for the mean
absolute SHAP values in the RGB+3D_convex hull model, HSL+3D_convex hull model,
and HSV+3D_convex hull models are shown in Figure 10. As shown in Figure 10a,d,g),
the weight of the radishes increased with volume. Although color-based models could
be applied for weight estimation (as shown in Figure 9 and summarized in Table 2),
the relationship between color and weight in predictive models based on color and 3D
structures remained unclear (Figure 10b,c,e,f h,i).
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Figure 9. The top 10 mean absolute SHAP values of the best model in the weight estimation with ran-
dom forests: (a) RGB+3D_convex hull model, (b) HSL+3D_convex hull model, (¢) HSV+3D_convex
hull model, and (d) EFD+3D_convex hull model.
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Figure 10. Partial dependence and individual conditional expectations in the best model for
weight estimation with random forests: (a) volume from convex hull (RGB+3D_convexhull model),
(b) G_mean (RGB+3D_convex hull model), (¢) G_median (RGB+3D_convex hull model), (d) vol-
ume from convex hull (HSL+3D_convex hull model), (e) H_mean (HSL+3D_convex hull model),
(f) S_mean (HSL+3D_convex hull model), (g) volume from convex hull (HSV+3D_convex hull model),
(h) S_mean (HSV+3D_convex hull model), and (i) H_mean (HSV+3D_convex hull model).

4. Discussion

As the radishes in this study were grown by the authors, compared with commercial
products, the quality was not consistent because the radish roots were not selected. The
accuracy of the model that used only color information in this study was lower than that
used in a previous study [13]. However, the mean RGB values were similar to those
obtained in a previous study [13] (Figure 3a). This suggests that the minimum, maximum,
or median RGB values may have been less uniform for the radishes tested in this study
than for the commercial products (Figure 8a,e,i). In contrast, the model that used color and
shape information was more accurate than that in the previous study [13] (Figure 8b,{,j).
In a previous study, only one cultivar purchased at a supermarket was tested [13], but
in this study, two cultivars (two patterns of irrigation conditions for one target cultivar)
were tested and data were collected. Therefore, the accuracy of the weight estimation was
higher than that in the previous study [13] because the model was able to capture changes
in shape depending on the cultivar and irrigation conditions. This suggests the possibility
of a more accurate crop quality estimation by building an estimation model that includes
environmental conditions, as in a previous study of mangoes [5].
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In addition, the volume and weight of the “Sakuranbo” cultivar were halved when
the amount of irrigation was halved (Figures 6 and 7). Previous studies reported that the
quality of major root crops such as radishes was affected by the production environment,
including irrigation. These results suggest that controlling the amount of irrigation is
important not only in 3D reconstruction using shape information and modeling, such as
weight estimation, but also in radish cultivation. Volume was also an important variable in
this study. Volume is as important as quality information for crops, representing the size
of an object. In general, the larger the volume, the heavier the weight [31-34]. Therefore,
volume information was considered the most important variable in this study. In particular,
this study compared the volume obtained from the bounding box with that obtained from
the convex hull. The method of calculating the volume by applying the convex hull to
the point cloud of the radishes provided more accurate volume information (Figure 6).
The three-dimensional structural reconstruction and weight estimation methods proposed
in this study can be applied to various cultivars of radishes and even to other crops, as
in previous studies [31-34]. In particular, focusing on radishes suggests the possibility
of constructing a weight-estimation model that transcends cultivar. However, unlike a
previous study [13], the importance of color information was reduced because of the use of
volume information. In recent years, a wide cultivar of radish colors has become available
in the market. Therefore, color information may be an important variable when estimating
weight by using data from a cultivar of colored radishes. However, the models in this study
are not likely to be directly applicable to non-red cultivars because color information is
only available for red cultivars. Therefore, modeling with a larger number of cultivars is a
suitable approach for future studies. Additionally, as in a previous study [13], the R value
of the root color of the radishes tended to decrease with time (Figure 3a). This may be due
to the effect of fungal growth on the root surface [35] or oxidation of substances [36].

The volume of the radish roots decreased with decreasing water content. A decrease
in water content can result in structural deformations, such as cracks and holes, which are
major losses in the postharvest quality of radishes. Considering these physiological and
physical changes in radishes, detailed experiments on the internal quality of radishes are
expected to expand the range of applications of quality estimation based on color, shape,
and volume information.

5. Conclusions

The purpose of this study was to nondestructively and accurately estimate the weight
of radishes based on color and shape information obtained from images and volume in-
formation obtained from a point cloud reconstructed by combining shape information.
Color and shape information, which are explanatory variables, were obtained by an image
analysis of radishes taken in a certain photographic environment. The volume information
was calculated from the bounding box or convex hull applied to the point cloud by com-
bining the shape information obtained from the image analysis. The experimental results
showed good reproducibility of the model that used color, shape, or volume information,
suggesting the possibility of nondestructive monitoring based on the relationship between
color, shape, or volume information and the weight of the radish. In this study, the images
were captured in a stable light environment. Therefore, it is necessary to consider the use
of images captured outdoors under sunshine. Although the results of this study were
dependent on the two cultivars, it is possible that the internal quality can be estimated by
constructing models for each cultivar and cultivation environment. Future work is required
to study the applicability of the proposed methods for assessing the internal components
of radishes.
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