
Citation: Islam, S.; Reza, M.N.;

Ahmed, S.; Samsuzzaman; Cho, Y.J.;

Noh, D.H.; Chung, S.-O. Seedling

Growth Stress Quantification Based

on Environmental Factors Using

Sensor Fusion and Image Processing.

Horticulturae 2024, 10, 186. https://

doi.org/10.3390/horticulturae10020186

Academic Editors: Most Tahera

Naznin, Kellie Walters and Neil

Mattson

Received: 25 January 2024

Revised: 15 February 2024

Accepted: 17 February 2024

Published: 18 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Seedling Growth Stress Quantification Based on Environmental
Factors Using Sensor Fusion and Image Processing
Sumaiya Islam 1, Md Nasim Reza 1,2 , Shahriar Ahmed 2 , Samsuzzaman 2, Yeon Jin Cho 3, Dong Hee Noh 4

and Sun-Ok Chung 1,2,*

1 Department of Smart Agricultural Systems, Graduate School, Chungnam National University,
Daejeon 34134, Republic of Korea; dina0075@o.cnu.ac.kr (S.I.); reza5575@cnu.ac.kr (M.N.R.)

2 Department of Agricultural Machinery Engineering, Graduate School, Chungnam National University,
Daejeon 34134, Republic of Korea; shahriar@o.cnu.ac.kr (S.A.); samsuzzaman@o.cnu.ac.kr (S.)

3 Jeonnam Agricultural Research Extension Services, Naju 58213, Republic of Korea; yeon0830@korea.kr
4 Jeonbuk Regional Branch, Korea Electronics Technology Institute (KETI), Jeonju 54853, Republic of Korea;

dhee.noh@keti.re.kr
* Correspondence: sochung@cnu.ac.kr; Tel.: +82-42-821-6712

Abstract: Understanding the diverse environmental influences on seedling growth is critical for
maximizing yields. The need for a more comprehensive understanding of how various environmental
factors affect seedling growth is required. Integrating sensor data and image processing techniques
offers a promising approach to accurately detect stress symptoms and uncover hidden patterns,
enhancing the comprehension of seedling responses to environmental factors. The objective of
this study was to quantify environmental stress symptoms for six seedling varieties using image-
extracted feature characteristics. Three sensors were used: an RGB camera for color, shape, and size
information; a thermal camera for measuring canopy temperature; and a depth camera for providing
seedling height from the image-extracted features. Six seedling varieties were grown under controlled
conditions, with variations in temperature, light intensity, nutrients, and water supply, while daily
automated imaging was conducted for two weeks. Key seedling features, including leaf area, leaf
color, seedling height, and canopy temperature, were derived through image processing techniques.
These features were then employed to quantify stress symptoms for each seedling type. The analysis
of stress effects on the six seedling varieties revealed distinct responses to environmental stressors.
Integration of color, size, and shape parameters established a visual hierarchy: pepper and pak choi
seedlings showed a good response, cucumber seedlings showed a milder response, and lettuce and
tomato seedlings displayed an intermediate response. Pepper and tomato seedlings exhibited a wide
range of growth stress symptoms, at 13.00% to 83.33% and 2.96% to 70.01%, respectively, indicating
considerable variability in their reactions to environmental stressors. The suggested classification
approach provides valuable groundwork for advancing stress monitoring and enabling growers to
optimize environmental conditions.

Keywords: smart horticulture; seedling growth; plant growth stress; image processing; sensor fusion

1. Introduction

By 2050, the world population is expected to reach 9.1 billion, a 34% increase from
current levels, and to support this larger, more urbanized, and economically prosperous
population, a 70% increase in food production is necessary [1]. Agricultural technology
advancements provide a solution to meet rising global food demand amid challenges like
population growth and climate change [2]. Vegetables play an important role in ensuring
food and nutrition security [3]. Their production not only presents a viable economic
opportunity but also aids in alleviating rural poverty and unemployment in developing
nations, forming a vital aspect of farm diversification strategies [4]. As a cost-effective
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source of essential vitamins and minerals, vegetables contribute significantly to maintaining
good health [4,5].

High-quality seedling production refers to the process of cultivating seedlings that
meet defined levels of performance, such as survival and growth, on a particular planting
site [6]. The controlled environment in the seedling production facility is designed for the
precise regulation of factors such as temperature, humidity, lighting, and nutrient supply,
ensuring consistent and efficient crop growth (Huang et al., 2020) [7]. This controlled
setting not only enables the production of high-quality crops but also reduces reliance on
pesticides and minimizes bacterial contamination [8]. High-quality seedlings are essential
for successful vegetable and floriculture crop cultivation, improving early crop establish-
ment, final quality, uniformity, and yield and reducing production time [9]. The growth
and development of high-quality seedlings can be significantly affected by environmental
factors such as temperature, light intensity, water, and nutrients, with vegetable production
being especially susceptible to these abiotic environmental stresses [10–12]. Exposure to
extreme temperature and light conditions can exacerbate these challenges, with suscep-
tibility varying based on seedling conditioning and phenological stage [13]. Water loss
consequences may extend over multiple growing seasons, impacting survival rates and
growth [14].

Plant/seedling growth stress poses a significant threat to agricultural productivity,
leading to a substantial decrease in crop yield and quality [15,16]. Early detection of
seedling growth stress is crucial for enhancing crop production and ensuring agricultural
sustainability. Stress can significantly impact the germination and early growth of seedlings.
The major environmental factors that contribute to seedling stress include water availability
(both drought and flooding), temperatures (heat and cold), light intensity (too much or
too little), nutrient imbalances, and salinity [12]. These factors can hamper essential plant
processes, leading to visible symptoms like wilting, discoloration, and stunted growth.
Environmental stressors, such as temperature, light, water potential, and nutrient levels,
can affect seed germination and pre-emergence seedling growth, leading to reduced crop
establishment and yield [17]. Measuring seed vigor, which encompasses the ability of seeds
to germinate and produce vigorous seedlings, is crucial for ensuring crop sustainability
in changing climates [18]. Additionally, the genetic and physical quality of seedlings,
influenced by early stress factors, plays a key role in determining the success of seedling
production [19]. Quantifying and addressing early growth stress symptoms are essential
for producing high-quality seedlings and improving crop establishment, uniformity, and
yield [20]. Therefore, early stress quantification is necessary to identify and mitigate
potential issues that could impact the overall success of seedling production.

Computer vision advancements have enabled the extensive application of image
processing and machine learning in studying crop biotic and abiotic stress phenotypes [21].
Image analysis techniques, being non-invasive, offer significant potential for the automated
detection of both types of stress in plants. This involves processing meticulously collected
photographs to extract specific information [22,23]. Various imaging techniques, such as
digital, fluorescence, thermography, LIDAR, multispectral, and hyperspectral imaging,
can be used to effectively identify and assess stress in crops [15]. These images provide
valuable data on plant physical attributes like canopy area, leaf color, texture, size, and
shape [24]. Commonly used color spaces include RGB, LAB, YCBCR, and HSV [25].
Descriptive elements like image contrast, homogeneity, dissimilarity, energy, and entropy
contribute to texture analysis [26]. Sun et al. [27] introduced a non-destructive method for
diagnosing nutrient stress in paddy plants, specifically targeting nitrogen, phosphorus, and
nitrogen, phosphorus, and potassium (NPK) deficiencies. Latte et al. [28] detected nutrient
deficiencies in paddy crops by analyzing leaf color during mid-growth.

Visual sensors play a significant role in controlled plant production facilities, enabling
comprehensive crop monitoring and automation through image analysis [29]. Integrating
visual sensors allows farmers to make informed decisions, optimize resources, and improve
crop yields, supporting sustainable vertical farming practices [30]. Image sensor fusion
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and image processing offer a powerful approach to understanding and managing seedling
growth stress. By combining image sensor data from diverse imaging sources and advanced
image analysis and offering a comprehensive perspective on the environmental conditions
impacting seedling health, subtle changes in plant health can be detected early [31]. This
allows for timely adjustments to lighting, nutrients, or water, ensuring optimal growing
conditions. Studies utilizing RGB image sensors have effectively assessed plant stresses,
identifying issues like biotic stress in wheat [31], nutrient deficiency in soybean [32] and
black gram [33], and fungal blight in potato [34].

Machine learning algorithms establish optimal decision boundaries in high-dimensional
feature spaces, forming the foundation for accessible image analysis systems [35]. Tradi-
tional approaches in machine learning, proven to be versatile and effective, analyze crop
phenotypes related to stress conditions [32,36,37]. Feature extraction provides quantified
parameters facilitating classification by assigning objects to specific classes [38]. Image
segmentation, based on color and texture features in RGB and grayscale intensity spaces,
improves representativeness and ease of analysis [39]. Karadag et al. [40] introduced a
machine learning algorithm to differentiate healthy and fusarium-infected pepper plants.
Support vector machine (SVM), which has been extensively applied in agriculture, proves
effective for plant stress detection. SVM grades the severity of iron deficiency chlorosis
in soybeans [41]. Prasad et al. [42] devised an imaging system for plant leaf disease iden-
tification, incorporating disease spot detection, Gabor-wavelet-transform-based feature
extraction, and SVM-based disease classification.

The ability to accurately measure and analyze seedling growth stress helps us to
identify environmental factors that may impede healthy growth and development. Under-
standing these stressors is essential for implementing timely interventions and optimizing
plant growth conditions. The potential of sensor fusion and image processing techniques
for quantifying seedling growth stress caused by various environmental factors is immense.
Utilizing these technologies enables improved understanding of plant stress responses,
optimizing growing conditions for enhanced crop yields, and sustainability in agricul-
ture and controlled horticulture. The objective of this study was to quantify the seedling
growth stress symptoms of six seedling varieties under controlled conditions, intentionally
subjecting them to variations in light, temperature, water, and nutrient levels.

2. Materials and Methods
2.1. Experimental Site Preparation and Seedling Growth Conditions

The experiments took place in a plant factory situated on the premises of the College
of Agriculture and Life Science at Chungnam National University in Daejeon, Republic
of Korea. In this experiment, 6 seedling varieties were sown in 45-hole trays for tomato
and pepper, 128-hole trays for lettuce and pak choi, and 40-hole trays for cucumber and
watermelon using horticultural soils. Eight-day-old pepper (variety: Cheongyang), tomato
(variety: Defness), lettuce (variety: Cheongchima), pak choi (variety: Modom), cucumber
(variety: Begdadagi), and watermelon (variety: Jhob) seedlings were grown in five small
chambers to observe the environmental stress effects. Each seedling cultivation chamber
was 1500 × 1100 × 2500 mm (L × W × H). Within one chamber, a vertical frame with three
beds accommodated three seedling trays on each bed. The overall size of the vertical frame
was 980 × 600 × 2160 mm (L × W × H) and the growing bed was 900 × 600 × 150 mm
(L × W × H). To maintain optimal conditions, each of the five cultivation rooms was
equipped with air conditioners, heaters, humidifiers, dehumidifiers, and solenoid valves
for temperature, humidity, and carbon dioxide control. Two axial fans per bed circulated air
in the cultivation room. Fluorescent lights were used for adequate seedling lighting on the
cultivation beds. Figure 1a,b illustrate the layout and configuration of the control room and
cultivation chambers along with the actuator, fluorescent light, and seedling tray positions.
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Figure 1. Experimental chamber layout and continuous water content measurement during the
experimental period using a weight balance. (a) Layout and configuration of the cultivation chambers;
(b) image of the custom fabricated cultivation chamber showing the positions of the actuators,
fluorescent lights, and seedling trays; (c) weight measurement using the seedling tray containing soil
and plants; and (d) continuous water content measurement during the experiment.

The study focused on four specific environmental parameters: temperature, light
intensity, nutrients, and water supply. To investigate the effect of environmental stress, the
experiment maintained three levels of temperature, light intensity, nutrients, and water
application. Table 1 shows the ambient environment parameters in all five controlled
chambers. The standard growth conditions for the six seedling varieties were derived
from the literature, as detailed for lettuce [43], tomato [44], pepper [45], watermelon [46],
cucumber [47], and pak choi [48].
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Table 1. Ambient environment parameters for the experiments and control and stress conditions
used in this study for six varieties of seedlings.

Ambient environment parameters for the experiments

Ambient
conditions

Growth chamber

Chamber 1 Chamber 2 Chamber 3 Chamber 4 Chamber 5

Photoperiod Day
(10 h)

Night
(14 h)

Day
(10 h)

Night
(14 h)

Day
(10 h)

Night
(14 h)

Day
(10 h)

Night
(14 h)

Day
(10 h)

Night
(14 h)

Temperature
(◦C) 20 15 25 20 25 20 25 20 30 25

Light intensity
(µmol m−2s−1) 250 0 50, 250,

450 0 250 0 250 0 250 0

EC (dS·m−1) 1.0 1.0 1.0, 3.0, 6.0 1.0 1.0

Water
(L/tray/day) 1.0 1.0 1.0, 0.75, 0.50 1.0 1.0

pH 6.5

Humidity (%) 60 ± 5

CO2 (ppm) 600–800

Air flow Static

Light type Fluorescent (daylight, 2900 lm)

Control and stress conditions used in this study for six varieties of seedlings

Ambient
conditions

Seedling conditions

Healthy group Stress group

Day (10 h) Night (14 h) Day (10 h) Night (14 h)

Temperature
(◦C) 25 20 20, 30 15, 25

Light intensity
(µmol m−2s−1) 250 0 50, 450 0

EC (dS m−1) 1.0 3.0, 6.0

Water supply
(L/tray/day) 1.0 0.75, 0.50

In a plant factory, effective water and nutrient application is vital for the healthy
growth of seedlings. Table 1 highlights two distinct types of water and nutrient application.
For plant chambers 1, 2, 4, and 5, 1 L/tray/day of water and nutrient solutions with an
electrical conductivity (EC) of 1.0 dS m−1 and pH of 6.0 were provided. In chamber 3, it was
aimed to investigate the impact of water and nutrient stress on seedlings. This involved
experimenting with three different levels of water and nutrient supply. Water levels were
adjusted to 1, 0.75, and 0.50 L/tray/day for water stress trials, while nutrient solution
levels were 1, 3, and 6 dS m−1 for the nutrient stress trials. These variations enabled the
examination of the effects of varying stress levels of water and nutrient availability. The
selection of these supply levels was guided by established practices to ensure consistent
nutrient delivery to the root zone, preventing both overwatering and underwatering of
the seedlings. In this study, water mixed with commercial Hoagland nutrient solutions
A and B (Daeyu Co., Ltd., Seoul, Republic of Korea) was applied to plant roots. All the
essential and trace nutrient elements are combined in this commercial nutrient solution.
The ingredients contained in each solution are shown in Table 2.
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Table 2. Ingredients contained in nutrient solutions A and B.

Solution A

KNO3 (Potassium Nitrate)

Ca(NO3)2·4H2O (Calcium Nitrate Tetra Hydrate)

Fe-EDTA (Iron Chelate)

Solution B

KNO3 (Potassium Nitrate)

MgSO4·7H2O (Magnesium Sulfate)

NH4H2PO4 (Monosic Ammonium Phosphate)

H3BO3 (Boric Acid)

MnSO4·H2O (Manganese Sulfate)

ZnSO4·7H2O (Zinc Sulfate)

CuSO4·5H2O (Copper Sulfate)

NaMoO4·2H2O (Sodium Molybdate)

To achieve the desired nutrient level, 5 mL each of nutrient solutions A and B were
mixed with 5 L of water, and 1 L of this mixture was provided daily to each bottom irriga-
tion tray, positioned beneath the seedling growing tray. The targeted nutrient level was
maintained by checking the EC and pH meter every day while watering the seedlings. The
seedling soil absorbed water through the bottom irrigation tray, facilitating water uptake by
plants through the osmosis process. Irrigation was carried out at rates of 0.75 L/tray/day
and 0.50 L/tray/day, representing 75% and 50% of the standard irrigation application,
while the control group received 100% of the standard irrigation. To measure water stress,
we continuously weighed the water in the seedling trays at 10 min intervals using a CAS
weighing balance (Total Weighing Solution, Yangju, Republic of Korea) positioned beneath
the seedling trays, as illustrated in Figure 1c,d. Soil water content was calculated using
Equation (1) based on weight basis method as follows:

WC =
WW

WW + WM
(1)

WC =
WW

WW − {WS + WD + WT + (W P × N)} (2)

where WC is the water content (%), WW is the weight of water (g), WM is the total weight of
the materials (g), WS is the weight of the tray including soil (g), WD is the dry soil weight
(g), WT is the weight of the empty tray under the soil tray (g), WP is the plant weight (g),
and N is the number of plants in the tray.

Throughout the experiment, the remaining ambient environmental variables, such
as humidity and CO2 levels, were maintained at constant levels. The optimum relative
humidity and CO2 concentration were 60 ± 5% and 600 to 800 ppm, respectively. Table 1
also shows the control and stress conditions for the six seedling varieties used in this study.

2.2. Sensor Selection and Image Acquisition

The data collection process involved a multi-camera system, as shown in Figure 2.
For top-view imaging of seedlings, an affordable, portable, and high-quality RGB camera
(model: Raspberry Pi camera, Raspberry Pi Foundation, Cambridge, UK) was used. To
capture thermal information, a thermal camera (Model: Seek Thermal Compact Pro, Seek
Thermal Inc., Santa Barbara, CA, USA) was employed. Additionally, a depth camera (Model:
Intel RealSense D435i, Intel Corporation, Santa Clara, CA, USA) was used for acquiring
depth images. The specifications of these cameras are shown in Table 3. The cameras
were strategically positioned vertically at a height of 0.36 m above the seedlings, ensuring
optimal field-of-view (FOV) coverage (Figure 2). Throughout the image capture process
for each seedling bed, consistent lighting conditions were maintained. The Raspberry
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Pi Camera Module V2 is a compact camera for Raspberry Pi single-board computers,
capturing still images up to 8 megapixels (3280 × 2464 pixels). Utilizing the Sony IMX
219 sensor, it ensures high-quality images with excellent color reproduction and low-light
performance. Small and lightweight, with a standard field of view of 62.2◦ × 48.8◦ and
automatic image acquisition control, it was suitable for this study. The Intel RealSense
D435i is an advanced depth camera designed for precise depth sensing, featuring a frame
size of 1280 × 720 pixels and global shutter technology. With its stereoscopic depth sensing
and integrated IMU, it offers a wide field of view of 87◦ × 58◦ and a depth range of 0.3
to 3.0 m. Its compact design and seamless integration make it an ideal choice for this
applications. The Seek Compact Pro is a compact and potent thermal imaging camera
with a frame size of 320 × 240 pixels, a field of view of 32◦ × 32◦, and a temperature
sensing range of −40 to 330 ◦C. Equipped with automatic control and calibration systems,
its pocket-sized design makes it perfect for installation in seedling chambers to facilitate
data acquisition.
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Table 3. Specifications of RGB, thermal, and depth cameras used in this study.

Item
Specifications

RGB Camera Depth Camera Thermal Camera

Model Camera module V2 RealSense D435i Compact Pro
Company Raspberry Pi Intel Seek

Sensor Sony IMX 219 Global shutter Microbolometer
Resolution (MP) 8.0 2.0 MP –

Frame size (pixel) 3280 × 2464 1920 × 1080 320 × 240
Depth frame size (pixel) – 1280 × 720 –

Depth method – Stereoscopic –
Frame rate (fps) 30, 60 30 >15

Field of view 62.2◦ × 48.8◦ 87◦ × 58◦ 32◦ × 32◦

Depth range (m) – 0.3–3.0 –
Temperature sensing

range (◦C) – – −40~330

Control Automatic Automatic Automatic
Connection 15-pin FFC USB-C 3.1 USB-C
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Automation of the image capture process was achieved through the utilization of a
microcontroller system (Model: Raspberry Pi 4B, Raspberry Pi Foundation, Cambridge,
UK) equipped with an integrated display. This configuration facilitated seamless inter-
facing with the cameras, enabling the automated capture and storage of images. The
system was designed for efficient remote monitoring and image acquisition tasks. For
remote accessibility, a virtual network computing (VNC) viewer was implemented on the
microcontroller system. This allowed for remote control through a graphical user interface
(GUI) display, ensuring automatic initiation of the viewer upon device boot-up, as detailed
by Islam et al. [49]. VNC, developed in the mid-1990s, is a remote desktop technology
with open-source code licensed under the GNU General Public License. Commercial vari-
ations of VNC are also available. Images were saved in JPG format with a resolution of
3280 × 2464 pixels on a 128 GB micro SD memory card connected to the microcontroller.
To mitigate the impact of camera jitter or potential unfocused images, three images were
captured for each seedling bed. Subsequently, the average of these three images was com-
puted and utilized for further analysis. Figure 3 shows sample images captured during the
experiments for all six varieties of seedlings.
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The study investigated the impact of various environmental stress effects on six vari-
eties of seedlings. A total of 540 images from the six seedling varieties were acquired for
analysis. Among these, 288 images were related to stressed seedlings, while 252 images rep-
resented non-stressed seedlings, serving as a control group. Four different types of stresses
(temperature, light intensity, nutrient, and water) were considered for this experiment. For
each stress type, 72 images were captured, resulting in a balanced distribution of stress
samples. The severity of the stresses applied to the seedlings in terms of temperature, light
intensity, nutrients, and water ranged from low to high levels. To ensure accurate analysis,
all images of stressed seedlings were appropriately labeled based on reference guidelines
describing the growth conditions and characteristics specific to each stress class.

2.3. Data Processing and Analytical Procedures

Figure 4 shows the schematic diagram of the overall sensor fusion and image pro-
cessing steps for stress quantification in this study. The schematic diagram illustrates the
process of sensor fusion and image processing steps for stress quantification in seedling
growth based on environmental factors.
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Figure 4. The overall sensor fusion and image processing steps for the growth stress quantification in
this study.

Beginning with the data acquisition from RGB, thermal, and depth sensors capturing
various aspects of seedling growth and environmental conditions, the data then undergo
integration and pre-processing to align and prepare them for analysis. This involves refining
RGB imagery through image enhancement and feature extraction techniques, ensuring
accurate representation of thermal data through temperature calibration, and generating
depth maps for calculating seedling size during depth data processing. These integrated
datasets are then represented visually for comprehensive analysis. The fusion data from
different sensors was used to analyze seedling growth and environmental influences.
Finally, stress quantification was obtained by analyzing the integrated data to identify color,
shape, size, and canopy temperature patterns. Based on the pattern of healthy and stressed
seedling data, seedling stress symptom levels (%) were calculated.

2.3.1. RGB Image Processing for Stress Symptom Features

Image quality is crucial in image analysis, influencing accuracy and effectiveness. Low
image quality poses challenges in discerning details due to issues like overexposure, shad-
ows, debris, and focusing issues. High-quality images enhance the processing efficiency,
reducing complexity and improving feature extraction [50]. The schematic flowcharts for
the RGB image processing and leaf area (LA) estimation are shown in Figures 5 and 6
and illustrate the overall image processing and leaf area calculation steps. The initial
step involved histogram equalization to address light source variation. Subsequent pre-
processing reduced noise and enhanced contrast in the image, comprising the target plant
and background. Direct binarization faced challenges due to insufficient contrast, artifacts,
and distortions [51]. Contrast-limited adaptive histogram equalization (CLAHE) was em-
ployed to overcome these issues, enhancing the image contrast by limiting amplification
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and operating on small image areas called tiles [10]. Parameters like block size (BS) and
clip limit (CL) governed improved image quality.
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Figure 6. RGB image preprocessing steps and leaf area calculation: (a) original image with his-
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CLAHE, applied separately to red (R), green (G), and blue (B) channels with a CL
limit of 0.5, enhanced local contrast and improved background segmentation. Gaussian
blur further reduced noise. To extract foreground objects, the blurred image in HSV format
set upper and lower bounds for the green color range, creating a mask. Morphological
operations removed noise and filled gaps, enhancing segmentation. For leaf area calculation,
contour detection was employed to capture seedling shapes from a binary image. However,
image quality issues and noise resulted in broken contours, complicating seedling detection
and area calculation. To address this, contour smoothing was applied using the total arc
length of each polygonal curve, simplifying complex contours while preserving shape and
structure. From the contour area, the leaf area was calculated. This quantifies the number
of pixels within the leaf region as LA, which is the total one-sided leaf tissue area per unit
ground or trunk surface area of a plant [52]. LA provides essential insights into leaf size
and morphology and valuable information about seedling stress conditions and growth.
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2.3.2. Depth Image Processing for Stress Symptom Features

For plant height estimation, using the Intel RealSense depth camera images involved
several key processing steps. Figure 7 shows the flow diagram of the overall depth image
processing to estimate plant height. Initially, the colorized depth image was loaded and
the shortest and longest depth range for the camera were set to facilitate colorization.
Subsequently, the depth map was restored using the colorized depth image, and the result-
ing map was saved at its original size [53]. The restored depth map was then displayed,
providing a visual representation of the plant and its surroundings. Pixel coordinates (u,
v) were specified to extract depth values at specific points of interest on the image. The
image metadata, including focal length (fx, fy) and principal point (ppx, ppy), were input to
facilitate accurate depth extraction. The sample pixel coordinates and their corresponding
depth values were estimated based on the specified points. These pixel coordinates were
then converted into real-world coordinates using the provided image metadata. By extract-
ing this spatial information, the distance from the camera to the plant was calculated in
three-dimensional space, providing a quantitative measure of the plant height [54]. Figure 8
shows the depth image processing results in different steps.
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2.3.3. Canopy Temperature Measurement

Canopy temperature detection from thermal leaf images is a multistep process that
depends on converting gray values to temperature using a color bar as the reference [55,56].
The thermal image, captured from a fixed position, registers changes in gray levels as
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temperature fluctuations occur. Employing edge detection methods, the leaf area is isolated
within the image. Within this defined leaf region, the gray pixel values represent the tem-
perature of the leaves. By referencing the color bar and the established gray-to-temperature
relationship, these gray values are subsequently converted into actual temperature mea-
surements. This approach allows for the precise assessment of canopy temperature, making
it a valuable tool for applications ranging from plant stress detection to microclimate anal-
ysis in agricultural and environmental studies. Figure 9a shows the steps of the canopy
temperature extraction method, and Figure 9b–e show the thermal image processing steps
and temperature profiling using the image processing method.
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2.4. Quantification of Stress Symptoms

A schematic diagram of the quantification of stress symptoms is shown in Figure 10.
Seedling stress quantification through the extraction of leaf length, width, area, plant
height, and canopy temperature from images is a multifaceted process involving advanced
image processing and quantitative analysis. Initially, high-resolution images of plants were
captured, and image processing techniques were applied to extract the features as explained
in previous sections. The integration of infrared imaging technology aids in the extraction
of canopy temperature data, providing additional insights into the plant’s physiological
response to stress. The extracted numerical data, encompassing leaf dimensions, area, plant
height, and canopy temperature, were meticulously organized into a structured dataset
for further analysis. Stress quantification involves the labeling of plants as stressed or
non-stressed based on domain knowledge, expert input, and additional horticultural data.
Horticultural data encompass a wide range of information related to the cultivation and
management of plants, particularly those cultivated for food, medicinal, ornamental, or
landscaping purposes. These data are crucial for optimizing crop yields, ensuring plant
health, and making informed decisions in horticultural practices.

Descriptive statistical analyses (mean, standard deviation) were then applied to evalu-
ate the significance of differences in extracted features between stressed and non-stressed
groups. Subsequently, thresholds were determined to categorize stress levels, and the
quantification of stress involved applying these thresholds to the dataset. The outputs
were visualized through various graphical representations to facilitate a comprehensive
understanding of the distribution of features across stressed and non-stressed seedlings.
For the stress symptom quantification, we calculated all the features of seedlings such
as leaf area, seedling height, and canopy temperature. Based on the calculated values
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from both the healthy and stressed seedlings, the stress symptoms (%) of seedlings were
estimated and calculated using Equation (1) as follows:

Ss(%) =

∣∣∣∣Hv − Sv

Hv

∣∣∣∣× 100 (3)

where Ss is the calculated value (%) representing the degree of stress in the seedlings, Hv
represents the feature values of the healthy seedlings, and Sv represents the feature values
of the stress-induced seedlings.
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3. Results
3.1. Stress Symptom Visualization Based on Seedling Color and Size

In visualizing stress effects on seedlings, a comprehensive approach, including color,
size, and shape, provides a distinct representation of seedling health and response to
stressors [57]. Vibrant and uniform colors signify health, while shifts towards yellows,
oranges, and reds indicate increasing stress levels. Changes in plant size reflect growth
patterns, with smaller sizes indicating potential stunted development under stress con-
ditions. Altered plant morphology, such as variations in leaf shape, offers insights into
stress responses [58]. By combining these elements, a visual hierarchy was created to depict
the severity and nature of stress, enhancing the richness of the information. Interactive
features and time-lapse visualizations further enabled dynamic exploration, allowing us
to gain a deeper understanding of the stress effects on plants over time. Figure 11 shows
the stress effect visualization based on color, size, and area changes for pepper, cucumber,
tomato, watermelon, lettuce, and pak choi seedlings. Pepper and pak choi seedlings were
more likely to be affected by stress than other seedlings and showed the most significant
changes in color, size, and area under stress conditions. Watermelon seedlings were less
likely to be affected by stress than other seedlings and showed the least significant changes
in color, size, and area under stress conditions. Tomato seedlings and lettuce seedlings were
moderately affected by stress. This was evident from the fact that the tomato and lettuce
seedlings showed intermediate changes in color, size, and area under stress conditions.
Lettuce seedlings were most affected by stress, which was evident from significant changes
in color.



Horticulturae 2024, 10, 186 14 of 33Horticulturae 2024, 10, x FOR PEER REVIEW 14 of 32 
 

 

 
Figure 11. Growth stress effects on different seedling varieties based on color, shape, and size. 

3.2. Growth Features Based on Environmental Conditions and Growth Period 
Leaf area serves as a valuable indicator for detecting stress in plants, with a reduction 

in leaf area being a common response to various stressors [59,60]. This is because plants 
are trying to conserve water and energy, and so they will reduce the amount of leaf surface 
area that is exposed to the environment [60,61]. For stress quantification, leaf area was 
measured for each type of seedling, as shown in Figure 12 and Table A1. For each envi-
ronmental condition, 15 leaf samples were collected from the images for each day and 
each seedling type. Then, average values were calculated for each day. Pepper, tomato, 
lettuce, and pak choi seedlings showed significant differences in leaf area, indicating 
heightened sensitivity to these stressors. Pepper seedlings, for instance, experienced alter-
ations in leaf area attributed to stressors related to both nutrition and light conditions. In 
contrast, the leaf area of the tomato seedlings was primarily influenced by variations in 
light exposure. Lettuce seedlings, however, demonstrated sensitivity to a broader range 
of stressors, with their leaf area being affected by light, nutrient levels, and temperature 
fluctuations. Meanwhile, pak choi seedlings displayed a unique pattern of sensitivity, 
with their leaf area being influenced by variations in light, nutrient availability, and water 
conditions. Watermelon and cucumber seedlings showed relatively lower significance in 
terms of changes in leaf area. This comprehensive examination emphasizes the intricate 
and varied reactions of these seedlings to distinct environmental stressors, providing in-
sight into the complex nature of their growth dynamics. 

Figure 11. Growth stress effects on different seedling varieties based on color, shape, and size.

3.2. Growth Features Based on Environmental Conditions and Growth Period

Leaf area serves as a valuable indicator for detecting stress in plants, with a reduction
in leaf area being a common response to various stressors [59,60]. This is because plants are
trying to conserve water and energy, and so they will reduce the amount of leaf surface area
that is exposed to the environment [60,61]. For stress quantification, leaf area was measured
for each type of seedling, as shown in Figure 12 and Table A1. For each environmental
condition, 15 leaf samples were collected from the images for each day and each seedling
type. Then, average values were calculated for each day. Pepper, tomato, lettuce, and pak
choi seedlings showed significant differences in leaf area, indicating heightened sensitivity
to these stressors. Pepper seedlings, for instance, experienced alterations in leaf area
attributed to stressors related to both nutrition and light conditions. In contrast, the leaf area
of the tomato seedlings was primarily influenced by variations in light exposure. Lettuce
seedlings, however, demonstrated sensitivity to a broader range of stressors, with their
leaf area being affected by light, nutrient levels, and temperature fluctuations. Meanwhile,
pak choi seedlings displayed a unique pattern of sensitivity, with their leaf area being
influenced by variations in light, nutrient availability, and water conditions. Watermelon
and cucumber seedlings showed relatively lower significance in terms of changes in leaf
area. This comprehensive examination emphasizes the intricate and varied reactions of
these seedlings to distinct environmental stressors, providing insight into the complex
nature of their growth dynamics.
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stress conditions in different growth periods.

Plant height is a key indicator for detecting stress in plants and vegetables. The stress
tolerance index, which incorporates seedling height, serves as a crucial tool by which to
assess seedling threshold potential against specific stress factors [23,62]. The influence of
stress conditions, such as temperature, light, nutrients, and water supply, on the height of
six seedling varieties was studied and the results are shown in Figure 13 and Table A2. The
results show that the heights of the pepper and lettuce seedlings were influenced by stress
related to light exposure and temperature variations, while the heights of the tomato and
pak choi seedlings predominantly responded to changes in light conditions. Additionally,
cucumber seedlings exhibited a subtle impact on their height in response to temperature
stress, indicating a nuanced sensitivity compared to the other seedlings. However, the
watermelon seedlings did not display a significant alteration in plant height under the
observed stress conditions. The morphological and physiological responses of plants to
different stress conditions, including light intensity and temperature variations, can impact
their growth parameters. The results of this study highlight the varying sensitivities of
different seedlings to different stress conditions. This suggests that the optimal growing
conditions for each type of seedling will depend on its specific needs and tolerances.
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Figure 13. Comparison of seedling heights of six seedling varieties under different environmental
stress conditions in different growth periods.

Temperature stress is a major environmental stress that limits plant growth, metabolism,
and productivity [63]. High-temperature stress is considered to be one of the major abiotic
stresses for restricting crop production, while low-temperature stress can also affect plant
growth [64]. The responses of plants to heat stress vary with the degree and duration of
heat stress and the plant type. A detailed analysis of stress and canopy temperature effects
on various seedlings has revealed distinct insights into the physiological responses of each
plant type, as shown in Figure 14 and Table A3. Pepper seedlings exhibited noticeable
changes in average canopy temperature when subjected to light and water stress, accompa-
nied by an increased standard deviation. This heightened variability in response suggests a
diverse reaction within the pepper seedlings. In contrast, tomato seedlings demonstrated a
consistent response to stress conditions related to light, temperature, and water. However, a
significant increase in standard deviation indicates amplified variability in their individual
responses. Cucumber seedlings, while experiencing fluctuations in canopy temperature
during light stress, displayed a comparatively stable response under other stress conditions.
This implies a nuanced sensitivity of cucumber seedlings to specific environmental stres-
sors. For the watermelon, lettuce, and pak choi seedlings, a distinct pattern was observed,
showing insignificant changes in average canopy temperatures across all stress conditions.
This unique trend suggests a potentially different stress response mechanism for these
seedlings compared to their counterparts. The observed variations in average canopy
temperatures and standard deviations indicate the diverse responses of different seedlings
to distinct stressors, shedding light on the intricacies of their stress adaptation mechanisms.
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3.3. Stress Quantification Based on Leaf Area Parameter

In this study, the stress responses of six different seedling varieties (pepper, cucumber,
tomato, watermelon, lettuce, and pak choi) were quantified based on leaf area parameters
under four environmental conditions (temperature, light, nutrients, and water supply).
The stress factors considered include low and high light, nutrient levels, temperature, and
water availability. Figure 15 shows the stress symptoms (%) for six varieties of seedlings
based on the leaf area parameter, where the measurements were considered on days 4, 9,
and 15 of the growth period to observe the seedlings’ stress responses over time.

Across the observed time periods (days 4, 9, and 15), intriguing patterns emerged.
Seedlings exhibited heightened sensitivity to high light, with watermelon and pak choi
displaying the most significant increases in leaf area. High nutrient levels consistently led to
larger leaf areas, particularly in lettuce and watermelon. Temperature variations also played
a crucial role, with cucumber and pak choi responding prominently to high temperatures.
The impact of water availability was complex, with watermelon and cucumber showing
sensitivity to high water conditions, while lettuce and pak choi exhibited less pronounced
responses. In the quantification of stress symptoms across the growth period from day 4
to day 15 for pepper, cucumber, tomato, watermelon, lettuce, and pak choi seedlings, a
diverse range of stress (%) was observed. Pepper seedlings exhibited stress symptoms (%)
from 13.00 to 83.33%, indicating considerable variability in their response to environmental
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stressors. Cucumber seedlings showed a stress symptom (%) range of 1.59 to 41.67%,
suggesting a relatively milder response compared to pepper. Tomato seedlings displayed
stress symptoms (%) ranging from 2.96 to 70.01%, showing a wide spectrum of sensitivity
to the environmental factors under consideration. Watermelon seedlings exhibited stress
symptoms (%) ranging from 5.63% to 56.88%, indicating a moderate to high degree of
susceptibility to stressors. Lettuce seedlings showed a stress percentage range of 5.80 to
73.71%, suggesting a high range of stress responses over the observed period. Pak choi
seedlings displayed stress symptoms ranging from 4.99 to 63.53%, indicating a moderate
level of susceptibility to stressors. Figure 16 shows the average stress symptoms (%)
induced in each type of seedling. These findings highlight the distinct stress response
profiles of each seedling type, emphasizing the need for tailored management strategies to
optimize their growth conditions and mitigate stress-induced symptoms.
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4. Discussion

This study centered on the integration of advanced methodologies, specifically sensor
fusion and image processing techniques, to systematically evaluate the influence of various
environmental factors on seedling stress within the context of a plant factory. Major
stress-inducing conditions were investigated, including temperature fluctuations, light
variations, nutrient deficiencies, and water supply irregularities. Six distinct varieties of
seedlings were subjected to these stressors, and we aimed to precisely quantify the resulting
stress symptoms.

The observed reduction in leaf area is a multifaceted response. As a consequence of
stress-induced changes, smaller leaves are anticipated to maintain lower temperatures in
light environments, effectively mitigating the risk of overheating [65]. This underscores the
adaptive nature of plants in modulating their leaf morphology to cope with environmental
challenges [66]. Moreover, this study supports earlier research indicating a direct correla-
tion between growth rate and seedling leaf area, with individual leaf sizes influenced by
daily temperature variations [67]. The study also aligns with previous research findings
suggesting a correlation between decreasing leaf size and diminishing water availabil-
ity [66]. This association underscores the intricate interplay between environmental factors
and plant physiology, emphasizing the utility of leaf area as a measurable parameter for
understanding and quantifying stress responses in diverse plant species. By employing
techniques such as remote sensing or manual measurements, the assessment of leaf area
variations provides valuable insights into the adaptive strategies employed by plants to
contend with stress conditions.

When confronted with water scarcity, plants often demonstrate diminished growth
marked by an overall reduction in plant height [68]. The stress induced by water scarcity
triggers cell shrinkage, influencing cell elongation and consequently impacting the stature
of the plant [69]. Insufficient availability of essential nutrients, particularly nitrogen, can
lead to stunted growth and a decrease in overall plant height [70]. Extreme temperatures,
whether excessively high or low, can exert substantial influence on plant height [71].
Elevated temperatures may prompt wilting and a decline in cell turgor pressure, thereby
affecting the structural integrity of the plant, and extreme cold conditions can impede
growth, resulting in a reduction in plant height [71]. Studies have shown that genotype
and temperature strongly influence seedling growth, particularly in respect of height [72].
Elevated temperatures, coupled with water scarcity, can induce high-temperature stress,
impacting seedling growth rates. Optimal seedling growth occurs at around 20 ◦C, with
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temperatures beyond this range detrimentally affecting seedling height [73]. Light stress
significantly impacts seedling height, influencing processes like plant food production, stem
length, leaf color, and flowering [74]. Strong light combined with soil moisture constraints
restricts seedling upward growth, affecting overall growth and survival [75]. While higher
light intensity generally supports better seedling growth, excessive light can induce stress,
exemplified by tip burn in lettuce seedlings [76]. Both insufficient and excessive light can
result in detrimental light stress, adversely affecting plant growth and productivity [74].
Observing changes in plant height serves as a valuable indicator of stress impacts, aiding
in the comprehensive assessment of plant health under diverse environmental conditions.

Different studies have shown the relationships between canopy temperature, stress
conditions, and other plant characteristics. Leaf size can regulate leaf temperature via the
thickness of the leaf boundary layer, where heat transfer is slower relative to the more tur-
bulent air beyond the leaf [66]. Plant nutrition is vital in alleviating abiotic stress, including
heat stress, by activating mechanisms like increased photosynthetic activity and reduced
transpiration rates, and causing increases in canopy temperature [77]. Thermal infrared
remote sensing is a widely used and effective method for detecting vegetation stress, and
using the canopy temperature to track water stress is considered reliable for monitoring
plant water status [78]. However, retrieving canopy component temperatures involves
thermal infrared remote sensing problems, and the relationships between leaf temperature
and water levels are not clear [79]. The interconnected impact of temperature, nutrient,
light, and water stress on the seedling canopy temperature can be assessed by monitoring
it, providing insights into the levels of stress experienced by the seedlings. Moreover,
the influence of temperature and water stress on seed germination and seedling growth
highlights their pivotal role in determining optimal conditions for seedling development.
While this study focused on six specific seedling varieties, the observed trends regarding
temperature, light, water supply, and nutrient impacts on seedling responses are consistent
with similar studies on different species, indicating potential generalizability within certain
bounds. However, further research with a broader variety of plant species is needed to
validate this predictability.

Environmental factors such as temperature, light, water, and nutrients directly impact
plant growth and health. Sensor fusion plays a crucial role in monitoring and understand-
ing these relationships. By collecting and combining data from various cameras (RGB,
thermal, and depth), it was possible to gain a more complete picture of the environmental
conditions that the seedlings were experiencing. This data, coupled with image processing
techniques, allowed us to precisely measure plant responses like leaf area, height, and
canopy temperature. Color differences, canopy temperature variation, and seedling size
monitoring provided more detailed information about the seedling growth conditions. An-
alyzing these sensor-derived measurements reveals how specific environmental stressors
influence plant physiology, giving us insights into plant adaptation strategies and helping
optimize growing conditions in plant factories. In essence, sensor fusion provided the
environmental context, while image processing provided detailed measurements of the
seedlings responses. By combining these two approaches, the researchers were able to gain
a deeper understanding of the relationships between environmental factors and seedling
stress conditions.

While sensor fusion and image processing offer valuable insights into plant stress
responses, limitations were observed. Light variations affect image quality and processing
accuracy, while external radiation sources can interfere with thermal and depth cameras,
introducing data errors. The precision of image processing techniques in feature extraction
requires careful evaluation. This research involved image processing techniques to assess
key physiological parameters of the seedlings, including leaf area, seedling height, and
canopy temperature. Future research in precision plant monitoring for stress detection
could refine and extend the current findings by implementing controlled environments to
isolate specific stressors. Moreover, advanced image processing and deep learning methods
integrating additional sensors and utilizing larger datasets would offer a multidimensional
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view of plant health. Finally, this could lead to real-time stress monitoring systems for
optimized plant growth in commercial plant factories.

5. Conclusions

This study aimed to develop a seedling stress quantification model in six seedling
varieties for early growth stages. Six varieties of seedlings, aged one week, were cultivated
in controlled chambers with varying conditions: temperature (20, 25, and 30 ◦C), light
intensity (50, 250, and 450 µmol m−2s−1), nutrients (1, 3, and 6 dS m−1), and water supply
(1, 0.75, and 0.50 L/day). RGB, thermal, and depth camera sensors were used to capture
canopy images from the top of the seedling beds automatically and daily for two weeks.

Stress quantification was performed with reference to major characteristics of the
seedlings, such as leaf area, seedling height, and canopy temperature. The comprehensive
visualization and quantification of stress effects on the six different seedlings revealed
distinctive responses to various environmental stressors. The integration of color, size, and
shape parameters provided slight differences, enabling us to establish a visual hierarchy.
Pepper and pak choi seedlings exhibited high sensitivity to stress, while cucumber seedlings
demonstrated a milder response, and lettuce and tomato seedlings displayed intermediate
sensitivity. Pepper and tomato seedlings displayed a wide range of stress symptoms (%), at
13.00% to 83.33% and 2.96% to 70.01%, respectively, indicating considerable variability in
their response to environmental stressors.

Sensor fusion and image processing provided valuable tools for plant stress analysis,
but limitations like light variability and external radiation interference must be addressed
and minimized. Future research should focus on controlled environments, advanced im-
age processing techniques, integration of diverse sensors. This study on seedling stress
quantification in seedling growth facilities through sensor fusion and image processing rep-
resents a significant step towards understanding and improving the efficiency of controlled
environment agriculture. The integration of diverse data sources provides a more distinct
and accurate assessment of seedling health, paving the way for informed decision making
and sustainable agricultural practices.
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Appendix A

Table A1. Comparison of leaf area using RGB image sensor of six seedling varieties with different
stress conditions.

Pepper seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 963.1 1477.0 2901.8 1003.3 4467.9 7488.1 1873.4 4702.0 8322.5
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Table A1. Cont.

Min 602.2 861.2 1678.2 822.4 3082.7 5823.5 952.7 3182.8 6125.8
Avg 731.4 1048.5 2279.3 915.9 3607.6 6425.5 1226.6 3772.7 6997.3
STD 118.1 196.3 429.2 60.5 448.6 539.7 301.9 446.7 756.0

Nutrient 3 3 3 1 1 1 6 6 6

Max 1083.2 2464.6 5539.8 1003.3 4467.9 7488.1 966.8 2633.1 6208.7
Min 617.6 1148.7 4463.3 822.4 3082.7 5823.5 676.4 1843.8 3993.5
Avg 846.5 1651.6 4859.1 915.9 3607.6 6425.5 770.6 2230.5 5242.5
STD 145.3 397.9 403.9 60.5 448.6 539.7 96.1 276.4 668.7

Temp. 20 20 20 25 25 25 30 30 30

Max 843.0 1970.9 4033.0 1003.3 4467.9 7488.1 1470.0 4888.0 12,138.0
Min 615.5 1486.6 2498.4 822.4 3082.7 5823.5 877.0 3009.0 7254.0
Avg 732.1 1811.5 3340.3 915.9 3607.6 6425.5 1183.6 3919.7 9512.7
STD 84.5 173.4 439.4 60.5 448.6 539.7 172.3 620.2 1701.2

Water high high high normal normal normal low low low

Max 1075.7 2050.3 5478.3 1003.3 4467.9 7488.1 946.9 2259.9 5081.2
Min 689.3 1665.9 4298.7 822.4 3082.7 5823.5 609.2 1512.2 3546.9
Avg 868.7 1855.3 5042.2 915.9 3607.6 6425.5 700.3 1906.3 4143.4
STD 118.5 127.4 384.3 60.5 448.6 539.7 104.9 268.6 464.0

Cucumber seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 6905.9 12,921.8 12,362.5 6842.3 15,435.3 18,722.0 6842.3 13,469.5 16,853.2
Min 4322.2 2688.3 5618.2 4290.0 9263.5 9786.6 5236.6 10,456.4 11,854.9
Avg 5641.4 7560.8 7999.5 5609.6 11,944.6 14,173.0 5953.2 12,115.3 14,447.9
STD 794.9 4011.0 2148.5 790.6 1936.1 2736.8 627.2 1020.8 1610.4

Nutrient 3 3 3 1 1 1 6 6 6

Max 6342.1 14,935.1 16,874.5 6842.3 15,435.3 18,722.0 6539.4 15,133.4 18,427.9
Min 4736.4 9452.3 9286.4 4290.0 9263.5 9786.6 5163.5 8960.6 11,362.5
Avg 5407.4 11,542.8 13,387.9 5609.6 11,944.6 14,173.0 5737.0 11,760.5 14,129.3
STD 697.7 1810.8 2466.1 790.6 1936.1 2736.8 494.9 1834.2 2374.8

Temp. 20 20 20 25 25 25 30 30 30

Max 6325.6 12,962.3 16,727.8 6842.3 15,435.3 18,722.0 6312.2 15,194.7 18,847.8
Min 4569.3 6060.4 9613.7 4290.0 9263.5 9786.6 5095.1 10,951.0 12,615.3
Avg 5437.1 10,079.2 12,859.0 5609.6 11,944.6 14,173.0 5714.1 13,107.5 15,290.8
STD 540.3 2180.1 2657.1 790.6 1936.1 2736.8 385.6 1783.3 1720.0

Water high high high normal normal normal low low low

Max 6442.9 13,648.3 18,341.6 6842.3 15,435.3 18,722.0 6041.6 12,162.8 12,779.0
Min 4836.2 9562.1 9785.6 4290.0 9263.5 9786.6 3896.3 8462.8 8986.9
Avg 5458.3 11,478.0 13,826.9 5609.6 11,944.6 14,173.0 4867.0 10,518.3 11,172.3
STD 583.2 1431.9 2663.0 790.6 1936.1 2736.8 701.3 1323.3 1157.3

Tomato seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 1506.0 4062.0 9653.0 2980.0 10,057.0 29,595.0 7785.0 21,365.0 42,369.0
Min 733.0 2586.0 7062.0 1610.0 4969.0 25,147.0 5628.0 12,635.0 28,963.0
Avg 1035.0 3220.6 8445.6 2245.3 7701.6 28,183.4 6836.1 17,392.1 37,076.1
STD 245.2 499.6 922.9 422.4 1742.5 1575.6 673.0 3033.6 4493.5

Nutrient 3 3 3 1 1 1 6 6 6

Max 2980.0 10,057.0 29,595.0 2980.0 10,057.0 29,595.0 2980.0 10,057.0 30,159.0
Min 1610.0 5863.0 28,436.0 1610.0 4969.0 25,147.0 1843.0 4969.0 27,456.0
Avg 2312.0 8102.9 29,104.7 2245.3 7701.6 28,183.4 2334.7 8012.0 29,032.6
STD 440.3 1308.0 441.0 422.4 1742.5 1575.6 335.8 1536.6 827.1
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Temp. 20 20 20 25 25 25 30 30 30

Max 2502.0 9746.0 28,763.0 2980.0 10,057.0 29,595.0 3265.0 14,365.0 38,752.0
Min 1610.0 4969.0 25,147.0 1610.0 4969.0 25,147.0 1610.0 7895.0 29,568.0
Avg 2170.4 7546.6 26,910.4 2245.3 7701.6 28,183.4 2567.3 11,633.4 33,582.7
STD 319.4 1593.6 1334.0 422.4 1742.5 1575.6 526.6 2052.6 3082.0

Water high high high normal normal normal low low low

Max 2258.0 8742.0 29,595.0 2980.0 10,057.0 29,595.0 2245.0 8452.0 29,595.0
Min 1610.0 4969.0 24,695.0 1610.0 4969.0 25,147.0 1610.0 4969.0 22,459.0
Avg 2054.7 7243.4 27,003.1 2245.3 7701.6 28,183.4 1924.9 6823.6 25,682.9
STD 221.5 1315.2 1779.7 422.4 1742.5 1575.6 205.1 1114.6 2359.5

Watermelon seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 5631.0 5305.0 7476.0 6023.0 12,728.0 26,421.0 6016.0 12,701.0 26,389.0
Min 693.0 1994.0 4137.0 4216.0 4983.0 7190.0 4409.0 5496.0 9038.0
Avg 2786.6 3995.7 5126.1 4956.7 7000.4 13,730.3 5191.6 7355.7 15,333.9
STD 2008.5 1231.4 1050.9 697.0 2448.8 6268.0 547.4 2307.9 5718.7

Nutrient 3 3 3 1 1 1 6 6 6

Max 6323.8 10,456.0 19,442.8 6023.0 12,728.0 26,421.0 6444.4 13,149.4 19,563.4
Min 4516.8 5283.8 9745.0 4216.0 4983.0 7190.0 4637.4 5404.4 7611.4
Avg 5257.5 6933.7 12,728.2 4956.7 7000.4 13,730.3 5377.9 7421.8 12,636.3
STD 697.0 1611.5 2966.9 697.0 2448.8 6268.0 697.1 2448.8 3821.5

Temp. 20 20 20 25 25 25 30 30 30

Max 5727.0 8965.0 12,683.0 6023.0 12,728.0 26,421.0 6542.0 13,147.0 12,986.0
Min 3865.2 5623.0 7185.0 4216.0 4983.0 7190.0 3452.0 4561.0 9563.0
Avg 4700.2 6676.9 10,526.7 4956.7 7000.4 13,730.3 5237.1 9097.1 11,102.6
STD 664.0 1094.9 1883.6 697.0 2448.8 6268.0 1007.4 2908.0 1107.0

Water high high high normal normal normal low low low

Max 5499.4 11,741.0 15,236.0 6023.0 12,728.0 26,421.0 5277.8 11,982.8 12,543.0
Min 3692.4 4459.4 6666.4 4216.0 4983.0 7190.0 3470.8 4237.8 6544.8
Avg 4484.0 6366.4 11,099.0 4956.7 7000.4 13,730.3 4366.7 6155.9 10,018.3
STD 668.7 2290.4 2913.9 697.0 2448.8 6268.0 642.2 2466.0 2133.7

Lettuce seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 275.0 592.0 1025.0 412.0 2191.0 2469.0 475.3 2187.0 3264.0
Min 102.0 145.0 343.0 256.0 1045.0 1986.0 246.0 1037.0 1863.0
Avg 195.9 365.7 573.6 314.4 1371.6 2259.7 351.4 1507.0 2397.4
STD 54.7 156.8 248.6 55.5 361.7 161.8 69.2 436.0 517.0

Nutrient 3 3 3 1 1 1 6 6 6

Max 414.0 2193.0 2946.0 412.0 2191.0 2469.0 414.3 1963.0 2947.0
Min 264.0 1047.0 2115.0 256.0 1045.0 1986.0 270.3 1164.3 2209.3
Avg 330.8 1493.4 2398.6 314.4 1371.6 2259.7 340.7 1519.0 2419.9
STD 51.4 449.0 252.3 55.5 361.7 161.8 44.4 235.8 233.5

Temp. 20 20 20 25 25 25 30 30 30

Max 376.5 1652.3 2428.8 412.0 2191.0 2469.0 418.4 2197.4 2654.0
Min 252.8 1041.8 1982.8 256.0 1045.0 1986.0 274.4 1051.4 2214.4
Avg 305.1 1291.8 2167.0 314.4 1371.6 2259.7 338.7 1440.9 2380.0
STD 43.9 201.5 134.6 55.5 361.7 161.8 47.1 382.7 144.7
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Water high high high normal normal normal low low low

Max 405.0 1845.0 2462.0 412.0 2191.0 2469.0 370.1 1796.0 2464.1
Min 255.0 1038.0 1846.0 256.0 1045.0 1986.0 251.1 1040.1 1879.0
Avg 308.7 1316.2 2180.0 314.4 1371.6 2259.7 301.1 1304.5 2155.8
STD 46.1 256.0 207.4 55.5 361.7 161.8 43.1 236.5 176.3

Pak choi seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 126.0 135.0 312.0 156.0 581.0 1638.0 201.0 522.0 1554.0
Min 86.0 106.0 163.0 89.0 306.0 664.0 68.0 351.0 1232.0
Avg 106.1 120.1 242.9 122.9 415.3 1331.6 143.7 425.3 1404.1
STD 13.1 8.7 48.8 27.2 85.6 342.3 45.4 49.1 104.3

Nutrient 3 3 3 1 1 1 6 6 6

Max 159.2 489.0 1641.2 156.0 581.0 1638.0 159.2 489.0 1641.2
Min 100.2 309.2 1123.0 89.0 306.0 664.0 105.0 352.2 1189.2
Avg 123.2 423.9 1388.6 122.9 415.3 1331.6 127.5 438.7 1445.3
STD 22.6 62.4 196.5 27.2 85.6 342.3 19.8 42.6 166.7

Temp. 20 20 20 25 25 25 30 30 30

Max 159.2 484.0 1637.2 156.0 581.0 1638.0 155.0 489.0 1641.2
Min 92.2 309.2 667.2 89.0 306.0 664.0 101.5 326.0 1086.2
Avg 120.9 408.7 1307.8 122.9 415.3 1331.6 127.2 432.4 1420.2
STD 23.6 65.8 324.0 27.2 85.6 342.3 22.6 47.3 216.5

Water high high high normal normal normal low low low

Max 151.3 576.3 1633.3 156.0 581.0 1638.0 151.3 479.0 1633.3
Min 84.3 330.0 659.3 89.0 306.0 664.0 84.3 301.3 640.0
Avg 119.3 406.8 1259.0 122.9 415.3 1331.6 115.3 396.7 1277.0
STD 27.1 79.7 322.1 27.2 85.6 342.3 24.4 62.2 324.7

Number of sample, n = 15; Unit = pixels.

Table A2. Comparison of plant height using depth image sensor of six seedling varieties with different
stress conditions.

Pepper seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 3.4 4.1 4.1 3.1 4.2 5.9 3.3 4.2 8.3
Min 3.2 3.2 3.6 2.3 3.4 2.6 2.7 3.5 6.0
Avg 3.3 3.7 3.9 2.7 3.9 5.1 3.0 3.9 7.2
STD 0.1 0.3 0.2 0.2 0.2 1.1 0.2 0.2 0.7

Nutrient 3 3 3 1 1 1 6 6 6

Max 2.7 3.6 6.2 3.1 4.2 5.9 3.2 3.9 6.1
Min 1.8 2.8 5.2 2.3 3.4 2.6 2.6 2.9 5.1
Avg 2.4 3.2 5.6 2.7 3.9 5.1 2.9 3.2 5.5
STD 0.3 0.3 0.4 0.2 0.2 1.1 0.2 0.4 0.3

Temp. 20 20 20 25 25 25 30 30 30

Max 2.8 3.8 4.7 3.1 4.2 5.9 4.9 6.1 11.6
Min 2.3 2.9 4.1 2.3 3.4 2.6 2.7 5.4 8.4
Avg 2.6 3.5 4.3 2.7 3.9 5.1 3.7 5.7 10.1
STD 0.2 0.3 0.2 0.2 0.2 1.1 0.6 0.2 1.0
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Water high high high normal normal normal low low low

Max 2.8 3.6 5.2 3.1 4.2 5.9 3.2 3.8 5.3
Min 1.9 2.8 4.6 2.3 3.4 2.6 2.5 2.9 4.2
Avg 2.5 3.1 4.9 2.7 3.9 5.1 2.9 3.3 4.8
STD 0.3 0.3 0.2 0.2 0.2 1.1 0.2 0.3 0.4

Cucumber seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 3.5 3.8 4.1 4.0 4.3 4.3 3.6 4.5 4.4
Min 2.6 3.0 2.6 2.6 3.0 3.5 3.2 3.4 3.5
Avg 3.1 3.3 3.3 3.4 3.7 3.9 3.4 3.8 4.0
STD 0.3 0.2 0.4 0.4 0.5 0.3 0.2 0.3 0.3

Nutrient 3 3 3 1 1 1 6 6 6

Max 3.5 4.4 4.1 4.0 4.3 4.3 4.1 3.8 4.4
Min 2.8 2.8 2.9 2.6 3.0 3.5 2.3 3.1 3.2
Avg 3.1 3.4 3.6 3.4 3.7 3.9 3.2 3.4 3.8
STD 0.2 0.5 0.4 0.4 0.5 0.3 0.5 0.3 0.4

Temp. 20 20 20 25 25 25 30 30 30

Max 3.6 4.2 3.9 4.0 4.3 4.3 4.6 5.5 5.4
Min 2.4 2.8 1.9 2.6 3.0 3.5 3.0 3.6 3.6
Avg 3.1 3.4 2.9 3.4 3.7 3.9 3.8 4.5 4.7
STD 0.4 0.4 0.6 0.4 0.5 0.3 0.5 0.5 0.6

Water high high high normal normal normal low low low

Max 4.1 4.7 4.0 4.0 4.3 4.3 3.3 3.5 3.6
Min 2.3 2.9 2.6 2.6 3.0 3.5 2.2 3.1 2.9
Avg 3.2 3.4 3.3 3.4 3.7 3.9 2.8 3.2 3.3
STD 0.5 0.6 0.4 0.4 0.5 0.3 0.4 0.1 0.2

Tomato seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 5.3 7.5 7.4 8.6 16.8 33.4 6.4 19.3 31.4
Min 2.9 5.8 5.5 4.5 13.5 18.4 5.3 13.1 21.8
Avg 4.0 6.4 6.7 5.7 15.0 25.4 5.9 16.3 27.0
STD 0.8 0.5 0.6 1.3 1.0 4.8 0.4 2.1 3.3

Nutrient 3 3 3 1 1 1 6 6 6

Max 7.1 15.8 29.3 8.6 16.8 33.4 5.4 15.6 18.7
Min 5.4 12.8 22.4 4.5 13.5 18.4 4.1 9.0 12.6
Avg 6.1 14.5 25.7 5.7 15.0 25.4 4.9 13.0 15.3
STD 0.7 1.1 2.2 1.3 1.0 4.8 0.4 2.5 2.2

Temp. 20 20 20 25 25 25 30 30 30

Max 6.5 11.7 23.2 8.6 16.8 33.4 7.2 22.2 33.6
Min 4.2 1.3 14.5 4.5 13.5 18.4 4.1 14.8 29.0
Avg 5.2 8.6 18.1 5.7 15.0 25.4 6.3 16.5 31.8
STD 0.8 3.3 3.3 1.3 1.0 4.8 1.0 2.4 1.8

Water high high high normal normal normal low low low

Max 7.3 15.6 29.1 8.6 16.8 33.4 5.6 15.4 18.2
Min 5.6 12.6 22.6 4.5 13.5 18.4 4.3 8.8 10.4
Avg 6.3 14.4 25.8 5.7 15.0 25.4 5.1 12.8 14.4
STD 0.7 1.0 2.1 1.3 1.0 4.8 0.4 2.4 2.2
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Table A2. Cont.

Watermelon seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 1.7 2.2 2.1 2.3 2.4 2.6 2.1 2.3 2.5
Min 1.4 1.2 1.5 1.2 1.4 1.7 1.3 1.6 2.5
Avg 1.5 1.7 1.8 1.6 1.9 2.1 1.8 2.0 2.4
STD 0.1 0.4 0.2 0.4 0.3 0.3 0.3 0.2 2.4

Nutrient 3 3 3 1 1 1 6 6 6

Max 1.8 2.4 2.4 2.3 2.4 2.6 2.2 2.2 2.6
Min 1.5 1.8 1.8 1.2 1.4 1.7 1.5 1.8 1.6
Avg 1.7 2.0 2.2 1.6 1.9 2.1 1.8 2.0 2.1
STD 0.1 0.2 0.2 0.4 0.3 0.3 0.2 0.1 0.3

Temp. 20 20 20 25 25 25 30 30 30

Max 1.9 2.1 2.1 2.3 2.4 2.6 2.2 2.4 2.7
Min 1.4 1.7 1.8 1.2 1.4 1.7 1.6 1.8 2.1
Avg 1.6 1.8 2.0 1.6 1.9 2.1 1.9 2.1 2.3
STD 0.2 0.1 0.1 0.4 0.3 0.3 0.2 0.2 0.2

Water high high high normal normal normal low low low

Max 1.6 2.0 2.2 2.3 2.4 2.6 2.0 2.2 2.4
Min 1.3 1.6 1.6 1.2 1.4 1.7 1.3 1.6 1.7
Avg 1.5 1.8 2.0 1.6 1.9 2.1 1.6 1.8 1.9
STD 0.1 0.1 0.2 0.4 0.3 0.3 0.2 0.2 0.2

Lettuce seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 1.4 1.9 2.8 2.3 3.2 5.9 3.1 5.1 6.8
Min 1.0 1.4 1.7 1.7 1.9 4.3 2.3 3.6 5.2
Avg 1.2 1.7 2.0 2.0 2.6 5.2 2.7 4.1 6.0
STD 0.1 0.2 0.3 0.2 0.5 0.6 0.2 0.5 0.5

Nutrient 3 3 3 1 1 1 6 6 6

Max 2.6 3.4 6.0 2.3 3.2 5.9 2.6 3.1 5.4
Min 1.5 2.3 4.2 1.7 1.9 4.3 1.8 2.1 4.6
Avg 2.0 2.7 5.1 2.0 2.6 5.2 2.1 2.5 4.9
STD 0.3 0.4 0.5 0.2 0.5 0.6 0.3 0.3 0.3

Temp. 20 20 20 25 25 25 30 30 30

Max 2.4 3.6 6.0 2.3 3.2 5.9 4.2 6.0 8.1
Min 1.5 1.4 4.2 1.7 1.9 4.3 2.6 4.7 6.1
Avg 1.9 2.5 4.9 2.0 2.6 5.2 3.3 5.3 7.1
STD 0.3 0.6 0.7 0.2 0.5 0.6 0.5 0.5 0.7

Water high high high normal normal normal low low low

Max 2.6 2.8 6.0 2.3 3.2 5.9 2.4 2.6 5.1
Min 1.5 1.8 4.1 1.7 1.9 4.3 1.4 1.8 4.2
Avg 1.9 2.5 5.1 2.0 2.6 5.2 1.9 2.3 4.6
STD 0.3 0.3 0.5 0.2 0.5 0.6 0.3 0.3 0.3

Pak choi seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 1.6 1.8 2.1 2.4 4.5 9.1 2.0 3.9 10.7
Min 1.3 1.5 1.4 1.1 1.5 7.0 1.5 2.6 7.1
Avg 1.5 1.6 1.8 1.5 3.0 7.9 1.7 3.2 8.6
STD 0.1 0.1 0.2 0.4 1.0 0.7 0.2 0.5 1.3
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Table A2. Cont.

Nutrient 3 3 3 1 1 1 6 6 6

Max 2.0 4.2 9.2 2.4 4.5 9.1 2.2 3.7 8.2
Min 1.5 2.5 7.3 1.1 1.5 7.0 1.4 2.5 6.5
Avg 1.8 3.1 7.9 1.5 3.0 7.9 1.8 3.1 7.6
STD 0.2 0.6 0.6 0.4 1.0 0.7 0.3 0.5 0.5

Temp. 20 20 20 25 25 25 30 30 30

Max 1.7 3.4 8.7 2.4 4.5 9.1 3.2 4.6 10.5
Min 1.2 2.4 6.7 1.1 1.5 7.0 2.3 2.6 8.8
Avg 1.5 2.9 7.8 1.5 3.0 7.9 2.6 4.0 9.7
STD 0.2 0.3 0.7 0.4 1.0 0.7 0.3 0.6 0.6

Water high high high normal normal normal low low low

Max 1.6 3.4 8.3 2.4 4.5 9.1 1.7 2.7 7.3
Min 1.4 2.3 7.1 1.1 1.5 7.0 1.3 2.1 6.3
Avg 1.5 2.9 7.6 1.5 3.0 7.9 1.4 2.4 6.8
STD 0.1 0.4 0.4 0.4 1.0 0.7 0.1 0.2 0.3

Number of sample, n = 15; Unit = cm.

Table A3. Comparison of leaf canopy temperature using thermal sensor of six seedling varieties with
different stress conditions.

Pepper seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 23.0 23.9 25.0 25.0 29.0 33.0 27.7 31.9 33.9
Min 22.3 23.2 24.8 24.4 28.0 31.9 26.9 30.6 32.8
Avg 22.7 23.6 24.9 24.6 28.4 32.5 27.3 31.2 33.4
STD 0.2 0.3 0.1 0.2 0.3 0.4 0.3 0.5 0.4

Nutrient 3 3 3 1 1 1 6 6 6

Max 23.7 27.6 31.8 25.0 29.0 33.0 27.7 27.7 31.0
Min 22.9 26.8 30.7 24.4 28.0 31.9 26.9 26.8 29.9
Avg 23.2 27.2 31.3 24.6 28.4 32.5 27.3 27.2 30.5
STD 0.3 0.3 0.4 0.2 0.3 0.4 0.3 0.3 0.3

Temp. 20 20 20 25 25 25 30 30 30

Max 23.8 30.0 32.0 25.0 29.0 33.0 30.0 32.0 34.0
Min 22.2 29.3 31.3 24.4 28.0 31.9 28.9 31.1 33.7
Avg 23.3 29.7 31.7 24.6 28.4 32.5 29.4 31.4 33.8
STD 0.5 0.3 0.2 0.2 0.3 0.4 0.4 0.3 0.1

Water high high high normal normal normal low low low

Max 23.8 29.1 24.9 25.0 29.0 33.0 29.8 31.8 34.1
Min 23.0 28.0 24.8 24.4 28.0 31.9 29.0 31.2 33.6
Avg 23.3 28.5 24.8 24.6 28.4 32.5 29.3 31.4 33.8
STD 0.3 0.4 0.1 0.2 0.3 0.4 0.3 0.2 0.2

Cucumber seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 23.8 24.5 25.5 30.5 33.2 34.4 29.8 34.0 36.5
Min 23.3 23.7 25.3 28.7 31.0 31.9 28.7 30.9 34.2
Avg 23.5 24.2 25.4 29.5 32.0 33.3 29.4 32.2 34.9
STD 0.2 0.3 0.1 0.6 0.8 0.9 0.3 1.0 0.7
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Table A3. Cont.

Nutrient 3 3 3 1 1 1 6 6 6

Max 30.6 30.9 31.9 30.5 33.2 34.4 31.2 32.5 33.2
Min 28.2 28.6 30.6 28.7 31.0 31.9 28.8 30.5 30.4
Avg 29.3 29.6 31.2 29.5 32.0 33.3 30.1 31.2 32.3
STD 0.9 0.8 0.5 0.6 0.8 0.9 0.8 0.7 0.9

Temp. 20 20 20 25 25 25 30 30 30

Max 28.3 30.6 31.9 30.5 33.2 34.4 31.2 33.0 35.2
Min 26.8 28.6 29.5 28.7 31.0 31.9 29.4 31.5 34.0
Avg 27.8 29.8 30.7 29.5 32.0 33.3 30.3 32.4 34.8
STD 0.5 0.7 0.7 0.6 0.8 0.9 0.6 0.6 0.4

Water high high high normal normal normal low low low

Max 30.5 30.8 32.2 30.5 33.2 34.4 31.2 33.1 35.5
Min 27.2 28.1 30.0 28.7 31.0 31.9 30.4 32.5 34.9
Avg 28.9 29.2 31.1 29.5 32.0 33.3 30.7 32.8 35.1
STD 1.2 1.0 0.8 0.6 0.8 0.9 0.3 0.2 0.2

Tomato seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 22.8 23.7 25.2 24.5 30.1 31.5 27.5 31.8 34.0
Min 22.0 23.1 24.2 22.8 28.5 29.9 26.6 30.3 32.3
Avg 22.5 23.4 24.6 23.7 29.2 30.8 27.1 31.1 33.2
STD 0.3 0.2 0.3 0.5 0.6 0.5 0.3 0.6 0.5

Nutrient 3 3 3 1 1 1 6 6 6

Max 23.7 27.5 31.7 24.5 30.1 31.5 27.6 27.6 30.9
Min 22.7 26.6 30.5 22.8 28.5 29.9 26.9 26.7 29.7
Avg 23.2 27.1 31.1 23.7 29.2 30.8 27.2 27.1 30.4
STD 0.3 0.3 0.4 0.5 0.6 0.5 0.3 0.3 0.4

Temp. 20 20 20 25 25 25 30 30 30

Max 23.7 30.1 32.1 24.5 30.1 31.5 29.9 32.1 33.9
Min 22.2 29.4 31.4 22.8 28.5 29.9 29.0 31.2 33.6
Avg 23.2 29.8 31.8 23.7 29.2 30.8 29.4 31.6 33.7
STD 0.5 0.3 0.2 0.5 0.6 0.5 0.4 0.3 0.1

Water high high high normal normal normal low low low

Max 23.7 29.0 24.8 24.5 30.1 31.5 29.7 31.9 34.0
Min 22.9 27.9 24.7 22.8 28.5 29.9 28.9 31.3 33.5
Avg 23.3 28.4 24.7 23.7 29.2 30.8 29.3 31.6 33.7
STD 0.3 0.4 0.1 0.5 0.6 0.5 0.3 0.2 0.2

Watermelon seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 26.0 27.3 29.3 26.3 29.4 32.6 27.3 30.9 33.7
Min 25.2 24.6 27.5 24.8 27.3 30.5 25.9 28.9 30.6
Avg 25.6 26.1 28.4 25.7 28.2 31.6 26.7 30.2 32.3
STD 0.3 0.9 0.6 0.6 0.8 0.7 0.5 0.7 0.9

Nutrient 3 3 3 1 1 1 6 6 6

Max 26.4 28.1 32.0 26.3 29.4 32.6 28.0 28.0 31.3
Min 24.6 27.3 30.8 24.8 27.3 30.5 27.2 27.1 30.2
Avg 25.3 27.8 31.4 25.7 28.2 31.6 27.6 27.5 30.8
STD 0.5 0.3 0.4 0.6 0.8 0.7 0.3 0.3 0.3
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Table A3. Cont.

Temp. 20 20 20 25 25 25 30 30 30

Max 25.0 28.6 31.7 26.3 29.4 32.6 30.5 32.5 34.6
Min 23.9 27.4 30.0 24.8 27.3 30.5 29.4 31.7 34.2
Avg 24.5 28.0 30.7 25.7 28.2 31.6 29.9 32.0 34.4
STD 0.4 0.5 0.5 0.6 0.8 0.7 0.4 0.3 0.1

Water high high high normal normal normal low low low

Max 26.9 28.6 30.6 26.3 29.4 32.6 28.9 30.0 32.3
Min 25.1 28.5 28.5 24.8 27.3 30.5 27.5 29.4 31.8
Avg 26.1 28.6 29.7 25.7 28.2 31.6 28.1 29.6 32.0
STD 0.7 0.1 0.7 0.6 0.8 0.7 0.4 0.2 0.2

Lettuce seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 25.3 26.2 27.3 26.8 31.5 35.6 27.8 31.8 33.7
Min 24.6 25.5 27.1 24.9 28.0 32.9 26.6 30.1 32.3
Avg 25.0 25.9 27.2 26.0 30.2 34.0 27.3 31.1 33.0
STD 0.2 0.3 0.1 0.6 1.3 0.9 0.4 0.6 0.5

Nutrient 3 3 3 1 1 1 6 6 6

Max 28.6 29.8 31.8 26.8 31.5 35.6 28.9 30.8 32.8
Min 22.9 27.2 30.6 24.9 28.0 32.9 27.0 26.9 30.4
Avg 26.5 28.7 31.0 26.0 30.2 34.0 27.8 29.1 31.9
STD 1.8 1.0 0.4 0.6 1.3 0.9 0.6 1.4 0.8

Temp. 20 20 20 25 25 25 30 30 30

Max 25.2 31.4 33.4 26.8 31.5 35.6 31.6 33.8 36.0
Min 23.6 29.0 32.6 24.9 28.0 32.9 28.6 31.9 34.5
Avg 24.7 30.1 33.1 26.0 30.2 34.0 29.8 33.0 35.3
STD 0.5 0.8 0.2 0.6 1.3 0.9 1.0 0.6 0.5

Water high high high normal normal normal low low low

Max 25.5 30.8 32.5 26.8 31.5 35.6 28.2 30.1 32.5
Min 24.7 29.7 29.6 24.9 28.0 32.9 27.4 29.5 31.9
Avg 25.1 30.2 30.9 26.0 30.2 34.0 27.7 29.8 32.1
STD 0.3 0.4 0.9 0.6 1.3 0.9 0.3 0.2 0.2

Pak choi seedling

Days 4th 9th 15th 4th 9th 15th 4th 9th 15th

Light 50 50 50 250 250 250 450 450 450

Max 25.1 26.0 30.2 26.7 30.4 32.0 29.3 32.0 32.1
Min 24.4 25.3 27.1 26.1 29.7 29.9 27.6 30.0 31.0
Avg 24.8 25.7 28.8 26.4 30.0 31.1 28.5 31.0 31.6
STD 0.2 0.3 1.1 0.2 0.2 0.7 0.5 0.6 0.4

Nutrient 3 3 3 1 1 1 6 6 6

Max 25.8 29.7 31.4 26.7 30.4 32.0 27.8 30.7 32.6
Min 24.9 28.9 29.8 26.1 29.7 29.9 26.4 28.4 30.8
Avg 25.3 29.3 30.6 26.4 30.0 31.1 27.1 29.3 31.7
STD 0.3 0.3 0.5 0.2 0.2 0.7 0.5 0.8 0.6

Temp. 20 20 20 25 25 25 30 30 30

Max 26.6 29.9 31.9 26.7 30.4 32.0 30.0 32.0 33.4
Min 24.8 28.6 29.6 26.1 29.7 29.9 28.3 30.1 30.9
Avg 25.9 29.2 30.6 26.4 30.0 31.1 29.4 31.3 32.6
STD 0.5 0.4 0.7 0.2 0.2 0.7 0.6 0.6 0.9
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Table A3. Cont.

Water high high high normal normal normal low low low

Max 26.9 29.6 30.8 26.7 30.4 32.0 29.2 31.3 33.4
Min 24.8 28.3 28.6 26.1 29.7 29.9 27.4 29.6 30.2
Avg 25.9 29.0 29.7 26.4 30.0 31.1 28.2 30.5 31.7
STD 0.8 0.4 0.7 0.2 0.2 0.7 0.6 0.6 1.1

Number of sample, n = 15; Unit = Degree Celsius (◦C).
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