Bioactive Compounds in the Residue Obtained from Fruits of Some Cultivars of Lonicera caerulea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.2. Chemicals and Reagents
2.3. Laboratory Equipment
2.4. Analysis Methods
2.4.1. Determination of Total Content of Phenolic Compounds
2.4.2. Determination of the Total Content of Tannins
2.4.3. Determination of Total Content of Flavonoids
2.4.4. Determination of Total Anthocyanin Content
2.4.5. Determination of Carotenoid Content (Lycopene and β-Carotene)
2.4.6. Determination of Vitamin C Content
2.4.7. Determination of Phenolic Compounds through HPLC–DAD
2.4.8. Statistical Analysis
3. Results and Discussion
3.1. Determination of Total Content of Phenolic Compounds, Tannins, Flavonoids and Monomeric Anthocyanins
3.2. Determination of Carotenoid (Lycopene and β-Carotene) Content and Vitamin C Content
3.3. Determination of Phenolic Compound Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, A.; Lee, H.J. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci. Technol. 2020, 107, 130–149. [Google Scholar] [CrossRef]
- Becker, R.; Paczkowski, C.; Szakiel, A. Triterpenoid profile of fruit and leaf cuticular waxes of edible honeysuckle Lonicera caerulea var. kamtschatica. Acta Soc. Bot. Pol. 2017, 86, 3539. [Google Scholar] [CrossRef]
- Becker, R.; Szakiel, A. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). J. Herb. Med. 2019, 16, 100237. [Google Scholar] [CrossRef]
- Bieniek, A.A.; Grygorieva, O.; Bielska, N. Biological properties of honeysuckle (Lonicera caerulea L.): A review: The nutrition, health properties of honeysuckle. Agrobiodivers Improv. Nutr. Health Life Qual. 2021, 5, 287–295. [Google Scholar] [CrossRef]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health properties and composition of honeysuckle berry Lonicera caerulea L. An update on recent studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, phenolic compounds and antioxidant activity of edible honeysuckle berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef]
- Kula, M.; Głód, D.; Krauze-Baranowska, M. Application of on-line and off-line heart-cutting LC in determination of secondary metabolites from the flowers of Lonicera caerulea cultivar varieties. J. Pharm. Biomed. Anal. 2016, 131, 316–326. [Google Scholar] [CrossRef]
- Cesoniene, L.; Labokas, J.; Jasutiene, I.; Sarkinas, A.; Kaskoniene, V.; Kaskonas, P.; Kazernaviciute, R.; Pazereckaite, A.; Daubaras, R. Bioactive compounds, antioxidant, and antibacterial properties of Lonicera caerulea berries: Evaluation of 11 cultivars. Plants 2021, 10, 624. [Google Scholar] [CrossRef]
- Gawroński, J.; Żebrowska, J.; Pabich, M.; Jackowska, I.; Kowalczyk, K.; Dyduch-Siemińska, M. Phytochemical characterization of blue honeysuckle in relation to the genotypic diversity of Lonicera sp. Appl. Sci. 2020, 10, 6545. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Yu, L.J.; Bhullar, K.S.; Bors, B. Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012, 92, 1311–1317. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A.M.; Marianchuk, M.; Kolodziejczyk, P. Survey of bioactive components in Western Canadian berries. Can. J. Physiol. Pharmacol. 2007, 85, 1139–1152. [Google Scholar] [CrossRef]
- Rupasinghe, H.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The potential health benefits of haskap (Lonicera caerulea L.): Role of cyanidin-3-O-glucoside. J. Funct. Foods 2018, 44, 24–39. [Google Scholar] [CrossRef]
- Guo, L.; Qiao, J.; Zhang, L.; Yan, W.; Zhang, M.; Lu, Y.; Huo, J. Critical review on anthocyanins in blue honeysuckle (Lonicera caerulea L.) and their function. Plant Physiol. Biochem. 2023, 204, 108090. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, D.; Huang, D.; Huo, J.; Wu, H.; Sui, X.; Zhang, Y. Non-extractable polyphenols from blue honeysuckle fruit pomace with strong antioxidant capacity: Extraction, characterization, and their antioxidant capacity. Food Res. Int. 2023, 174, 113495. [Google Scholar] [CrossRef] [PubMed]
- Pei, F.; Lv, Y.; Cao, X.; Wang, X.; Ren, Y.; Ge, J. Structural characteristics and the antioxidant and hypoglycemic activities of a polysaccharide from Lonicera caerulea L. pomace. Fermentation 2022, 8, 422. [Google Scholar] [CrossRef]
- Diez-Sánchez, E.; Quiles, A.; Hernando, I. Use of berry pomace to design functional foods. Food Rev. Int. 2023, 39, 3204–3224. [Google Scholar] [CrossRef]
- Cheng, Z.; Bao, Y.; Li, Z.; Wang, J.; Wang, M.; Wang, S.; Li, B. Lonicera caerulea (Haskap berries): A review of development traceability, functional value, product development status, future opportunities, and challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 8992–9016. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Total phenolic, flavonoid distribution and antioxidant capacity in skin, pulp and fruit extracts of plum cultivars. J. Food Biochem. 2015, 39, 64–69. [Google Scholar] [CrossRef]
- Cosmulescu, S.N.; Enescu, I.C.; Badea, G.; Vijan, L.E. The influences of genotype and year on some biologically active compounds in honeysuckle berries. Horticulturae 2023, 9, 455. [Google Scholar] [CrossRef]
- Trandafir, I.; Cosmulescu, S.; Nour, V. Phenolic profile and antioxidant capacity of walnut extract as influenced by the extraction method and solvent. Int. J. Food Eng. 2017, 13, 20150284. [Google Scholar] [CrossRef]
- Ochmian, I.D.; Skupień, K.; Grajkowski, J.; Smolik, M.; Ostrowska, K. Chemical composition and physical characteristics of fruits of two cultivars of blue honeysuckle (Lonicera caerulea L.) in relation to their degree of maturity and harvest date. Not. Bot. Horti. Agrobot. Cluj Napoca 2012, 40, 155–162. [Google Scholar] [CrossRef]
- Senica, M.; Bavec, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex Herder) Hultén.) berries and changes in their ingredients across different locations. J. Sci. Food Agric. 2018, 98, 3333–3342. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Lachowicz, S. Effect of dried powder preparation process on polyphenolic content and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L. var. kamtschatica). LWT Food Sci. Technol. 2016, 67, 214–222. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Nesterowicz, J. Phenolic acid profiles in some small berries. J. Agric. Food Chem. 2005, 53, 2118–2124. [Google Scholar] [CrossRef]
- Deineka, V.I.; Sorokopudov, V.N.; Deineka, L.A.; Shaposhnik, E.I.; Koltsov, S.V. Anthocyans from fruit of some plants of the Caprifoliaceae family. Chem. Nat. Compd. 2005, 41, 162–164. [Google Scholar] [CrossRef]
- Senica, M.; Stampar, F.; Mikulic-Petkovsek, M. Blue honeysuckle (Lonicera cearulea L. subs. edulis) berry; A rich source of some nutrients and their differences among four different cultivars. Sci. Hortic. 2018, 238, 215–221. [Google Scholar] [CrossRef]
- Mazilu Enescu, I.; Vijan, L.E.; Cosmulescu, S. The influence of harvest moment and cultivar on variability of some chemical constituents and antiradical activity of dehydrated chokeberry pomace. Horticulturae 2022, 8, 544. [Google Scholar] [CrossRef]
- Raudonė, L.; Liaudanskas, M.; Vilkickytė, G.; Kviklys, D.; Žvikas, V.; Viškelis, J.; Viškelis, P. Phenolic profiles, antioxidant activity and phenotypic characterization of Lonicera caerulea L. berries, cultivated in Lithuania. Antioxidants 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
Compounds **/Descriptive Statistics | TPC | TTC | TFC | TAC |
---|---|---|---|---|
Mean | 8041.36 | 6432.10 | 2436.95 | 1441.90 |
Standard deviation (SD) | 735.23 | 1451.36 | 235.31 | 42.89 |
Coefficient of variation (%) | 9.14 | 22.56 | 12.24 | 2.97 |
Minimum | 6664.40 | 4679.05 | 1858.88 | 1394.44 |
Maximum | 9619.46 | 8967.91 | 2940.00 | 1511.36 |
Compounds/Descriptive Statistics | Lycopene * | β-Carotene | Vitamin C |
---|---|---|---|
Mean | 2.55 | 2.86 | 184.73 |
Standard deviation (SD) | 0.31 | 0.54 | 14.88 |
Coefficient of variation (%) | 11.99 | 18.93 | 8.05 |
Minimum | 2.08 | 2.18 | 167.38 |
Maximum | 3.07 | 3.78 | 212.01 |
Compounds **/Descriptive Statistics | ChA * | NChA | CChA | C | EC | R | IQ |
---|---|---|---|---|---|---|---|
Mean | 316.28 | 32.35 | 134.54 | 2593.78 | 155.86 | 148.01 | 14.56 |
Standard deviation (SD) | 10.34 | 1.13 | 32.61 | 27.56 | 97.95 | 15.71 | 1.38 |
Coefficient of variation (%) | 3.27 | 3.48 | 24.24 | 1.06 | 62.85 | 10.61 | 9.45 |
Minimum | 307.44 | 30.97 | 96.37 | 2559.63 | 114.38 | 131.40 | 12.44 |
Maximum | 332.81 | 34.30 | 173.41 | 2627.43 | 415.97 | 168.39 | 16.20 |
TTC | TFC | TAC | Vitamin C | Lycopene | β-Carotene | ChA | NChA | CChA | C | EC | R | IQ | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPC | Pearson Correlation | 0.592 * | 0.119 | 0.675 * | 0.596 | 0.253 | 0.290 | 0.434 | 0.381 | −0.668° | 0.695 * | 0.608 | 0.643 | −0.625 |
Sig. (2-tailed) | 0.043 | 0.713 | 0.046 | 0.090 | 0.512 | 0.449 | 0.243 | 0.312 | 0.049 | 0.038 | 0.082 | 0.062 | 0.072 | |
TTC | Pearson Correlation | 1 | −0.210 | −0.364 | −0.439 | 0.837 ** | 0.794 * | −0.688 ° | −0.503 | 0.353 | −0.322 | −0.272 | −0.501 | 0.411 |
Sig. (2-tailed) | 0.513 | 0.336 | 0.237 | 0.005 | 0.011 | 0.040 | 0.168 | 0.351 | 0.398 | 0.479 | 0.169 | 0.272 | ||
TFC | Pearson Correlation | 1 | 0.377 | 0.232 | −0.292 | −0.300 | 0.353 | 0.381 | −0.358 | 0.366 | 0.199 | 0.398 | −0.417 | |
Sig. (2-tailed) | 0.318 | 0.547 | 0.445 | 0.432 | 0.352 | 0.312 | 0.344 | 0.332 | 0.607 | 0.288 | 0.264 | |||
TAC | Pearson Correlation | 1 | 0.754 * | −0.152 | −0.152 | 0.895 ** | 0.887 ** | −0.999 °°° | 0.997 *** | 0.510 | 0.984 *** | −0.983 °°° | ||
Sig. (2-tailed) | 0.019 | 0.696 | 0.696 | 0.001 | 0.001 | 0.000 | 0.000 | 0.160 | 0.000 | 0.000 | ||||
Vitamin C | Pearson Correlation | 1 | −0.032 | −0.042 | 0.782 * | 0.583 | −0.748 ° | 0.760 * | 0.734 * | 0.817 ** | −0.705 ° | |||
Sig. (2-tailed) | 0.935 | 0.914 | 0.013 | 0.099 | 0.021 | 0.018 | 0.024 | 0.007 | 0.034 | |||||
Lycopene | Pearson Correlation | 1 | 0.971 *** | −0.494 | −0.472 | 0.146 | −0.110 | 0.142 | −0.253 | 0.203 | ||||
Sig. (2-tailed) | 0.000 | 0.176 | 0.199 | 0.708 | 0.779 | 0.716 | 0.511 | 0.600 | ||||||
β-Carotene | Pearson Correlation | 1 | −0.477 | −0.470 | 0.143 | −0.104 | 0.090 | −0.249 | 0.221 | |||||
Sig. (2-tailed) | 0.194 | 0.202 | 0.713 | 0.790 | 0.818 | 0.518 | 0.568 | |||||||
ChA | Pearson Correlation | 1 | 0.897 ** | −0.891 °° | 0.873 ** | 0.474 | 0.951 *** | −0.892 °° | ||||||
Sig. (2-tailed) | 0.001 | 0.001 | 0.002 | 0.197 | 0.000 | 0.001 | ||||||||
NChA | Pearson Correlation | 1 | −0.888 °° | 0.883 ** | 0.153 | 0.886 ** | −0.890 °° | |||||||
Sig. (2-tailed) | 0.001 | 0.002 | 0.695 | 0.001 | 0.001 | |||||||||
CChA | Pearson Correlation | 1 | −0.997 °°° | −0.496 | −0.982 °°° | 0.982 *** | ||||||||
Sig. (2-tailed) | 0.000 | 0.174 | 0.000 | 0.000 | ||||||||||
C | Pearson Correlation | 1 | 0.488 | 0.975 *** | −0.969 °°° | |||||||||
Sig. (2-tailed) | 0.182 | 0.000 | 0.000 | |||||||||||
EC | Pearson Correlation | 1 | 0.564 | −0.480 | ||||||||||
Sig. (2-tailed) | 0.114 | 0.191 | ||||||||||||
R | Pearson Correlation | 1 | −0.971 °°° | |||||||||||
Sig. (2-tailed) | 0.000 |
Analyzed Constituent * | Sig. | Partial Eta Squared | Analyzed Constituent * | Sig. | Partial Eta Squared |
---|---|---|---|---|---|
TPC | 0.043 | 0.407 | ChA | 0.000 | 0.977 |
TTC | 0.001 | 0.773 | NChA | 0.008 | 0.803 |
TFC | 0.939 | 0.014 | CChA | 0.000 | 0.999 |
TAC | 0.000 | 0.999 | C | 0.000 | 0.997 |
Lycopene | 0.114 | 0.516 | EC | 0.301 | 0.330 |
β-Carotene | 0.102 | 0.533 | R | 0.000 | 0.998 |
Vitamin C | 0.035 | 0.672 | IQ | 0.000 | 0.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosmulescu, S.; Vijan, L.; Mazilu, I.C.; Badea, G. Bioactive Compounds in the Residue Obtained from Fruits of Some Cultivars of Lonicera caerulea. Horticulturae 2024, 10, 211. https://doi.org/10.3390/horticulturae10030211
Cosmulescu S, Vijan L, Mazilu IC, Badea G. Bioactive Compounds in the Residue Obtained from Fruits of Some Cultivars of Lonicera caerulea. Horticulturae. 2024; 10(3):211. https://doi.org/10.3390/horticulturae10030211
Chicago/Turabian StyleCosmulescu, Sina, Loredana Vijan, Ivona Cristina Mazilu, and Georgiana Badea. 2024. "Bioactive Compounds in the Residue Obtained from Fruits of Some Cultivars of Lonicera caerulea" Horticulturae 10, no. 3: 211. https://doi.org/10.3390/horticulturae10030211
APA StyleCosmulescu, S., Vijan, L., Mazilu, I. C., & Badea, G. (2024). Bioactive Compounds in the Residue Obtained from Fruits of Some Cultivars of Lonicera caerulea. Horticulturae, 10(3), 211. https://doi.org/10.3390/horticulturae10030211