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Abstract: Citrus tangerines are famous fruits worldwide, and monitoring the water content of
citrus leaves is highly important for citrus production. However, there are still challenges in
quantitatively estimating the water content of citrus leaves using hyperspectral technology, and
the random noise generated during spectral acquisition and the overlapping peaks in the sensitive
band of the citrus leaf water content will affect estimation accuracy. To solve these problems
and further explore the roles of the continuous wavelet transform (CWT) and fractional-order
derivative (FOD) in the estimation of citrus leaf water content, this study intends to use of CWT and
FOD to decompose the original spectrum, and then compare the correlation between the original
spectrum and leaf water content to explore whether the decomposition treatment has improved
the correlation between spectrum and leaf moisture content. Then, the successive projections
algorithm (SPA) was used to select feature bands and combine spectral vegetation indices. Partial
least squares regression (PLSR) was used to construct water-content inversion models for citrus
leaves, and the inversion accuracies of two commonly used spectral preprocessing methods were
compared. The results indicate that (1) the CWT can improve the sensitivity of the spectrum
to the citrus leaf water content to a certain extent, and the inversion accuracy of the CWT is
approximately 5% greater than that of the FOD. (2) On the basis of the CWT and FOD methods,
the inversion accuracy of the citrus leaf water content based on SPA screening increased by 9.61%
and 9.29%, respectively, compared with the original spectrum. (3) Under CWT decomposition,
Scale4 of the Gaus1 wavelet was screened by the SPA, and the inversion model of citrus leaf
water content was constructed by combining the spectral vegetation index NDVI with the best
results. The R-squared (R2) and root mean square error (RMSE) values were 0.7491 and 0.0284,
respectively, which were both 0.0138 greater than those of the best inversion model for the FOD
R2. In conclusion, the CWT-SPA combined with the spectral vegetation index can improve the
sensitivity of the spectrum to the citrus leaf water content, eliminate a large amount of redundant
data, and enhance the prediction ability and stability of the citrus leaf water content.

Keywords: citrus leaf moisture content; CWT; FOD; SPA; spectral vegetation index

1. Introduction

Citrus tangerines are famous fruits that are highly valued in domestic and foreign
markets. China is the largest producer of citrus fruits, accounting for 72.08% of the world’s
citrus planting area and 83.19% of the world’s production. The Guangxi Zhuang Au-
tonomous Region is one of the most important citrus-producing areas in China; it had a
citrus planting area of 9.48 million mu and a production of 18.68 million tons in 2022, the
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highest in the country for eight consecutive years, accounting for 22.21% of the country’s
total planting area and making significant contributions to the development of China’s
citrus industry. As one of the important indicators for evaluating the growth and develop-
ment of crops, leaf water content can reflect the growth and disease resistance of crops [1].
A lack of leaf water can affect leaf activity, leading to hindered material transport and
reduced chlorophyll content, thereby inhibiting photosynthesis [2], which plays a key role
in the growth and yield of citrus tangerines. In recent years, hyperspectral technology has
been widely used for the quantitative estimation of various crop growth indicators, such
as chlorophyll content, leaf area index, and water content [1,3–6], due to its advantages
of multiple bands and excellent accuracy [7]. Therefore, further exploration of the use
of hyperspectral technology for predicting leaf water content information during citrus
growth is highly important for assisting in monitoring citrus growth.

Currently, the use of portable geophysical spectrometers (ASDs) is the main way to
acquire high-precision hyperspectral data. However, when obtaining hyperspectral data
from crop leaves, internal factors in the instrument’s system can cause random noise [8]
which overlaps with the effective information about the citrus leaf water content in the
frequency band [1]; moreover, the spectral curves are affected by the viscosity of the
substance, the particle size, and other special states, as well as the experimentally relevant
conditions [9]; therefore, it is very important to adopt suitable preprocessing methods for
hyperspectral data. Commonly used spectral preprocessing methods currently include
SG smoothing, the second-order derivative (SD), multivariate scattering correction (MSC),
and a combination of several preprocessing methods [10] which are conventional methods
that can improve the signal-to-noise ratios of spectral intensities but cannot effectively
eliminate the effect of spectral overlap. In contrast, the continuous wavelet transform
(CWT) and fractional-order derivative (FOD) methods are currently more effective for
resolving spectral overlapping features and redundant background signals by refining
spectral information in image analysis and analytical chemistry, respectively [6,11–13].
Among them, the CWT, with its rich wavelet basis functions and multiresolution analysis
advantages, can decompose leaf reflectance spectra into many scale components and
model the relationship between the wavelet coefficients of each component and the leaf
water content, thus attenuating, to a certain extent, the negative impact of optical noise
on hyperspectral data [14], and it is able to improve the correlation between the spectra
and crop growth information. The CWT has been used to improve the accuracy of model
inversion for soil moisture content [15], winter wheat chlorophyll content [13], and winter
wheat canopy leaf water content [6]. Unlike the first and second derivatives, the FOD can
reduce the overlap between effective information and noise, achieving the interpolation
of various extreme points within the original spectral curve of the blade. This enables
the development of more effective information on leaf water content to be obtained from
spectral curves [16], and, by changing the spectral absorption band and overlapping peak
shape, the impact on the original spectral data curve of the leaves is reduced [17]. The FOD
has been used to achieve better results in estimating citrus leaf chlorophyll content [18] and
the simultaneous estimation of multiple soil properties [19], thereby improving estimation
accuracy. In previous studies, few researchers considered extending the CWT and FOD
transformation methods to the estimate citrus leaf water content, and further investigations
and analyses are needed to compare and contrast how well these two methods work in the
estimation of citrus leaf water content.

Due to the wide band range of hyperspectral data, determining how to extract char-
acteristic bands applicable to a citrus leaf water content estimation from a large amount
of hyperspectral data is the key to effectively leveraging the advantages of hyperspectral
data. Recursive feature elimination (RFE), the successive projections algorithm (SPA), the
competitive adaptive reweighted (CARS) method and other methods are commonly used
for spectral feature optimisation [2,20–22]. Among them, the SPA can eliminate redundant
data and screen feature bands to improve model efficiency by minimising the influence of
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collinearity effects in calibration datasets [23], and some scholars have used it to accurately
and quickly predict seed vitality [24].

The spectral vegetation index is, to some extent, related to plant growth information [1]
which can more mathematically reflect vegetation characteristics [25] and play an important
role in monitoring changes in leaf water content and leaf area index values [26]. To further
improve inversion accuracy, many scholars have used different spectral preprocessing
methods combined with spectral vegetation indices to invert the growth information of
crops such as winter wheat and maize; these methods have achieved better results [26–28].
There has been no relevant research on the combination of vegetation indices with the CWT
or FOD feature bands for the inversion of citrus leaf water content.

Considering the important impact of leaf water content on citrus yield, to fill the
research gap mentioned above, this study used the Citrus Cooperative Practice Base in
Yanshan District, Guilin City, as its study area. The water content of citrus leaves and
corresponding hyperspectral data were collected, the raw spectral data of the citrus leaves
were decomposed using the CWT and FOD methods, and the characteristic bands were
screened using the SPA algorithm. Finally, partial least squares regression (PLSR) was
used to construct a water-content inversion model for citrus leaves by combining spectral
vegetation indices. The research objectives of this study were as follows:

(1) Use the CWT and FOD methods to process the raw spectral data of citrus leaves to
explore and compare the roles of the CWT and FOD in the inversion accuracy of citrus
leaf water content.

(2) Use the SPA to explore sensitive band regions for inverting citrus leaf water content
and then combine spectral vegetation indices to explore whether the ability to predict
citrus leaf water content information can be enhanced.

(3) Based on the SPA combined with the spectral vegetation index, compare the CWT and
FOD inversion models to determine the best model for inverting the water content of
citrus leaves.

2. Data and Methods
2.1. Overview of the Study Area

The exact location of Guilin, the city with the highest production and sales of citrus
in Guangxi Province, is shown in Figure 1a. Located in the subtropical zone, the weather
is warm and humid, with four distinct seasons. The average temperature throughout
the year is above 18 ◦C, with more than 1000 mm of precipitation, abundant rainfall, a
wide range of soil types, and abundant organic matter, potassium, calcium, and other
elements. Due to the fact that citrus tangerines require an average annual sunshine
duration of 1660 h, abundant sunshine and long sunshine duration are very important.
Therefore, these favourable climatic conditions are conducive to ensuring that citrus
tangerine trees are in the best growth situation. This study took the Citrus Cooperative
Practice Base in Yanshan District, Guilin City, as a research area (25◦3′1′′ N, 110◦17′11′′ E)
and two-year-old citrus tangerine trees as the objects of this experiment. Figure 1b shows
the growth of the fruit trees, and Figure 1c shows the location of leaf collection.

2.2. Data and Spectral Collection
2.2.1. Sample Collection

The data for this experiment were collected in the morning of 8 April 2023 in the
citrus study area, and a total of 57 citrus tangerine trees were selected as sample fruit
trees. The sample trees were divided into east, south, west, and north directions to collect
5 leaves, which were packed into 4 sealed bags after collection according to the number.
Afterward, the bags were immediately placed in a constant-temperature box for subsequent
experiments to measure the fresh weight, dry weight, spectrum, chlorophyll value, leaf
area, and so on. A total of 1140 leaves in 228 bags were collected from the 57 fruit trees.
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Figure 1. Overview of the study area: (a) the specific location of Guilin; (b) growth of fruit trees;
(c) collection location of leaf blades; (d) specification of the device; (e) placement of leaf blades; (f) in
situ hyperspectral curves of leaf blades; (g) spectral reflectance of leaf blades at 401~2400 nm.

2.2.2. Spectral Acquisition

A portable ground spectrometer (ASD) was used to acquire hyperspectral data from
the 1140 collected leaves. The equipment parameters are shown in Figure 1d. Before using
the ASD for leaf spectral measurements, it is necessary to preheat the ASD instrument with
power for more than 15 min, after which the instrument is calibrated using a calibration
white board on the bottom of the handheld leaf holder. The collected citrus tangerines
leaves were placed in a handheld leaf holder so that the front side of each leaf was aligned
with the light source of the handheld leaf holder, and then the leaf was clamped to ensure
that it was impervious to light, as shown in Figure 1e. After the spectral curve on the
mobile computer stabilised, 10 spectral curves were saved, each of which was obtained by
averaging the 10 spectra, as shown in Figure 1f. Then, by averaging the 10 saved spectral
curves, the final spectral curve of the leaf was obtained. During the measurement process,
it was necessary to ensure that the instrument was calibrated once every 20 leaves, which
can stabilise and realise the acquired spectral curve. Due to the effect of optical noise, the
optoelectronic transmission and processing of spectral data generate more noise in the
(350~400 nm) and (2401~2500 nm) spectral reflectance ranges [29]. Therefore, the spectral
reflectances of the above two ranges were removed, as shown in Figure 1g.

2.2.3. Water Content Measurement

In order to reduce the impact of natural water loss on citrus tangerine spectra, espe-
cially in the visible light band, this article adopted the drying method [30]. This study
used the drying method to determine the water content of the citrus leaves. The collected
citrus leaves were separated and used to determine the fresh weight (fresh weight, FW) of
the leaves via precision electronic weighing. Then, all the leaves were placed in an oven,



Horticulturae 2024, 10, 177 5 of 15

blanched at 105 ◦C for 30 min, and dried to a constant weight at 80 ◦C, after which the dry
weights of the leaves were determined (dry weight, DW). The water content values of the
citrus leaves (relative water content, RWC) were calculated based on the fresh weight and
the dry weight values of each citrus leaf according to Equation (1):

RWC =
FW − DW

FW
× 100% (1)

The data from the leaves were divided into a training set (182) and a test set (46) at a
ratio of 4:1. After measurement, the water content distribution range in the citrus leaves
ranged from 48.51% to 77.87%, with an average of 61.55% and a variance of 0.22%.

2.3. Research Methods
2.3.1. CWT

The CWT is a data analysis method that represents a signal as a set of wavelet functions
of different scales and frequencies, thus allowing us to better understand the local features
of the signal and to reconstruct and transform the signal while maintaining the reversibility
and integrity of the original information [1]. Therefore, it performs well in spectral signal
scale decomposition, noise reduction, and feature wavelength selection [31].

The CWT has different wavelet functions which need to be selected for different
spectral processing purposes in practical applications. Among them, the Gaussian wavelet
does not exhibit significant oscillations or abrupt changes compared to other wavelet
functions, increasing the stability of signal processing and analysis. In addition, it can
better preserve the local features of the signal and analyse short-term and local features
better. Therefore, this study used Gaussian wavelets in the CWT to decompose the spectra
of citrus leaves.

The mathematical formulation of the CWT is shown in Equation (2):

W(a, b) =
1√
a

∫ +∞

−∞
x(t)Ψ*(

t − b
a

)dt (2)

where x(t) is the input signal, Ψ*(t) is the conjugate of the wavelet function, a and b
represent the scale and translation, respectively, and W(a, b) represents the corresponding
wavelet coefficients. The leaf spectral reflectance was transformed into two-dimensional
wavelet coefficients using the CWT [15] with Equations (3) and (4):

Wf(a,b) =
∫ +∞

−∞
f(λ)Ψa,b(λ)dλ (3)

Ψa,b =
1√
a

Ψ(
λ − b

a
) (4)

where Wf(a,b) is the wavelet coefficient, f(λ) is the leaf spectral reflectance, λ is the spec-
tral band in the range of 401~2400 nm, and Ψa,b(λ) is the Gaussian wavelet function
transformed by the scaling factor a and scaling factor b.

The decomposition scale of the CWT plays an important role in improving prediction
accuracy [32]. Therefore, in this study, the spectra of citrus leaves were decomposed into
20 scales to determine the optimal scale for estimating the water content of citrus leaves.

2.3.2. FOD

The FOD method involves comparisons with first-, second-, and third-order deriva-
tives, which obtains derivatives of different fractional orders, thereby discovering subtle
differences between different fractional orders and achieving continuous interpola-
tion [33]. Many mathematical definitions of the FOD have been developed, such as the
Riemann–Liouville, Caputo, and Grunwald–Letnikov methods [34]. Among these meth-
ods, the Grunwald–Letnikov method performs well in inversion and evaluation [35].
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Therefore, this study used the Grunwald–Letnikov differential form to process the leaf
hyperspectral data. The differential formula is shown in Equation (5):

dn
t f(t) = lim

n→0

1
hn ∑[(t−t0)/h]

j=1 (−1)j
(

n
j

)
f(t − jh) (5)

where n denotes the order of the derivative, h is the step size, t and t0 denote the upper
and lower limits of the difference, respectively, and [(t − t0)/h] denotes the integer part of
(t − t0)/h.

To reduce the problem of spectral information overlap, this study decomposed the
original data into twentieth-order derivatives using the FOD which are represented by
(0, 0.1, 0.2, . . ., 2), with a step size of 0.1, where 0, 1, and 2 represent the original spectrum
and the first and second derivatives, respectively.

2.3.3. SPA

The SPA is a variable selection algorithm that can help improve the accuracy of various
multiple linear regression analyses by minimising the effects of covariance effects in the
calibration dataset [36]. Redundant data are eliminated from the original spectral matrix by
extracting several characteristic wavelengths from the spectral data, and this algorithm is
commonly used to screen spectral data for characteristic wavelengths.

2.4. Spectral Vegetation Indices

Spectral vegetation indices are related to crop growth information to some extent
because they are susceptible to the geographical conditions under which crops are grown [1].
The NDVI can reflect indicators such as crop water content changes and leaf area index [26],
and the near-infrared (NIR) and shortwave-infrared (SWIR) bands are closely related to
water absorption bands; these bands can respond to changes in vegetation leaf water content
within a certain range by combining reference bands and corresponding characteristic
bands [3]. Therefore, ten spectral vegetation indices were selected, as shown in Table 1, and
their Pearson correlation coefficients with water content were calculated separately.

Table 1. Formulae for calculating spectral vegetation indices.

Spectral Vegetation Index Computational Formula Pearson Correlation

NDVI (R800 − R680)/(R800 + R680) 0.4739
MSI R1600/R820 −0.4787

NMDI (R860 − (R1640 − R2130) )/(R860 + (R1640 − R2130) ) 0.4125
PWI (R900/R970)/[(R800 − R680)/(R800 + R680)] −0.3547

NDWI1200 (R860 − R1200)/(R860 + R1200) 0.6063
NDWI1240 (R860 − R1240)/(R860 + R1240) 0.6305
NDWI1640 (R860 − R1640)/(R860 + R1640) 0.4923

WI R900/R970 0.6716
VARI (R555 − R645)/(R555 + R645 − R450) 0.5641
SRWI R860/R1240 0.6367

2.5. Regression Model and Accuracy Evaluation

After preprocessing the hyperspectral data of citrus leaves with the CWT and FOD,
we used the continuous projection method to screen the characteristic bands and then
combined the results with the single vegetation index to construct an inverse model of
citrus leaf water content using PLSR. This study evaluated the accuracy of the inversion
results for the citrus leaf water content through the R-squared (R2) and root mean square
error (RMSE). The higher the R2 and the smaller the RMSE are, the better and more stable
the accuracy of the model is, which indicates the best inversion model. The corresponding
formulas are shown in (6) and (7):
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R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (6)

RMSE =

√
∑n

i=1(ŷi−yi)
2

n
(7)

where n is the number of data points, yi is the measured value of the citrus leaf water
content, ŷi is the predicted value of the citrus leaf water content, and yi is the mean value
of the leaf water content.

3. Results and Analyses
3.1. Comparison of Inversion Accuracy between CWT and FOD Spectral Preprocessing of
Citrus Leaves

To investigate whether comparing CWT and FOD results can improve the inversion ac-
curacy and degree of influence on the water content of citrus leaves, this study decomposed
the spectral data of the 228 citrus leaf samples into 20 scales using the CWT, represented by
Scale1, Scale2, Scale3, . . ., Scale20. The derivatives were decomposed into twentieth-order
derivatives using the FOD which are represented by (0, 0.1, 0.2, . . ., 2) with a step size of
0.1, where 0, 1, and 2 represent the original spectrum and the first and second derivatives,
respectively. The transformed data were subsequently used to construct an inverse model
of citrus leaf water content via PLSR, after which the results were validated. The results
are shown in Figure 2. Figure 2a,b show the R2 values for different wavelet scales with
different fractional-order derivatives, and Figure 2c,d show the RMSE values for different
wavelet scales with different fractional-order derivatives.

As seen in Figure 2, after the CWT permutation decomposition, in which the prediction
accuracy of Scale4~20 showed a decreasing trend and the difference between the training
set and the test set became bigger and bigger, mainly because the effective information
about the citrus leaf water content and the high-frequency noise of the spectra had a certain
degree of overlap on the waveband, the CWT then led to a redistribution of the effective
information and the high-frequency noise with more high-frequency noise, thus leading
to a decrease in prediction accuracy [1]. However, the accuracy of most spectral data was
improved compared to that of the original spectral data, which indicates that the CWT can
improve the inversion accuracy of the relevant indices to a certain extent [1,6,8,15]. After
the FOD decomposition, the inversion effect of the 0.1-order derivative was better than
that of the other derivatives, but the prediction accuracy of each fractional order was lower
than that of the original spectral data. As the fractional order increased, the spectral noise
was further amplified, which led to a decreasing trend in prediction accuracy [37]. This
indicates that the application of fractional derivatives for improving the inversion accuracy
of citrus leaf water content is less effective.

A comparison of the R2 and RMSE values of the citrus leaf water content inversion
models of the CWT and FOD showed that the difference in R2 between the CWT training set
and the test set was approximately 5%, which is a smaller and more stable difference than
that between the FOD training set and the test set and did not cause overfitting; moreover,
the RMSE values of the CWT training set and the test set were smoother than those of the
FOD set. The Scale4 prediction accuracy in the CWT was the best, with an R2 of 0.6834 and
an RMSE of 0.0307, and the 0.1-order derivative prediction accuracy in the FOD was the
best, with an R2 of 0.6728 and an RMSE of 0.0312, which indicated that the CWT was more
effective and less accurate than the FOD at improving the inversion accuracy of the citrus
leaf water content values. This indicates that the CWT is better and more accurate than the
FOD for improving the inversion accuracy of the citrus leaf water content.
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3.2. SPA-Based Analysis of Water Content-Sensitive Bands in Citrus Leaves

On the basis of the CWT and FOD methods, the SPA was used to screen the charac-
teristic bands in the spectral data of citrus leaves that were strongly correlated with the
water content indices to further improve the inversion accuracy. The feature bands selected
by the SPA ensured high R2 coefficient values, while the RMSE values were also within
the error range. As shown in Figure 3, Figure 3a shows the ratios of the different wavelet
scale bands, and Figure 3b shows the ratios of the different FOD bands. The distribution
characteristics of the feature bands screened by the SPA for the CWT and FOD were similar,
with a small portion of the bands distributed in the visible region, accounting for up to 40%
of the total bands, and the majority of them distributed in the NIR and the SWIR, among
which those distributed in the SWIR had the largest ratios, accounting for up to 60% of the
total bands; thus, it can be seen that the feature bands distributed in the NIR and SWIR
spectra were more sensitive to the inversion of the citrus leaf water content. This shows
that the characteristic bands distributed in the NIR and SWIR regions are more sensitive to
the inversion of the water content of citrus leaves.

On the basis of the CWT and FOD methods, the SPA was used to screen the char-
acteristic bands in the spectral data of citrus leaves that were strongly correlated with
the water content indices to further improve the inversion accuracy. The feature bands
selected by the SPA ensure a high R2 coefficient value, while the RMSE value was also
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within the error range. As shown in Figure 4, Figure 4a,b show the number of bands
screened based on the SPA with different wavelet scales with different fractional-order
derivatives, and Figure 4c,d show the R2 values based on the PLSR with different wavelet
scales with different fractional-order derivatives on top of the SPA. As shown in Figure 4,
under the inversion of the PLSR, the R2 values of the test set improved in all the feature
bands based on the SPA screening compared to those of the full band, while the RMSEs
were also reduced. The number of feature bands screened by the CWT at most wavelet
scales was less than the number of fractional-order derivatives of the FOD, and a smaller
number of bands indicates a simpler model. Moreover, the inversion accuracy of the CWT
was better than that of the FOD and it was more stable; the best inversion results were
achieved by the CWT in the Scale 4 screening of 16 feature bands.
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In the CWT method, the inversion effects of Scale2~4 were better than that of Scale3,
and Scale4 had the best inversion effect (R2 = 0.7256). In the FOD method, the test set R2

values for derivatives of 0.8, 1.0~1.2, and 1.4~1.5 orders improved compared to that of
the original spectrum, with R2 values all above 0.71. Among them, the effect of 0.8-order
derivatives was the best (R2 = 0.7192); there was no overfitting or underfitting, and the
model accuracy was relatively stable. After preprocessing based on the FOD method,
the prediction accuracy value of each fractional order was lower than that of the original
spectral data. However, after the SPA was used to filter feature bands, the prediction
accuracy values of the majority of the fractional derivatives were greater than that of
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the original spectral data. This indicates that the SPA can remove redundant data from
the entire band, select feature band combinations strongly correlated with water content
indicators from the entire band, and improve the inversion accuracy of the model while
reducing the band size. Moreover, it has been proven that the CWT-SPA model can more
effectively improve the citrus leaf water content inversion accuracy.
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3.3. Inversion Results of Citrus Leaf Water Content Using the Joint Spectral Vegetation Index

To further improve the inversion accuracy of the model, a PLSR inversion model
was constructed using the 20 wavelet scales of the data after the SPA screening of the
characteristic bands with the ten spectral vegetation indices. As shown in Figure 5, the
inversion accuracies improved after the joint spectral vegetation index was applied, and
the R2 values of the vast majority of the test sets exceeded 0.7, among which the Scale4
joint NDVI spectral vegetation index achieved the highest accuracy value (R2 = 0.7491).
Moreover, among the 16 feature bands selected by the SPA, most are close to the reference
and feature bands of the NDVI spectral vegetation index. This indicates that adding
spectral vegetation indices associated with characteristic bands can improve the accuracy
of the model, further proving that joint spectral vegetation indices have a good effect on
improving the accuracy of citrus leaf water retrieval.

The water content values of the citrus leaves were inverted by combining each FOD
with ten spectral vegetation indices after screening the characteristic bands via the SPA,
and the 0.8th-order derivative combined with the spectral vegetation index (SRWI) was
the best inversion with an R2 value of 0.7353, which was subsequently compared with the
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best result of the CWT-SPA. As shown in Figure 6, the left panel (a) shows the PLSR plot
of the NDVI spectral vegetation index with the best inversion accuracy of the CWT-SPA
combined, and the right panel (b) shows the PLSR plot of the SRWI spectral vegetation
index with the best inversion accuracy of the FOD-SPA combined.
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4. Discussion

To reduce noise, eliminate background signals and resolve overlapping spectral fea-
tures in acquired hyperspectral data, the CWT and FOD processing methods can effectively
improve the accuracy of estimating the water content of citrus leaves. This study used the
CWT and FOD methods to decompose the hyperspectral data of citrus leaves and estimated
their water content by combining spectral vegetation indices based on the SPA screening
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of characteristic bands. The results indicate that the prediction accuracy values of Scale1
through Scale4 combined with the spectral vegetation index were the best, mainly because
the wavelet coefficients of Scale1 through Scale4 can better characterise and preserve the
detailed features of the spectrum and the wavelength position of the characteristic band
corresponding to the wavelet curve features, which is consistent with existing research re-
sults [38]. The estimation accuracy values show a decreasing trend with an increasing scale,
which was mainly because there was more high-frequency noise after the redistribution of
effective information and high-frequency noise, which led to a decrease in the prediction
accuracy and thus affected the estimation accuracy of the water content; this finding is the
same as that of existing research [1].

The prediction accuracy values of the combined spectral vegetation indices with
derivatives of 0.8, 1.0~1.2, and 1.4~1.5 were the best, but as the fractional order increased,
the prediction accuracy decreased due to the increase in light noise [37]. As shown in
Figure 4d, the effect of the first and second derivatives is poor, but the inversion effect of
the first derivative is better than that of the second derivative, which provided the same
results as existing research [39]. The spectra processed by the CWT exhibit specific spectral
features superior to those of the leaf water content inversion [6], which was related to the
good localisation characteristics of the CWT [13], further indicating that the CWT had a
good effect on reducing spectral noise and extracting effective information.

There are differences in the spectral responses at different water availability levels [40],
and water’s absorption of radiation has a significant impact on visible and NIR wave-
lengths [41]. Changes in crop water conditions may affect spectral reflectance, indicating
that water availability is an important factor affecting absorption and reflection charac-
teristics in the NIR region. Due to the high correlation between different adjacent bands
and high information redundancy, the SPA was used in this study to extract characteristic
wavelengths to eliminate redundant data from the original spectral matrix. When the SPA
was used to screen the characteristic bands, it was found that the bands located in the
NIR and SWIR regions were more sensitive to the water content of the citrus leaves. In
addition, in a large number of scholarly studies, it was found that the bands located in
the NIR and SWIR regions were more sensitive to the inversion of the leaf water contents
of different plants. When the water content of winter wheat leaves was quantitatively
inverted, several scholars found that most of the characteristic bands were located in the
NIR region and that fewer were located in the visible region [1]; moreover, the sensitive
bands screened by CARS for estimating the water content of winter wheat canopies were
located in the NIR and SWIR regions [6], and there have been similar findings in a variety
of tree species, such as grapevine and the dragon’s blood tree [42]. In addition, similar
conclusions were reached for various tree species, such as grapevine and Loblolly [28]. The
existing studies mentioned above all used sensitive bands to analyse and invert relevant
indicators of crops and achieved good results. Therefore, using the sensitive bands of citrus
leaves can improve the accuracy of determining the citrus leaf water content.

Joint spectral vegetation indices can further improve the inversion accuracy of the
citrus leaf water content. As shown in Figure 5, after the application of the joint spectral
vegetation index, the inversion accuracies improved at most of the wavelet scales, and
the accuracy of the joint single-spectrum vegetation index improved compared with that
of the full-spectrum vegetation index. Among these indices, the NDVI estimation of the
leaf water content exhibited a better inversion effect than did the other spectral vegetation
indices, with its reference band and corresponding characteristic bands located in the NIR
and SWIR regions. This finding is consistent with existing research findings [43,44].

Considering the intrinsic correlation and spectral typicality of vegetation indices,
multiple spectral vegetation indices may not necessarily achieve the best results [45].
Therefore, combining spectral vegetation indices significantly correlated with citrus leaf
water content can improve the accuracy of citrus leaf water retrieval.
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5. Conclusions

In this study, the collected hyperspectral data were preprocessed using the CWT and
FOD methods, and the SPA was applied to eliminate redundant data in the decomposed
spectrum. Then, combined with the spectral vegetation index, the inversion accuracy of
the model was further improved to determine the best inversion model for estimating the
citrus leaf water content. The final conclusions are as follows:

(1) Compared with the original spectral inversion of the citrus leaf water content, the
inversion accuracy of the CWT improved at most scales, while that of the fractional-
order derivatives of the FOD method decreased, and the inversion accuracy of the
CWT was approximately 5% greater than that of the FOD method, which indicates
that the CWT was able to improve the inversion accuracy of the water content of the
citrus leaves and outperformed the FOD method.

(2) The feature bands selected by the SPA were mostly located in the infrared region,
indicating that the feature bands in the infrared region were more sensitive to inverting
the water content of the citrus leaves. After the application of the joint spectral
vegetation index, compared to those of the original spectra, the inversion accuracies
of the CWT and FOD methods for citrus leaf water content increased by 9.61% and
9.29%, respectively. This indicates that the SPA joint spectral vegetation index can
improve the ability to predict citrus leaf water information.

(3) By comparing the best models for the FOD and CWT, it was ultimately found that
the CWT method is superior to the FOD method, with the Gaus1 wavelet function
having the best inversion effect. The use of the spectral vegetation index can provide
a new prediction method for citrus leaf water content prediction.
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