Increasing Concentrations of Arthrospira maxima Sonicated Biomass Yields Enhanced Growth in Basil (Ocimum basilicum, Lamiaceae) Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cyanobacterial Biomass
2.2. Characterization of Cyanobacterial Biomass
2.3. Shade House Experiment
2.4. Statistical Analysis
3. Results
3.1. Shade House Experiment Responses
3.2. Characterization of A. maxima
4. Discussion
4.1. Shade House Experiment
4.2. Biomass Characterization
4.3. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mutale-Joan, C.; Sbabou, L.; Hicham, E.A. Microalgae and Cyanobacteria: How Exploiting These Microbial Resources Can Address the Underlying Challenges Related to Food Sources and Sustainable Agriculture: A Review. J. Plant Growth Regul. 2023, 42, 1–20. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers, Vol 2; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as Sources of Carotenoids. Mar. Drugs 2011, 9, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Francés, E.; Escudero-Oñate, C. Cyanobacteria and Microalgae in the Production of Valuable Bioactive Compounds. Microalgal Biotechnol. 2018, 6, 104–128. [Google Scholar] [CrossRef]
- Pathak, J.; Rajneesh; Maurya, P.K.; Singh, S.P.; Häder, D.P.; Sinha, R.P. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Front. Environ. Sci. 2018, 6, 7. [Google Scholar] [CrossRef]
- Rajneesh; Singh, S.P.; Pathak, J.; Sinha, R.P. Cyanobacterial Factories for the Production of Green Energy and Value-Added Products: An Integrated Approach for Economic Viability. Renew. Sustain. Energy Rev. 2017, 69, 578–595. [Google Scholar] [CrossRef]
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. Sci. World J. 2012, 2012, 491206. [Google Scholar] [CrossRef] [PubMed]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed Characterization of the Arthrospira Type Species Separating Commercially Grown Taxa into the New Genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Freitas, J.; Fernandes, I.; Silva, P. Microalgae as Biofertilizers: A Sustainable Way to Improve Soil Fertility and Plant Growth. Sustainability 2023, 15, 12413. [Google Scholar] [CrossRef]
- Vaishampayan, A.; Sinha, R.P.; Hader, D.P.; Dey, T.; Gupta, A.K.; Bhan, U.; Rao, A.L. Cyanobacterial Biofertilizers in Rice Agriculture. Bot. Rev. 2001, 67, 453–516. [Google Scholar] [CrossRef]
- Singh, S. A Review on Possible Elicitor Molecules of Cyanobacteria: Their Role in Improving Plant Growth and Providing Tolerance against Biotic or Abiotic Stress. J. Appl. Microbiol. 2014, 117, 1221–1244. [Google Scholar] [CrossRef]
- Michalak, I.; Górka, B.; Wieczorek, P.P.; Rój, E.; Lipok, J.; Łęska, B.; Messyasz, B.; Wilk, R.; Schroeder, G.; Dobrzyńska-Inger, A.; et al. Supercritical Fluid Extraction of Algae Enhances Levels of Biologically Active Compounds Promoting Plant Growth. Eur. J. Phycol. 2016, 51, 243–252. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Zhou, W.; Yuan, W.; Wang, D. Algal Cell Lysis by Bacteria: A Review and Comparison to Conventional Methods. Algal Res. 2020, 46, 101794. [Google Scholar] [CrossRef]
- Aly, M.S.; Esawy, M.A. Evaluation of Spirulina platensis as Biostimulator for Organic Farming Systems. J. Genet. Eng. Biotechnol. 2008, 6, 1–7. [Google Scholar]
- Dineshkumar, R.; Subramanian, J.; Gopalsamy, J.; Jayasingam, P.; Arumugam, A.; Kannadasan, S.; Sampathkumar, P. The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.). Waste Biomass Valorization 2019, 10, 1101–1110. [Google Scholar] [CrossRef]
- Refaay, D.A.; El-Marzoki, E.M.; Abdel-Hamid, M.I.; Haroun, S.A. Effect of Foliar Application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as Biostimulants for Common Bean. J. Appl. Phycol. 2021, 33, 3807–3815. [Google Scholar] [CrossRef]
- Santini, G.; Rodolfi, L.; Biondi, N.; Sampietro, G.; Tredici, M.R. Effects of Cyanobacterial-Based Biostimulants on Plant Growth and Development: A Case Study on Basil (Ocimum basilicum L.). J. Appl. Phycol. 2022, 34, 2063–2073. [Google Scholar] [CrossRef]
- El-Naggar, A.H.M.; Hassan, M.R.A.; Shaban, E.H.; Mohamed, M.E.A. Effect of Organic and Biofertilizers on Growth, Oil Yield and Chemical Composition of the Essential Oil of Ocimum basillicum L. Plants J. Agric. Res. 2015, 60, 1–16. [Google Scholar]
- Baczek, K.; Kosakowska, O.; Gniewosz, M.; Gientka, I.; Weglarz, Z. Sweet Basil (Ocimum basilicum L.) Productivity and Raw Material Quality from Organic Cultivation. Agronomy 2019, 9, 279. [Google Scholar] [CrossRef]
- Rajasekaran, C.; Ajeesh, C.P.M.; Balaji, S.; Shalini, M.; Siva, R.; Das, R.; Fulzele, D.P.; Kalaivani, T. Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains. Walailak J. Sci. Technol. (WJST) 2016, 13, 67–75. [Google Scholar]
- IDEAM. Irradiación Global Horizontal Medio Diario Anual. Available online: http://bart.ideam.gov.co/cneideam/Galeria_de_mapas/QUIMICA%20DE%20LA%20ATMOSFERA/Irradiación%20Global%20Horizontal%20Medio%20Diario%20Anual.pdf (accessed on 29 May 2023).
- Horwitz, W. AOAC Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Kjeldahl, J. Neue Methode Zur Bestimmung Des Stickstoffs in Organischen Körpern. Fresenius’ Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Yalçın, S.; Şükran Okudan, E.; Karakaş, Ö.; Önem, A.N.; Sözgen Başkan, K. Identification and Quantification of Some Phytohormones in Seaweeds Using UPLC-MS/MS. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 475–484. [Google Scholar] [CrossRef]
- Standard Methods Online—Standard Methods for the Examination of Water and Wastewater. Available online: http://standardmethods.org/ (accessed on 29 April 2023).
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids; Agilent Technical Note: 5980-1193E; Agilent Technologies: Santa Clara, CA, USA, 1999. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing 2022; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Uniyal, S.; Bhandari, M.; Singh, P.; Singh, R.K.; Tiwari, S.P. Cytokinin Biosynthesis in Cyanobacteria: Insights for Crop Improvement. Front. Genet. 2022, 13, 933226. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Ahmed, M.; Stal, L.; Hasnain, S. Production of Indole-3-Acetic Acid by the Cyanobacterium Arthrospira platensis Strain MMG-9. J. Microbiol. Biotechnol. 2010, 20, 1259–1265. [Google Scholar] [CrossRef]
- Zapata, D.; Arroyave, C.; Cardona, L.; Aristizábal, A.; Poschenrieder, C.; Llugany, M. Phytohormone Production and Morphology of Spirulina Platensis Grown in Dairy Wastewaters. Algal Res. 2021, 59, 102469. [Google Scholar] [CrossRef]
- Bubán, T. The Use of Benzyladenine in Orchard Fruit Growing: A Mini Review. Plant Growth Regul. 2000, 32, 381–390. [Google Scholar] [CrossRef]
- Schwechheimer, C. Understanding Gibberellic Acid Signaling—Are We There Yet? Curr. Opin. Plant Biol. 2008, 11, 9–15. [Google Scholar] [CrossRef]
- Yan, Y.-H.; Li, J.-L.; Zhang, X.-Q.; Yang, W.-Y.; Wan, Y.; Ma, Y.-M.; Zhu, Y.-Q.; Peng, Y.; Huang, L.-K. Effect of Naphthalene Acetic Acid on Adventitious Root Development and Associated Physiological Changes in Stem Cutting of Hemarthria compressa. PLoS ONE 2014, 9, e90700. [Google Scholar] [CrossRef]
- Pan-utai, W.; Poopat, N.; Parakulsuksatid, P.; Pan-utai, W. Photoautotrophic Cultivation of Arthrospira maxima for Protein Accumulation under Minimum Nutrient Availability. Appl. Food Biotechnol. 2020, 7, 225–233. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, D.; Liu, Q. Connections Between Amino Acid Metabolisms in Plants: Lysine as an Example. Front. Plant Sci. 2020, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Editorial: Amino Acids in Plants: Regulation and Functions in Development and Stress Defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Z. The Chemicals of Spirulina. In Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology; Vonshak, A., Ed.; Taylor & Francis Ltd.: London, UK, 2002; pp. 175–204. ISBN 0-203-48396-0. [Google Scholar]
- Raji, A.A.; Jimoh, W.A.; Bakar, N.H.A.; Taufek, N.H.M.; Muin, H.; Alias, Z.; Milow, P.; Razak, S.A. Dietary Use of Spirulina (Arthrospira) and Chlorella Instead of Fish Meal on Growth and Digestibility of Nutrients, Amino Acids and Fatty Acids by African Catfish. J. Appl. Phycol. 2020, 32, 1763–1770. [Google Scholar] [CrossRef]
- Arahou, F.; Hassikou, R.; Arahou, M.; Rhazi, L.; Wahby, I. Influence of Culture Conditions on Arthrospira platensis Growth and Valorization of Biomass as Input for Sustainable Agriculture. Aquac. Int. 2021, 29, 2009–2020. [Google Scholar] [CrossRef]
- Thuriès, L.; Houot, S.; Viel, M. Cours N°7: Normes et Réglementations, 7.2. Réglamentation: L’example Des Fertilisants Organiques; UVED-CIRAD: Rennes, France, 2010. [Google Scholar]
- Nestel, P.; Bouis, H.E.; Meenakshi, J.; Pfeiffer, W. Biofortification of Staple Food Crops. J. Nutr. 2006, 136, 1064–1067. [Google Scholar] [CrossRef]
- Rana, A.; Joshi, M.; Prasanna, R.; Shivay, Y.S.; Nain, L. Biofortification of Wheat through Inoculation of Plant Growth Promoting Rhizobacteria and Cyanobacteria. Eur. J. Soil. Biol. 2012, 50, 118–126. [Google Scholar] [CrossRef]
- Nishanth, S.; Prasanna, R.; Hossain, F.; Muthusamy, V.; Shivay, Y.S.; Nain, L. Interactions of Microbial Inoculants with Soil and Plant Attributes for Enhancing Fe and Zn Biofortification in Maize Genotypes. Rhizosphere 2021, 19, 100421. [Google Scholar] [CrossRef]
- Parulekar, Y.; Haldankar, P.M.; Dalvi, N.; Salvi, B. Nutraceuticals and Their Biofortification in Vegetable Crops: A Review. Adv. Agric. Res. Technol. J. 2019, III, 219–229. [Google Scholar]
- Kumari, M.; Sharma, D.; Sandeep, S. Biofortification of Vegetable Crops: An Option for Mitigating Hidden Hunger. Int. J. Econ. Plants 2022, 9, 184–193. [Google Scholar]
- Vergel-Suarez, A.H.; García-Martínez, J.B.; López-Barrera, G.L.; Barajas-Solano, A.F.; Zuorro, A. Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin. BioTech 2023, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Burja, A.M.; Abou-Mansour, E.; Banaigs, B.; Payri, C.; Burgess, J.G.; Wright, P.C. Culture of the Marine Cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for Bioprocess Intensified Production of Cyclic and Linear Lipopeptides. J. Microbiol. Methods 2002, 48, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
Macronutrient | A. maxima Sonicated Biomass (40 g L−1) | Dry A. maxima | OptiMar Algas Marinas (4 mL L−1) |
---|---|---|---|
Total Nitrogen (%) | 0.44 ± 0.003 | 10.33 ± 0.15 | 0.004 ± 0.00 |
Potassium (mg 100−1 g−1) | 36.62 ± 0.04 | 1458.25 ± 19.07 | 14.68 ± 0.02 |
Magnesium (mg 100−1 g−1) | 3.98 ± 0.01 | 200.85 ± 0.82 | 0.12 ± 0.001 |
Phosphorous (mg 100−1 g−1) | 30.15 ± 0.02 | 866.12 ± 15.96 | 0.04 ± 0.00 |
Amino Acids | Concentration (µmol g−1 Sample) | Relative Composition |
---|---|---|
Aspartate | 177.05 | 17.2% |
Glutamate | 161.47 | 15.7% |
Serine | 67.76 | 6.6% |
Glutamine | 145.55 | 14.2% |
Histidine | 33.21 | 3.2% |
Glycine | 34.70 | 3.4% |
Arginine | 170.73 | 16.6% |
Alanine | 22.62 | 2.2% |
Tyrosine | 9.40 | 0.9% |
Cysteine | 35.14 | 3.4% |
Valine | 13.74 | 1.3% |
Methionine | 0.00 | 0.0% |
Phenylalanine | 0.00 | 0.0% |
Isoleucine | 29.29 | 2.8% |
Leucine | 18.80 | 1.8% |
Lysine | 75.07 | 7.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Marín, C.A.; Estrada-Peláez, J.A.; Delgado Naranjo, J.M.; Zapata Ocampo, P.A. Increasing Concentrations of Arthrospira maxima Sonicated Biomass Yields Enhanced Growth in Basil (Ocimum basilicum, Lamiaceae) Seedlings. Horticulturae 2024, 10, 168. https://doi.org/10.3390/horticulturae10020168
Marín-Marín CA, Estrada-Peláez JA, Delgado Naranjo JM, Zapata Ocampo PA. Increasing Concentrations of Arthrospira maxima Sonicated Biomass Yields Enhanced Growth in Basil (Ocimum basilicum, Lamiaceae) Seedlings. Horticulturae. 2024; 10(2):168. https://doi.org/10.3390/horticulturae10020168
Chicago/Turabian StyleMarín-Marín, Camila Andrea, José Alberto Estrada-Peláez, Juan Martín Delgado Naranjo, and Paola Andrea Zapata Ocampo. 2024. "Increasing Concentrations of Arthrospira maxima Sonicated Biomass Yields Enhanced Growth in Basil (Ocimum basilicum, Lamiaceae) Seedlings" Horticulturae 10, no. 2: 168. https://doi.org/10.3390/horticulturae10020168
APA StyleMarín-Marín, C. A., Estrada-Peláez, J. A., Delgado Naranjo, J. M., & Zapata Ocampo, P. A. (2024). Increasing Concentrations of Arthrospira maxima Sonicated Biomass Yields Enhanced Growth in Basil (Ocimum basilicum, Lamiaceae) Seedlings. Horticulturae, 10(2), 168. https://doi.org/10.3390/horticulturae10020168