Biological Control and Cross Infections of the Neofusicoccum spp. Causing Mango Postharvest Rots in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal and Bacterial Isolates Used in This Study
2.2. Molecular Identification of Fungal Isolates
2.3. Reproduction of Rot Symptoms in Mango Fruit
2.4. Reproduction of Rot Symptoms in Avocado Fruits
2.5. Antifungal Features of the Biocontrol Bacteria Used in Dual Cultures In Vitro
2.6. Evaluation of Experimental Biocontrol Treatments on Mango Fruits
2.7. Fungal Pathogenicity and Experimental Biocontrol on Avocado Fruits
2.8. Bacterial Survival on Commercial Fruit under Open Field Conditions
2.9. Statistical Analysis
3. Results
3.1. Collection of Fungal Isolates Obtained from Mango and Avocado Fruits
3.2. Identification of the Causal Agent of Postharvest Fruit Rot
3.3. Antagonism Assays of Biocontrol Agents Bacillus velezensis and Pseudomonas chlororaphis against Fungal Isolates
3.4. Experimental Biocontrol Approaches with Bacterial Treatments
3.5. Viability of Bacterial Applications under Commercial Open Field Conditions
4. Discussion
4.1. Identification of the Causal Agent of Mango Fruit Rot in Spain
4.2. Experimental Biological Control of Stem-End Rot in Mango and Avocado Fruits
4.3. Biocontrol Assays under Open Field Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermoso, J.M.; Guirado, E.; Farré, J.M. (Eds.) Introducción al Cultivo del Mango en el sur Peninsular; Caja Rural Granada: Granada, Spain, 2018. [Google Scholar]
- Kassim, A.; Workneh, T.S. Influence of postharvest treatments and storage conditions on the quality of Hass avocados. Heliyon 2020, 6, e04234. [Google Scholar] [CrossRef]
- Farré, J.M.; Guirado, E.; González, J.; Hermoso, J.M.; Serrano, S.A.; Cayuena, J.; García, J. Control of Postharvest Losses on Spanish ‘Keitt’ Mango (Mangifera indica L.). In Proceedings of the IX International Mango Symposium, Sanya, China, 8–12 April 2010. [Google Scholar]
- Giblin, F.R.; Tan, Y.P.; Mitchell, R.; Coates, L.M.; Irwin, J.A.G.; Shivas, R.G. Colletotrichum species associated with pre-and post-harvest diseases of avocado and mango in eastern Australia. Australasian Plant Pathol. 2018, 47, 269–276. [Google Scholar] [CrossRef]
- de Oliveira, K.A.R.; Berger, L.R.R.; de Araújo, S.A.; Câmara, M.P.S.; de Souza, E.L. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. Food Microbiol. 2017, 66, 96–103. [Google Scholar] [CrossRef]
- Galsurker, O.; Diskin, S.; Maurer, D.; Feygenberg, O.; Alkan, N. Fruit Stem-End Rot. Horticulturae 2018, 4, 50. [Google Scholar] [CrossRef]
- Hartill, W.; Everett, K. Inoculum sources and infection pathways of pathogens causing stem-end rots of ‘Hass’ avocado (Persea americana). N. Z. J. Crop Hortic. Sci. 2002, 30, 249–260. [Google Scholar] [CrossRef]
- Johnson, G.I.; Mead, A.J.; Cooke, A.W.; Dean, J.R. Mango stem end rot pathogens-fruit infection by endophytic colonization of the inflorescence and pedicel. Ann. Appl. Biol. 1992, 120, 225–234. [Google Scholar] [CrossRef]
- Prusky, D.; Kobiler, I.; Miyara, I.; Alkan, N. Chapter-7 Fruit diseases. In The Mango, Botany, Production and Uses, 2nd ed.; Litz, R.E., Ed.; CABI International: Cambridge, UK, 2009; pp. 210–231. [Google Scholar] [CrossRef]
- European Commission of Health & Food Safety. 2019. Available online: https://commission.europa.eu/publications/management-plan-2019-health-and-food-safety_en (accessed on 5 August 2022).
- Arrebola, E. Advances in postharvest diseases management in fruits. In Postharvest Biology and Technology of Horticultural Crops: Principles and Practices for Quality Maintenance; Siddiqui, M.W., Ed.; Apple Academic Press: Palm Bay, FL, USA, 2015; pp. 243–292. [Google Scholar]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Postharvest treatments of fresh produce. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 372, 20130309. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Sobiczewski, P.; Bryk, H.; Berezynski, S. Evaluation of epiphytic bacteria isolated from apple leaves in the control of postharvest diseases. J. Fruit Ornam. Plant Res. 1996, 4, 35–45. [Google Scholar]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1498–1513. [Google Scholar] [CrossRef]
- Weller, D.M. Pseudomonas biocontrol agents of soil borne pathogens: Looking back over 30 years. Phytopathol. 2007, 97, 250–256. [Google Scholar] [CrossRef]
- Pretorius, D.; van Rooyen, J.; Clarke, K.G. Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. Nat. Biotechnol. 2015, 32, 243–252. [Google Scholar] [CrossRef]
- Cazorla, F.M.; Duckett, S.D.; Bergström, E.T.; Odijk, R.; Lugtenberg, B.J.J.; Thomas-Oatesand, J.E.; Bloemberg, G.V. Biocontrol of avocado Dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl, 5-propyl resorcinol. Mol. Plant Microbe Interact. 2006, 19, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Calderón, C.E.; Ramos, C.; de Vicente, A.; Cazorla, F.M. Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol. Mol. Plant Microbe Interact. 2015, 28, 249–260. [Google Scholar] [CrossRef]
- Romero, D.; de Vicente, A.; Rakotoaly, R.H.; Dufour, S.E.; Veening, J.W.; Arrebola, E.; Cazorla, F.M.; Kuipers, O.P.; Paquot, M.; Pérez-García, A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe Interact. 2007, 20, 430–440. [Google Scholar] [CrossRef]
- Arrebola, E.; Jacobs, R.; Korsten, L. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal patogens. J. Appl. Microbiol. 2010, 108, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R. Comparison of acidified and antibiotic-supplemented potato dextrose agar from three manufacturers for its capacity to recover fungi from foods. J. Food Prot. 1979, 42, 427–428. [Google Scholar] [CrossRef]
- Calderón, C.E.; Pérez-García, A.; de Vicente, A.; Cazorla, F.M. The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. Mol. Plant Microbe Interact. 2013, 26, 554–565. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microb. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Oikawa, A.; Ishiara, A.; Tanaka, C.; Mori, N.; Tsuda, M.; Iwamura, H. Accumulation of HDMBOA-Glc is induced by biotic stresses prior to the release of MBOA in maize leaves. Phytochemistry 2004, 65, 2995–3001. [Google Scholar] [CrossRef]
- Ahmed, A.O.A.; van de Sande, W.W.J.; van Vianen, W.; van Belkum, A.; Fahal, A.H.; Verbrugh, H.A.; Bakker-Woudenberg, A.J.M. In vitro susceptibilities of Madurella mycetomatis to Itraconazole and Amphotericin B assessd by a modified NCCLS methods and a viability-based 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(Phenylamino)carbonyl]-2H-Tetrazolium hydroxide (XTT) assay. Antimicrob. Agents Chemother. 2004, 48, 2742–2746. [Google Scholar] [CrossRef] [PubMed]
- Shokes, F.M.; Rozalski, K.; Gorbet, D.W.; Brenneman, T.B.; Berger, D.A. Techniques for inoculation of peanut with Sclerotium rolfsii in the greenhouse and field. Peanut Sci. 1996, 23, 124–128. [Google Scholar] [CrossRef]
- Kamal, M.M.; Lindbeck, K.D.; Savocchia, S.; Ash, G.J. Biological control of Sclerotinia stem rot of canola antagonistic bacteria. Plant Pathol. 2015, 64, 1375–1384. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiradate, S.; Tsukamoto, T.; Hatakeda, K.; Shirata, A. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 2001, 91, 181–187. [Google Scholar] [CrossRef]
- Arrebola, E.; Sivakumar, D.; Korsten, L. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol. Control 2010, 53, 122–128. [Google Scholar] [CrossRef]
- Tienda, S.; Vida, C.; Lagendijk, E.; de Weert, S.; Linares, I.; González-Fernández, J.; Guirado, E.; de Vicente, A.; Cazorla, F.M. Soil application of a formulated biocontrol rhizobacterium, Pseudomonas chlororaphis PCL1606, induces soil suppressiveness by Impacting specific microbial communities. Front. Microbiol. 2020, 11, 1874. [Google Scholar] [CrossRef]
- Magno-Pérez-Bryan, M.C. Análisis Genómico y Funcional de las Singularidades de dos Cepas de Bacillus amyloliquefaciens con Capacidad de Biocontrol. Doctoral Thesis, University of Malaga, Malaga, Spain, 2016. [Google Scholar]
- Galsurker, O.; Diskin, S.; Duanis-Assaf, D.; Doron-Faigenboim, A.; Maurer, D.; Feygenberg, O.; Alkan, N. Harvesting mango fruit with a short stem-end altered endophytic microbiome and reduce stem-end rot. Microorganisms 2020, 8, 558. [Google Scholar] [CrossRef]
- Li, L.; Mohd, M.H.; Mohamed-Nor, N.M.I.; Subramaniam, S.; Latiffah, Z. Identification of Botryosphaeriaceae associated with stem-end rot of mango (Mangifera indica L.) in Malaysia. J. Appl. Microbiol. 2021, 130, 1273–1284. [Google Scholar] [CrossRef]
- Martin, M.T.; Martin, L.; Cuesta, M.J. First report of Neofusicoccum mediterraneum and N. australe causing decay in Vitis vinifera in Castilla y León, Spain. Plant Dis. 2011, 95, 876. [Google Scholar] [CrossRef]
- Agustí-Brisach, C.; Moral, J.; Felts, D.; Trapero, A.; Michailides, T.J. Interaction between Diaporthe rhusicola and Neofusicoccum mediterraneum causing branch dieback and fruit blight of english walnut in California, and the effect of pruning wounds on the Infection. Plant Dis. 2019, 103, 1196–1205. [Google Scholar] [CrossRef]
- Arjona-Girona, I.; Ruano-Rosa, D.; López-Herrera, C.J. Identification, pathogenicity and distribution of the causal agents of dieback in avocado orchards in Spain. Span. J. Agric. Res. 2019, 17, e1003. [Google Scholar] [CrossRef]
- López-Moral, A.; Lovera, M.; Raya, M.D.C.; Cortés-Cosano, N.; Arquero, O.; Trapero, A.; Agustí-Brisach, C. Etiology of branch dieback and shoot blight of english walnut caused by Botryosphaeriaceae and Diaporthe species in southern Spain. Plant Dis. 2020, 104, 533–550. [Google Scholar] [CrossRef] [PubMed]
- Krishnapillai, N.; Wijeratnam, R.S.W. Sap burn injury management of mangoes (Mangifera indica L.) in Sri Lanka. Pak. J. Bot. 2016, 48, 2147–2152. [Google Scholar]
- Susi, P.; Aktuganov, G.; Himanen, J.; Korpela, T. Biological control of wood decay against fungal infection. J. Environ. Manag. 2011, 92, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Calderón, C.; de Vicente, A.; Cazorla, F.M. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. FEMS Microbiol. Ecol. 2014, 89, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Lastochkina, O.; Seifikalhor, M.; Aliniaeifard, S.; Baymiev, A.; Pusenkova, L.; Garipova, S.; Kulabuhova, D.; Maksimov, I. Bacillus spp.: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 2019, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Valtierra-de-Luis, D.; Villanueva, M.; Berry, C.; Caballero, P. Potential for Bacillus thuringiensis and other bacterial toxins as biological control agents to combat dipteran pests of medical and agronomic importance. Toxins 2020, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Na, H.E.; Heo, S.; Kim, Y.S.; Kim, T.; Lee, J.H.; Jeong, D.W. The safety and technological properties of Bacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis. LWT-Food Sci. Technol. 2022, 161, 113398. [Google Scholar] [CrossRef]
- Anderson, J.A.; Staley, J.; Challender, M.; Heuton, J. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Res. 2018, 27, 103–113. [Google Scholar] [CrossRef]
- Arrebola, E.; Tienda, S.; Vida, C.; de Vicente, A.; Cazorla, F.M. Fitness features involved in the biocontrol interaction of Pseudomonas chloroaphis with host plants: The case study of PcPCL1606. Front. Microbiol. 2019, 10, 719. [Google Scholar] [CrossRef]
- Munir, S.; Li, Y.; He, P.; He, P.; He, P.; Cui, W.; Wu, Y.; Li, X.; He, Y. Mechanism against phytopathogens and colonization in different plant hosts. Pak. J. Agric. Sci. 2018, 55, 996–1002. [Google Scholar]
- Gamez, R.; Cardinale, M.; Montes, M.; Ramirez, S.; Schnell, S.; Rodriguez, F. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiol. Res. 2019, 220, 12–20. [Google Scholar] [CrossRef]
- Helmann, T.C.; Deutschbauer, A.M.; Lindow, S.E. Genome-wide identification of Pseudomonas syringae genes required for fitness during colonization of the leaf surface and apoplast. Proc. Natl. Acad. Sci. USA 2019, 116, 18900–18910. [Google Scholar] [CrossRef]
- Calderón, C.E.; Tienda, S.; Heredia-Ponce, Z.; Arrebola, E.; Cárcamo-Oyarce, G.; Eberl, L.; Cazorla, F.M. The compound 2-hexyl, 5-propyl resorcinol has a key role in biofilm formation by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606. Front. Microbiol. 2019, 10, 396. [Google Scholar] [CrossRef]
- Romero, D.; Pérez-García, A.; Rivera, M.E.; Cazorla, F.M.; de Vicente, A. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl. Microbiol. Biotechnol. 2004, 64, 263–269. [Google Scholar] [CrossRef]
- Utkhede, R.S.; Mathur, S. Preventive and curative biological treatments for control of Botrytis cinerea stem canker of greenhouse tomatoes. BioControl 2006, 51, 363–373. [Google Scholar] [CrossRef]
- Compant, S.; Brader, G.; Muzammil, S.; Sessitsch, A.; Lebrihi, A.; Mathieu, F. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 2013, 58, 435–455. [Google Scholar] [CrossRef]
- Alkan, N.; Fortes, A.M. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Front. Plant Sci. 2015, 6, 889. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.L.; Sundin, G.W. Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl. Environ. Microbiol. 2001, 67, 5488–5496. [Google Scholar] [CrossRef] [PubMed]
- Bohinc, K.; Drazic, G.; Fink, R.; Oder, M.; Jevsnik, M.; NipicGodic-Torkar, D.K.; Raspor, P. Available surface dictates microbial adhesion capacity. Int. J. Adhes. Adhes. 2014, 50, 265–272. [Google Scholar] [CrossRef]
Fungal Isolates Code and Accession Number | Source Fruit | Date of Isolation | Reference | |
---|---|---|---|---|
Genus Alternaria | ||||
UMAF M1306 | MZ160921 | Mango | February 2013 | This study |
UMAF M1310 * | MZ160925 | Mango | February 2013 | This study |
UMAF M1913 * | MZ160928 | Mango | October 2019 | This study |
UMAF M1915 | MZ160930 | Mango | October 2019 | This study |
UMAF M1916 | MZ160931 | Mango | October 2019 | This study |
UMAF M1918 | MZ160933 | Mango | October 2019 | This study |
UMAF M1931 * | MZ160946 | Mango | December 2019 | This study |
UMAF M1932 | MZ160947 | Mango | December 2019 | This study |
UMAF M1933 * | MZ160948 | Mango | December 2019 | This study |
UMAF M1934 | MZ160949 | Mango | December 2019 | This study |
UMAF M1935 | MZ160950 | Mango | December 2019 | This study |
UMAF M1936 * | MZ160951 | Mango | December 2019 | This study |
UMAF M1939 * | MZ160954 | Mango | December 2019 | This study |
UMAF M1940 | MZ160955 | Mango | December 2019 | This study |
UMAF M1941 | MZ160956 | Mango | January 2020 | This study |
UMAF M1942 * | MZ160957 | Mango | January 2020 | This study |
UMAF M1943 | MZ160958 | Mango | January 2020 | This study |
UMAF M1944 | MZ160959 | Mango | January 2020 | This study |
UMAF M1946 | MZ160961 | Avocado | February 2020 | This study |
UMAF M1948 * | MZ160963 | Avocado | February 2020 | This study |
UMAF M1950 | MZ160965 | Avocado | February 2020 | This study |
UMAF M1951 | MZ160966 | Avocado | February 2020 | This study |
UMAF M1953 * | MZ160968 | Avocado | February 2020 | This study |
UMAF M1957 * | MZ160972 | Avocado | February 2020 | This study |
UMAF M1962 | MZ160977 | Avocado | February 2020 | This study |
UMAF M1965 | MZ160980 | Avocado | May 2020 | This study |
UMAF M1969 | MZ160984 | Avocado | May 2020 | This study |
UMAF M1973 | MZ160988 | Avocado | June 2020 | This study |
UMAF M1975 * | MZ160990 | Avocado | June 2020 | This study |
Genus Neofusicoccum | ||||
UMAF M1302 * | MZ160917 | Mango | February 2013 | This study |
UMAF M1921 | MZ160936 | Mango | November 2019 | This study |
UMAF M1927 | MZ160942 | Mango | November 2019 | This study |
UMAF M1928 * | MZ160943 | Mango | December 2019 | This study |
UMAF M1929 | MZ160944 | Mango | December 2019 | This study |
UMAF M1937 * | MZ160952 | Mango | December 2019 | This study |
UMAF M1938 * | MZ160953 | Mango | December 2019 | This study |
UMAF M1945 * | MZ160960 | Avocado | February 2020 | This study |
UMAF M1947 | MZ160962 | Avocado | February 2020 | This study |
UMAF M1949 * | MZ160964 | Avocado | February 2020 | This study |
UMAF M1960 | MZ160975 | Avocado | February 2020 | This study |
UMAF M1961 * | MZ160976 | Avocado | February 2020 | This study |
UMAF M1963 | MZ160978 | Avocado | May 2020 | This study |
UMAF M1964 * | MZ160979 | Avocado | May 2020 | This study |
UMAF M1966 | MZ160981 | Avocado | May 2020 | This study |
Genus Stemphylium | ||||
UMAF M1301 * | MZ160916 | Mango | February 2013 | This study |
UMAF M1303 * | MZ160918 | Mango | February 2013 | This study |
UMAF M1304 | MZ160919 | Mango | February 2013 | This study |
UMAF M1305 | MZ160920 | Mango | February 2013 | This study |
UMAF M1307 | MZ160922 | Mango | February 2013 | This study |
UMAF M1308 | MZ160923 | Mango | February 2013 | This study |
UMAF M1309 * | MZ160924 | Mango | February 2013 | This study |
UMAF M1917 | MZ160932 | Mango | October 2019 | This study |
UMAF M1919 * | MZ160934 | Mango | November 2019 | This study |
UMAF M1930 | MZ160945 | Mango | December 2019 | This study |
Other species of fungus isolated from mango and avocado fruits | ||||
Genus Aureobasidium | ||||
UMAF M1911 * | MZ160926 | Mango | October 2019 | This study |
UMAF M1912 | MZ160927 | Mango | October 2019 | This study |
UMAF M1914 | MZ160929 | Mango | October 2019 | This study |
UMAF M1922 | MZ160937 | Mango | November 2019 | This study |
UMAF M1923 * | MZ160938 | Mango | November 2019 | This study |
Genus Colletotrichum | ||||
UMAF M1925 * | MZ160940 | Mango | November 2019 | This study |
UMAF M1926 * | MZ160941 | Mango | November 2019 | This study |
UMAF M1958 | MZ160973 | Avocado | February 2020 | This study |
UMAF M1959 * | MZ160974 | Avocado | February 2020 | This study |
Genus Lasiodiplodia | ||||
UMAF M1967 * | MZ160982 | Avocado | May 2020 | This study |
UMAF M1972 * | MZ160987 | Avocado | June 2020 | This study |
Genus Nigrospora | ||||
UMAF M1924 | MZ160939 | Mango | November 2019 | This study |
UMAF M1952 * | MZ160967 | Avocado | February 2020 | This study |
Genus Trichoderma | ||||
UMAF M1956 | MZ160971 | Avocado | February 2020 | This study |
UMAF M1974 | MZ160989 | Avocado | June 2020 | This study |
Genus Fusarium | ||||
UMAF M1968 * | MZ160983 | Avocado | May 2020 | This study |
UMAF M1970 | MZ160985 | Avocado | May 2020 | This study |
Other fungus isolated | ||||
Botryosphaeria sp. | ||||
UMAF M1920 * | MZ160935 | Mango | November 2019 | This study |
Pestalotiopsis sp. | ||||
UMAF M1971 * | MZ160986 | Avocado | June 2020 | This study |
Rosellinia sp. | ||||
UMAF M1954 | MZ160969 | Avocado | February 2020 | This study |
Xylaria sp. | ||||
UMAF M1955 | MZ160970 | Avocado | February 2020 | This study |
Genus | Isolate | Sc | Mango | Avocado | |||||
---|---|---|---|---|---|---|---|---|---|
Osteen | Fuerte | Hass | |||||||
P | W | E | P | W | E | ||||
Neofusic. | (Np) UMAF M1302 | M | 3/6 | 4/6 | 5/6 | 3/6 | 4/6 | 3/6 | 3/6 |
(Np) UMAF M1928 | M | 4/6 | nd | nd | nd | nd | nd | nd | |
(Np) UMAF M1937 | M | 6/6 | 5/6 | 4/6 | 3/6 | 4/6 | 3/6 | 3/6 | |
(Nm) UMAF M1938 | M | 4/6 | 4/6 | 4/6 | 3/6 | 3/6 | 3/6 | 3/6 | |
UMAF M1960 | A | nd | 5/6 | 5/6 | 3/6 | 5/6 | 3/6 | 3/6 | |
UMAF M1964 | A | nd | 5/6 | 3/6 | 3/6 | 6/6 | 3/6 | 3/6 | |
Alternaria | UMAF M1310 | M | 0/6 | nd | nd | nd | nd | nd | nd |
UMAF M1913 | M | 0/6 | nd | nd | nd | nd | nd | nd | |
UMAF M1931 | M | 0/6 | 1/6 | 1/6 | 0/6 | 2/6 | 1/6 | 0/6 | |
UMAF M1939 | M | 0/6 | nd | nd | nd | nd | nd | nd | |
UMAF M1933 | M | 0/6 | nd | nd | nd | nd | nd | nd | |
UMAF M1936 | M | 0/6 | nd | nd | nd | nd | nd | nd | |
UMAF M1942 | M | 0/6 | 4/6 | 4/6 | 3/6 | 1/6 | 0/6 | 0/6 | |
UMAF M1948 | A | nd | 2/6 | 0/6 | 0/6 | 2/6 | 0/6 | 0/6 | |
UMAF M1969 | A | nd | 3/6 | 3/6 | 3/6 | 0/6 | 0/6 | 0/6 | |
Control | Sterile water | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | |
0/6 | 0 infected point from 6 inoculated points | ||||||||
1/6 | 1 infected point from 6 inoculated points | ||||||||
2/6 | 2 infected point from 6 inoculated points | ||||||||
3/6 | 3 infected point from 6 inoculated points | ||||||||
4/6 | 4 infected point from 6 inoculated points | ||||||||
5/6 | 5 infected point from 6 inoculated points | ||||||||
6/6 | 6 infected point from 6 inoculated points |
Fungal Strain | Accession Numbers | Product | Subject Organism |
---|---|---|---|
UMAF M1302 | MZ160917 | ITS | Neofusicoccum parvum |
OR463039 | β-Tubulin | Neofusicoccum parvum | |
UMAF M1928 | MN160943 | ITS | Neofusicoccum parvum |
OR463040 | β-Tubulin | Neofusicoccum parvum | |
UMAF M1937 | MN160952 | ITS | Neofusicoccum parvum |
OR463041 | β-Tubulin | Neofusicoccum parvum | |
UMAF M1938 | MN160953 | ITS | Neofusicoccum mediterraneum |
OR463042 | β-Tubulin | Neofusicoccum mediterraneum | |
UMAF M1945 | MN160960 | ITS | Neofusicoccum mediterraneum |
OR463043 | β-Tubulin | Neofusicoccum mediterraneum | |
UMAF M1961 | MN160976 | ITS | Neofusicoccum australe |
OR463044 | β-Tubulin | Neofusicoccum cryptoaustrale |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guirado-Manzano, L.; Tienda, S.; Gutiérrez-Barranquero, J.A.; de Vicente, A.; Cazorla, F.M.; Arrebola, E. Biological Control and Cross Infections of the Neofusicoccum spp. Causing Mango Postharvest Rots in Spain. Horticulturae 2024, 10, 166. https://doi.org/10.3390/horticulturae10020166
Guirado-Manzano L, Tienda S, Gutiérrez-Barranquero JA, de Vicente A, Cazorla FM, Arrebola E. Biological Control and Cross Infections of the Neofusicoccum spp. Causing Mango Postharvest Rots in Spain. Horticulturae. 2024; 10(2):166. https://doi.org/10.3390/horticulturae10020166
Chicago/Turabian StyleGuirado-Manzano, Lucía, Sandra Tienda, José Antonio Gutiérrez-Barranquero, Antonio de Vicente, Francisco M. Cazorla, and Eva Arrebola. 2024. "Biological Control and Cross Infections of the Neofusicoccum spp. Causing Mango Postharvest Rots in Spain" Horticulturae 10, no. 2: 166. https://doi.org/10.3390/horticulturae10020166
APA StyleGuirado-Manzano, L., Tienda, S., Gutiérrez-Barranquero, J. A., de Vicente, A., Cazorla, F. M., & Arrebola, E. (2024). Biological Control and Cross Infections of the Neofusicoccum spp. Causing Mango Postharvest Rots in Spain. Horticulturae, 10(2), 166. https://doi.org/10.3390/horticulturae10020166