Enhancing the Yield of Mature Olive Trees via Comparative Fertilization Strategies, including a Foliar Application with Fulvic and Humic Acids, in Non-Irrigated Orchards with Calcareous and Non-Calcareous Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Plan
- Treatments AC1 and AL1: no fertilizer application (control);
- Treatments AC2 and AL2: nitrogen (N) application at a rate of 0.8 kg N per tree;
- Treatments AC3 and AL3: N application and foliar application of organic product (0.5%, v/v) at the petal fall stage (PFS);
- Treatments AC4 and AL4: N application and foliar applications of organic product (0.5%, v/v) at the PFS and after 20 days;
- Treatments AC5 and AL5: Ν application and foliar applications of organic product at the PFS, and repeated after 20 and 40 days;
- Treatments AC6 and AL6: N and potassium (K) application at a rate of 0.5 kg K2O per tree;
- Treatments AC7 and AL7: N and K application at a rate of 1 kg K2O per tree.
2.2. Laboratory Soil and Plant Analyses
2.3. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Non-Calcareous–Acidic (AC) Orchard
3.2. Calcareous–Alkaline (AL) Orchard
3.3. Correlations between Leaf Pigments Concentrations, Nutrients Concentrations, Fruit Production, Soil Type, and Treatments
3.4. Future Research Perspectives
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernández-Escobar, R.; Benlloch, M.; Barranco, D.; Dueñas, A.; Gañán, J. Response of olive trees to foliar application of humic substances extracted from leonardite. Sci. Hortic. 1996, 66, 191–200. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Kavvadias, V.; Sotiropoulos, T.; Papadakis, I.E. Organic fertilization and tree orchards. Agriculture 2021, 11, 692. [Google Scholar] [CrossRef]
- Maksoud, M.A.; Saleh, M.A.; El-Shamma, M.S.; Fouad, A.A. The beneficial effect of biofertilizers and antioxidants on olive trees under calcareous soil conditions. World J. Agric. Sci. 2009, 5, 350–352. [Google Scholar]
- Haggag, L.F.; Shahin, M.F.M.; Mahdy, M.A.; Eman, H.A.; El-Hady, S. Effect of spraying humic acid during fruit set stage on fruit quality and quantity of Picual olive trees grown under Sinai condition. J. Appl. Sci. Res. 2013, 9, 1484–1489. [Google Scholar]
- Fawy, H.A. Foliar application of organic acids and antioxidants impact on fruit yield and quality of fig and olive trees in some valleys of Northwestern Coast of Egypt. Minufiya J. Agric. Res. 2015, 40, 1629–1645. [Google Scholar]
- Dabbaghi, O.; Tekaya, M.; M’Barki, N.; Ali, S.O.; Öden, S.; Mezghani, M.A.; Attia, F.; Labidi, F.; Prinsen, E.; Hammami, M.; et al. Effect of foliar bio-fertilization on growth and biochemical parameters of olive trees at flowering. J. Plant Nutr. 2018, 41, 2281–2297. [Google Scholar] [CrossRef]
- Olfa, D.; Meriem, T.; Sevgi, Ö.; Tim, W.; Faouzi, A.; Mohamed, H.; Els, P.; Beligh, M. Foliar application of bio-fertilizers influenced the endogenous concentrations of phytohormones and amino acids in leaves and roots of olive trees (Olea europaea L. cv. Chemlali). Afr. J. Agric. Res. 2018, 13, 1777–1786. [Google Scholar] [CrossRef]
- Sotiropoulos, S.; Chatzissavvidis, C.; Papadakis, I.; Kavvadias, V.; Paschalidis, C.; Antonopoulou, C.; Koriki, A. Inorganic and organic foliar fertilization in olives. Hortic. Sci. 2023, 50, 1–11. [Google Scholar] [CrossRef]
- Chouliaras, V.; Tasioula, M.; Chatzissavvidis, C.; Therios, I.; Tsabolatidou, E. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaea L.) cultivar Koroneiki. J. Sci. Food Agric. 2009, 89, 984–988. [Google Scholar] [CrossRef]
- Elloumi, O.; Ghrab, M.; Ben Mimoun, M. Responses of olive trees (cv. Chemlali) after five years of experiment to potassium mineral nutrition under rainfed condition. In Proceedings of International Plant Nutrition Colloquium; UC Davis: Yolo County, CA, USA, 2009. [Google Scholar]
- Mengel, K. Alternative or complementary role of foliar supply in mineral nutrition. Acta Hortic. 2002, 594, 33–48. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, 2nd, ed.; American Society of Agronomy: Madison, CA, USA, 1982. [Google Scholar] [CrossRef]
- Westerman, R.L. Soil Testing and Plant Analysis, 3rd ed.; SSSA: Madison, CA, USA, 1990. [Google Scholar]
- ISO 11261; Soil Quality. Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995.
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis. A Working Manual, 2nd ed.; Sacred African Publishers: Nairobi, Kenya, 2002. [Google Scholar]
- Wolf, B. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Commun. Soil Sci. Plant Anal. 1971, 2, 363–374. [Google Scholar] [CrossRef]
- Parker, D.R.; Gardner, E.H. The determination of hot-water-soluble boron in some acid Oregon soils using a modified azomethine-H procedure. Commun. Soil Sci. Plant Anal. 1981, 12, 1311–1322. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Johnson, C.W.; Workman, S.M.; Jones, J.B., Jr.; Miller, R.O. Advances in ICP emission and ICP mass spectroscopy. Adv. Agron. 1998, 64, 28–113. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; Division of Agricultural Sciences, University of California: Riverside, CA, USA, 1961; p. 309. [Google Scholar]
- Jones, J.B.; Wolf, B.; Mills, H.A. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Inter-Pretation Guide; Micro-Macro Publishing: Athens, Greece, 1991. [Google Scholar]
- Wolf, B. Improvements in the azomethine-H method for the determination of boron. Commun. Soil Sci. Plant Anal. 2008, 5, 39–44. [Google Scholar] [CrossRef]
- Hansen, T.H.; de Bang, T.C.; Laursen, K.H.; Pedas, P.; Husted, S.; Schjørring, J.K. Multielement plant tissue analysis using ICP spectrometry. In Plant Mineral Nutrients. Methods in Molecular Biology (Methods and Protocols); Maathuis, F., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 953. [Google Scholar]
- Wintermans, J.; De Mots, A. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochim. Biophys. Acta 1965, 109, 448–453. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Tisdale, S.; Nelson, W.L.; Beaton, J.D.; Havlin, J.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 8th ed.; Pearson: Bloomington, MN, USA, 2013; 528p. [Google Scholar]
- Beutel, J.; Uriu, K.; Lilleland, O. Leaf analysis for California deciduous fruits. In Soil and Plant Tissue Testing in California; Bulletin, Division of Agricultural Sciences, University of California: Berkeley, CA, USA, 1983; Volume 1879, pp. 11–14. [Google Scholar]
- Koukoulakis, P.C.; Papadopoulos, A.H. The Interpretation of Leaf Diagnostics; Stamoulis Publications: Athens, Greece, 2003. (In Greek) [Google Scholar]
- Chatzissavvidis, C.; Therios, I. Response of four olive (Olea europaea L.) cultivars to six B concentrations: Growth performance, nutrient status and gas exchange parameters. Sci. Hortic. 2010, 127, 29–38. [Google Scholar] [CrossRef]
- Hegazi, E.S.; Kasim, N.E.; Yehia, T.A.; Abou Rayya, M.S.; Thanaa, S.M. Improving growth and productivity of olive trees through raising photosynthesis efficiency. Res. Pharm. Biol. Chem. Sci. 2016, 7, 2697. [Google Scholar]
- Danyaei, A.; Hassanpour, S.; Baghaee, M.A.; Dabbagh, M.; Babarabie, M. The effect of sulfur-containing humic acid on yield and nutrient uptake in olive fruit. Open J. Ecol. 2017, 7, 279–288. [Google Scholar] [CrossRef]
- El-Hoseiny, H.M.; Helaly, M.N.; Elsheery, N.I.; Alam-Eldein, S.M. Humic acid and boron to minimize the incidence of alternate bearing and improve the productivity and fruit quality of mango trees. HortScience 2020, 55, 1026–1037. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Sofalian, O.; Taheri, M.; Ghanbari, A.; Rasoli, V. Changes in fruit yield and photosynthesis parameters IN different olive cultivars (Olea europaea L.) under contrasting water regimes. Acta Sci. Pol. Hortorum Cultus 2020, 19, 135–147. [Google Scholar] [CrossRef]
- Roca, M.; Mínguez-Mosquera, M.I. Changes in chloroplast pigments of olive varieties during fruit ripening. J. Agric. Food Chem. 2001, 49, 832–839. [Google Scholar] [CrossRef]
- Cunningham, F.X.; Gantt, E., Jr. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 557–583. [Google Scholar] [CrossRef]
- Criado, M.N.; Morelló, J.R.; Motilva, M.J.; Romero, M.P. Effect of growing area on pigment and phenolic fractions of virgin olive oils of the Arbequina variety in Spain. J. Am. Oil Chem. Soc. 2004, 81, 633–640. [Google Scholar] [CrossRef]
- Xiang, Y.; Chang, S.X.; Shen, Y.; Chen, G.; Liu, Y.; Yao, B.; Xue, J.; Li, Y. Grass cover increases soil microbial abundance and diversity and extracellular enzyme activities in orchards: A synthesis across China. Appl. Soil Ecol. 2023, 182, 104720. [Google Scholar] [CrossRef]
Depth (cm) | Soil Texture | EC (mS/cm) | pH | CaCO3 (%) | Organic Matter (%) | Saturation (%) | Bulk Density (g/cm3) | CEC (meq/100 g) |
---|---|---|---|---|---|---|---|---|
AC | ||||||||
0–30 | SL | 0.100 | 6.58 | 0.03 | 2.00 | 35 | 1.28 | 25.21 |
30–60 | SL | 0.282 | 6.60 | 0.03 | 0.80 | 44 | - | 28.94 |
60–90 | SCL | 0.150 | 6.42 | 0.10 | 0.82 | 62 | - | 31.75 |
AL | ||||||||
0–30 | SL | 0.092 | 7.90 | 33.0 | 2.06 | 47 | 1.18 | 27.08 |
30–60 | SC | 0.150 | 8.00 | 35.7 | 0.79 | 60 | - | 29.88 |
60–90 | C | 0.150 | 7.90 | 37.5 | 0.73 | 65 | - | 22.41 |
Soil/Treatment | Cumulative Fruit Yield (kg/tree) | Cumulative Olive Oil Production (kg/tree) | Average Fruit Yield (kg/tree) | Average Olive Oil Production (kg/tree) | |
---|---|---|---|---|---|
Acidic soil | AC1 | 77.40 c | 11.37 c | 25.80 c | 3.79 c |
AC2 | 98.55 bc | 13.73 abc | 32.85 bc | 4.58 abc | |
AC3 | 110.53 ab | 15.33 ab | 36.84 ab | 5.11 ab | |
AC4 | 133.98 a | 16.68 a | 44.66 a | 5.56 a | |
AC5 | 97.65 bc | 11.16 c | 32.55 bc | 3.72 c | |
AC6 | 98.30 bc | 12.39 bc | 32.77 bc | 4.13 bc | |
AC7 | 100.00 bc | 14.27 abc | 33.33 bc | 4.76 abc | |
Alkaline soil | AL1 | 78.75 C | 16.43 D | 26.25 C | 5.47 D |
AL2 | 106.00 B | 22.44 BC | 35.33 B | 7.48 BC | |
AL3 | 157.50 A | 32.23 A | 52.50 A | 10.74 A | |
AL4 | 119.13 B | 26.93 B | 39.71 B | 8.97 B | |
AL5 | 111.00 B | 24.32 BC | 37.00 B | 8.11 BC | |
AL6 | 97.13 BC | 20.32 CD | 32.38 BC | 6.73 CD | |
AL7 | 98.88 BC | 20.68 CD | 32.96 BC | 6.89 CD |
Treatments | Fruit Production | N | P | K | Ca | Mg | B |
---|---|---|---|---|---|---|---|
AC1 | 68 c | 0.46 e | 0.18 ab | 0.67 b | 1.24 ab | 0.19 a | 24.0 c |
AC2 | 89 bc | 0.70 d | 0.16 bc | 0.73 b | 1.23 ab | 0.18 a | 29.3 b |
AC3 | 98 b | 0.85 c | 0.19 ab | 0.66 b | 1.28 ab | 0.20 a | 18.8 d |
AC4 | 125 a | 1.11 ab | 0.13 cd | 0.77 ab | 1.29 ab | 0.17 ab | 33.9 a |
AC5 | 87 bc | 1.12 ab | 0.14 cd | 0.88 a | 1.39 a | 0.15 b | 20.7 d |
AC6 | 86 bc | 0.99 b | 0.12 d | 0.66 b | 1.17 b | 0.19 a | 27.8 b |
AC7 | 89 bc | 1.16 a | 0.21 a | 0.68 b | 1.20 b | 0.19 a | 32.5 a |
Treatments | Fruit Production | N | P | K | Ca | Mg | B |
---|---|---|---|---|---|---|---|
AC1 | 3.65 a | 0.98 c | 0.16 ab | 0.79 a | 1.99 a | 0.20 a | 23.30 c |
AC2 | 2.80 a | 1.20 c | 0.15 ab | 0.78 a | 1.92 a | 0.19 a | 29.68 b |
AC3 | 4.78 a | 1.78 b | 0.16 ab | 0.82 a | 2.00 a | 0.20 a | 19.33 d |
AC4 | 2.98 a | 2.08 b | 0.13 c | 086 a | 1.96 a | 0.19 a | 34.28 a |
AC5 | 4.65 a | 2.05 b | 0.14 bc | 0.84 a | 2.05 a | 0.18 a | 21.05 cd |
AC6 | 4.80 a | 1.82 b | 0.12 c | 0.82 a | 1.90 a | 0.20 a | 28.23 b |
AC7 | 5.00 a | 2.37 a | 0.17 a | 0.82 a | 1.95 a | 0.21 a | 32.78 a |
Treatments | chla | chlb | chla + b | chl a/b | carot | chla | chlb | chla + b | chl a/b | carot |
---|---|---|---|---|---|---|---|---|---|---|
---------------- August 2020 ----------------- | ----------------- December 2020 --------------- | |||||||||
AC1 | 19.5 f | 5.92 f | 25.4 e | 3.30 a | 3.89 d | 20.6 d | 8.94 d | 29.5 d | 2.31 cd | 5.04 e |
AC2 | 23.8 e | 7.74 e | 31.6 d | 3.08 b | 4.78 b | 43.1 c | 16.18 c | 59.3 c | 2.68 b | 8.73 c |
AC3 | 29.4 a | 11.50 a | 40.9 a | 2.56 e | 5.12 a | 65.1 a | 26.53 a | 91.6 a | 2.45 c | 9.87 b |
AC4 | 26.4 d | 10.76 b | 37.1 c | 2.46 e | 4.49 c | 48.3 b | 21.82 b | 70.1 b | 2.22 d | 6.95 d |
AC5 | 28.7 b | 10.45 b | 39.1 b | 2.75 d | 5.22 a | 63.6 a | 21.90 b | 85.5 a | 2.91 a | 10.02 b |
AC6 | 28.2 bc | 9.83 c | 38.0 bc | 2.87 cd | 5.28 a | 62.7 a | 26.37 a | 89.0 a | 2.38 cd | 7.56 d |
AC7 | 27.4 cd | 9.11 d | 36.5 c | 3.01 bc | 5.25 a | 67.1 a | 24.30 ab | 91.4 a | 2.76 ab | 11.23 a |
Treatments | chla | chlb | chla + b | chl a/b | carot | chla | chlb | chla + b | chl a/b | carot |
---|---|---|---|---|---|---|---|---|---|---|
-------------------August 2021--------------- | -----------------December 2021---------------- | |||||||||
AC1 | 12.8 d | 1.12 d | 13.95 d | 11.70 a | 2.39 e | 16.9 d | 1.07 c | 17.9 d | 16.07 a | 2.92 c |
AC2 | 15.7 c | 1.59 cd | 17.27 b | 9.91 ab | 3.00 cd | 29.1 c | 2.11 c | 31.2 c | 13.90 a | 4.25 b |
AC3 | 20.6 a | 3.53 a | 24.11 a | 5.85 d | 3.49 ab | 40.6 a | 4.46 a | 45.1 a | 9.13 b | 4.86 a |
AC4 | 19.6 ab | 2.38 bc | 22.02 a | 9.00 bc | 3.30 bc | 40.7 a | 4.88 a | 45.5 a | 9.11 b | 4.28 b |
AC5 | 17.6 bc | 3.27 ab | 20.85 a | 5.55 d | 2.79 d | 37.7 ab | 4.17 a | 41.9 ab | 9.39 b | 3.93 b |
AC6 | 19.5 ab | 2.85 ab | 22.33 a | 7.11 cd | 3.46 ab | 34.2 bc | 3.60 bc | 37.8 b | 9.85 b | 4.17 b |
AC7 | 20.6 a | 2.76 ab | 23.36 a | 7.83 bcd | 3.86 a | 36.2 ab | 3.50 bc | 39.7 ab | 10.83 b | 4.37 ab |
Treatments | Fruit Production | N | P | K | Ca | Mg | B |
---|---|---|---|---|---|---|---|
AL1 | 25 C | 0.38 D | 0.12 C | 0.62 B | 1.17 D | 0.21 A | 13.5 B |
AL2 | 28 C | 0.77 C | 0.32 A | 0.82 A | 1.33 CD | 0.20 A | 22.1 A |
AL3 | 104 A | 0.78 C | 0.35 A | 0.89 A | 1.49 BC | 0.18 AB | 22.4 A |
AL4 | 52 B | 0.76 C | 0.22 B | 0.90 A | 1.37 C | 0.18 AB | 15.2 B |
AL5 | 56 B | 0.74 C | 0.14 C | 0.79 A | 1.48 BC | 0.20 A | 19.5 A |
AL6 | 31 C | 1.18 A | 0.13 C | 0.84 A | 1.57 B | 0.19 AB | 21.9 A |
AL7 | 53 B | 1.10 B | 0.12 C | 0.88 A | 1.75 A | 0.17 B | 20.1 A |
Treatments | Fruit Production | N | P | K | Ca | Mg | B |
---|---|---|---|---|---|---|---|
AL1 | 27 C | 0.30 D | 0.10 D | 0.80 A | 2.04 C | 0.22 A | 13.3 B |
AL2 | 44 AB | 1.64 AB | 0.22 A | 0.82 A | 2.06 BC | 0.21 AB | 21.9 A |
AL3 | 37 ABC | 1.44 C | 0.23 A | 0.82 A | 2.14 ABC | 0.20 AB | 22.6 A |
AL4 | 48 A | 1.50 ABC | 0.17 B | 0.79 A | 2.11 ABC | 0.19 AB | 15.4 B |
AL5 | 43 AB | 1.32 C | 0.13 CD | 0.79 A | 2.11 ABC | 0.21 AB | 19.7 A |
AL6 | 35 ABC | 1.67 A | 0.13 CD | 0.85 A | 2.17 AB | 0.20 AB | 22.1 A |
AL7 | 32 BC | 1.47 BC | 0.12 CD | 0.84 A | 2.20 A | 0.18 B | 20.5 A |
Treatments | chla | chlb | chla + b | chl a/b | carot | chla | chlb | chla + b | chl a/b | carot |
---|---|---|---|---|---|---|---|---|---|---|
------------August 2020--------------------- | ------------December 2020--------------- | |||||||||
AL1 | 35.0 D | 13.7 D | 48.7 C | 2.57 BC | 6.39 D | 35.7 D | 16.0 C | 51.7 D | 2.24 C | 10.41 BC |
AL2 | 36.3 D | 21.3 C | 57.6 B | 1.70 D | 7.27 C | 50.5 C | 24.3 B | 74.8 C | 2.07 D | 8.08 D |
AL3 | 64.2 A | 22.9 ABC | 87.1 A | 2.82 B | 10.92 A | 61.5 B | 27.4 AB | 88.9 B | 2.25 C | 9.37 CD |
AL4 | 58.1 B | 24.9 AB | 82.9 A | 2.34 C | 9.64 B | 66.0 B | 27.7 A | 93.7 AB | 2.39 B | 9.43 CD |
AL5 | 58.6 B | 22.1 BC | 80.7 A | 2.64 B | 10.14 B | 60.1 B | 28.0 A | 88.1 B | 2.14 D | 8.81 CD |
AL6 | 48.8 C | 14.4 D | 63.1 B | 3.42 A | 10.07 B | 67.9 B | 29.1 A | 97.0 AB | 2.33 BC | 11.14 B |
AL7 | 57.9 B | 25.4 A | 83.3 A | 2.28 C | 9.60 B | 75.6 A | 28.0 A | 103.6 A | 2.70 A | 13.38 A |
Treatments | chla | chlb | chla + b | chl a/b | carot | chla | chlb | chla + b | chl a/b | carot |
---|---|---|---|---|---|---|---|---|---|---|
-------------------August 2021------------ | ----------------December 2021----------- | |||||||||
AL1 | 13.2 BC | 2.77 C | 15.9 C | 4.86 A | 1.63 AB | 21.1 A | 3.86 A | 25.0 AB | 5.72 A | 2.42 AB |
AL2 | 11.9 C | 4.02 B | 15.9 C | 3.00 B | 1.06 CD | 19.4 AB | 3.81 A | 23.2 AB | 5.17 AB | 1.16 B |
AL3 | 12.2 C | 4.72 AB | 16.9 BC | 2.59 B | 0.74 D | 18.1 AB | 6.32 A | 24.5 AB | 2.89 B | 0.85 B |
AL4 | 15.7 A | 5.16 A | 20.9 A | 3.05 B | 1.31 BC | 20.8 AB | 4.03 A | 24.8 AB | 5.22 AB | 1.39 B |
AL5 | 14.4 AB | 4.89 AB | 19.3 AB | 2.99 B | 1.51 AB | 20.7 AB | 5.57 A | 26.3 A | 3.96 AB | 1.88 B |
AL6 | 12.3 C | 2.87 C | 15.1 C | 4.31 A | 1.67 AB | 16.9 B | 2.89 A | 19.8 B | 6.05 A | 1.76 B |
AL7 | 13.0 BC | 2.78 C | 15.7 C | 4.83 A | 1.72 A | 19.8 AB | 5.36 A | 20.4 B | 5.76 A | 4.64 A |
Source | Dependent Variable | df | Sig. (2020) | Sig. (2021) |
---|---|---|---|---|
Treatments | Fruit yield | 6 | 0.000 | 0.022 |
Chl a/b | 6 | 0.000 | 0.002 | |
Carotenoids | 6 | 0.000 | 0.000 | |
Soil | Fruit yield | 1 | 0.000 | 0.000 |
Chl a/b | 1 | 0.000 | 0.000 | |
Carotenoids | 1 | 0.000 | 0.000 | |
Soil × Treatments | Fruit yield | 6 | 0.000 | 0.007 |
Chl a/b | 6 | 0.000 | 0.000 | |
Carotenoids | 6 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotiropoulos, S.; Chatzissavvidis, C.; Papadakis, I.E.; Kavvadias, V.; Paschalidis, C.; Antonopoulou, C.; Kiriakopoulos, S. Enhancing the Yield of Mature Olive Trees via Comparative Fertilization Strategies, including a Foliar Application with Fulvic and Humic Acids, in Non-Irrigated Orchards with Calcareous and Non-Calcareous Soils. Horticulturae 2024, 10, 167. https://doi.org/10.3390/horticulturae10020167
Sotiropoulos S, Chatzissavvidis C, Papadakis IE, Kavvadias V, Paschalidis C, Antonopoulou C, Kiriakopoulos S. Enhancing the Yield of Mature Olive Trees via Comparative Fertilization Strategies, including a Foliar Application with Fulvic and Humic Acids, in Non-Irrigated Orchards with Calcareous and Non-Calcareous Soils. Horticulturae. 2024; 10(2):167. https://doi.org/10.3390/horticulturae10020167
Chicago/Turabian StyleSotiropoulos, Stavros, Christos Chatzissavvidis, Ioannis E. Papadakis, Victor Kavvadias, Christos Paschalidis, Chrysovalantou Antonopoulou, and Sotirios Kiriakopoulos. 2024. "Enhancing the Yield of Mature Olive Trees via Comparative Fertilization Strategies, including a Foliar Application with Fulvic and Humic Acids, in Non-Irrigated Orchards with Calcareous and Non-Calcareous Soils" Horticulturae 10, no. 2: 167. https://doi.org/10.3390/horticulturae10020167
APA StyleSotiropoulos, S., Chatzissavvidis, C., Papadakis, I. E., Kavvadias, V., Paschalidis, C., Antonopoulou, C., & Kiriakopoulos, S. (2024). Enhancing the Yield of Mature Olive Trees via Comparative Fertilization Strategies, including a Foliar Application with Fulvic and Humic Acids, in Non-Irrigated Orchards with Calcareous and Non-Calcareous Soils. Horticulturae, 10(2), 167. https://doi.org/10.3390/horticulturae10020167