Pathogenic Factors and Mechanisms of the Alternaria Leaf Spot Pathogen in Apple
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant materials and Growth Conditions
2.2. Isolation, Culture, and Identification of Pathogenic Fungi
2.3. Toxin Extraction
2.4. Toxin Inactivation
2.5. Fungal and Toxin Inoculation Assay
2.6. Confocal Microscopy
2.7. LC-MS Analysis to Identify Secreted Proteins
2.8. Overexpression of Three ALT7 Secretory Proteins
2.9. RT-qPCR
- (1)
- The relative expression of toxin genes AMT1 and AMT4 was assessed in ALT7-inoculated Gala-3, Golden Delicious, Shandong Gala, and Hanfu (Section 2.5).
- (2)
- The relative expression of secretory proteins AltABC, AltAO, and AltPDE was assessed in transgenic OE-AltABC-Hanfu, OE-AltAO-Hanfu, and OE-AltPDE-Hanfu, respectively (Section 2.9).
- (3)
- Fungal biomass was quantified in transgenic OE-AltABC-Hanfu, OE-AltAO-Hanfu, and OE-Alt-PDE-Hanfu seedlings after inoculation with ALT7 (Section 2.9).
- (4)
- Total RNA was extracted from apple leaves using an EASY Spin Kit (Biomed Biotechnology Co., Ltd., Beijing, China), amplified using oligo-dT primers (Takara Biomedical Technology Co., Ltd., Beijing, China), and reverse-transcribed into cDNA (see Table S1 for primers). Real-time PCR (RT-PCR) was performed using SuperReal PreMix Plus (SYBR Green) (Tiangen, FP205, Beijing, China) under the following cycling conditions: 40 cycles of 95 °C for 10 sec and 60 °C for 30 s (Applied Biosystems 7500). Relative RNA abundance was calculated using the 2−∆∆Ct method [28], with MdActin (NCBI XM_008365636.2) as the reference gene.
3. Results
3.1. Collection of Apple Leaf Spot Pathogen Strains
3.2. Morphological Characterization and Sequence Analysis of Single-Spore Isolates
3.3. Pathogenicity Assays of ALT2 to ALT7 on Apple
3.4. Phenotypes and Effects of AM-Toxins on Apple Leaves
3.5. Effects of Inactivated AM-Toxins on Apple Leaves
3.6. Identification of ALT7 Secretory Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dang, J.L.; Gleason, M.L.; Niu, C.K.; Liu, X.; Guo, Y.Z.; Zhang, R.; Sun, G.Y. Effects of Fungicides and Spray Application Interval on Controlling Marssonina Blotch of Apple in the Loess Plateau Region of China. Plant Dis. 2017, 101, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.A.; Moreira, R.R.; Nesi, C.N.; May De Mio, L.L. Pathogen Dispersal and Glomerella Leaf Spot Progress Within Apple Canopy in Brazil. Plant Dis. 2019, 103, 3209–3217. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, H.; Gruszewski, H.A.; Schmale, D.G.; Jung, S. Vortex-Induced Dispersal of a Plant Pathogen by Raindrop Impact. Proc. Natl. Acad. Sci. USA 2019, 116, 4917–4922. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Iwanami, H.; Kotoda, N.; Moriya, S.; Takahashi (Sumiyoshi), S. Evaluation of Apple Genotypes and Malus Species for Resistance to Alternaria Blotch Caused by Alternaria alternata Apple Pathotype Using Detached-leaf Method. Plant Breed. 2010, 129, 208–218. [Google Scholar] [CrossRef]
- Johnson, R.D.; Johnson, L.; Itoh, Y.; Kodama, M.; Otani, H.; Kohmoto, K. Cloning and Characterization of a Cyclic Peptide Synthetase Gene from Alternaria alternata Apple Pathotype Whose Product Is Involved in AM-Toxin Synthesis and Pathogenicity. Mol. Plant-Microbe Interact. 2000, 13, 742–753. [Google Scholar] [CrossRef]
- Wang, C.X.; Zhang, Z.F.; Li, B.H.; Wang, H.Y.; Dong, X.L. First Report of Glomerella Leaf Spot of Apple Caused by Glomerella cingulata in China. Plant Dis. 2012, 96, 912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tian, Y.; Cong, P. Proteome Analysis of Pathogen-Responsive Proteins from Apple Leaves Induced by the Alternaria Blotch Alternaria alternata. PLoS ONE 2015, 10, e0122233. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, C.; Zhang, Y.; Gu, Z.; Li, W.; Duan, X.; Wang, S.; Hao, L.; Wang, Y.; Wang, S.; et al. A Single-Nucleotide Polymorphism in the Promoter of a Hairpin RNA Contributes to Alternaria alternata Leaf Spot Resistance in Apple (Malus × Domestica). Plant Cell 2018, 30, 1924–1942. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Zhang, Z.; Cong, P.; Cheng, Z.-M. A Simple Sequence Repeat Marker Linked to the Susceptibility of Apple to Alternaria Blotch Caused by Alternaria alternata Apple Pathotype. J. Am. Soc. Hortic. Sci. 2011, 136, 109–115. [Google Scholar] [CrossRef]
- Dang, J.L.; Gleason, M.L.; Li, L.N.; Wang, C.; Niu, C.K.; Zhang, R.; Sun, G.Y. Alternaria malicola Sp. Nov., a New Pathogen Causing Fruit Spot on Apple in China. Plant Dis. 2018, 102, 1273–1282. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.; Wei, H.; Fan, W.; Li, T. Two Pathogenesis-Related Proteins Interact with Leucine-Rich Repeat Proteins to Promote Alternaria Leaf Spot Resistance in Apple. Hortic. Res. 2021, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-R. Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata. Scientifica 2012, 2012, 635431. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D. Water, Water Everywhere … but How Does It Affect the Functional Diversity of Ectomycorrhizal Fungi? New Phytol. 2018, 220, 950–951. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, F.; Collina, M.; Brunelli, A.; Pryor, B.M. Comparison of Alternaria Spp. Collected in Italy from Apple with A. mali and Other AM-Toxin Producing Strains. Phytopathology® 2012, 102, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- Shtienberg, D. Effects of Host Physiology on the Development of Core Rot, Caused by Alternaria alternata, in Red Delicious Apples. Phytopathology® 2012, 102, 769–778. [Google Scholar] [CrossRef]
- Wolpert, T.J.; Dunkle, L.D.; Ciuffetti, L.M. HOST-SELECTIVET OXINS AND A VIRULENCE D ETERMINANTS: What’s in a Name? Annu. Rev. Phytopathol. 2002, 40, 251–285. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Ishita, Y.; Sawai, K.; Matsumoto, T. Characterization of alternariolide, a host-specific toxin produced by Alternaria mali roberts. Chem. Lett. 1974, 3, 635–638. [Google Scholar] [CrossRef]
- Berestetskiy, A.O. A Review of Fungal Phytotoxins: From Basic Studies to Practical Use. Appl. Biochem. Microbiol. 2008, 44, 453–465. [Google Scholar] [CrossRef]
- Sawamura, K. Studies on Apple Alternaria Blotch Caused by Alternaria mali Roberts; Bulletin of the Faculty of Agriculture, Hirosaki University: Hirosaki, Japan, 1972; Volume 18, pp. 152–235. [Google Scholar]
- Ostry, V. Alternaria Mycotoxins: An Overview of Chemical Characterization, Producers, Toxicity, Analysis and Occurrence in Foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Hickert, S.; Hermes, L.; Marques, L.M.M.; Focke, C.; Cramer, B.; Lopes, N.P.; Flett, B.; Humpf, H.-U. Alternaria Toxins in South African Sunflower Seeds: Cooperative Study. Mycotoxin Res. 2017, 33, 309–321. [Google Scholar] [CrossRef]
- Meena, M.; Gupta, S.K.; Swapnil, P.; Zehra, A.; Dubey, M.K.; Upadhyay, R.S. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis. Front. Microbiol. 2017, 8, 1451. [Google Scholar] [CrossRef]
- Meena, M.; Zehra, A.; Dubey, M.K.; Aamir, M.; Gupta, V.K.; Upadhyay, R.S. Comparative Evaluation of Biochemical Changes in Tomato (Lycopersicon esculentum Mill.) Infected by Alternaria alternata and Its Toxic Metabolites (TeA, AOH, and AME). Front. Plant Sci. 2016, 7, 1408. [Google Scholar] [CrossRef] [PubMed]
- Dangl, J.L.; Jones, J.D.G. Plant Pathogens and Integrated Defence Responses to Infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.; Wei, H.; Fan, W.; Xu, C.; Li, T. CC R-NB-LRR Proteins MdRNL2 and MdRNL6 Interact Physically to Confer Broad-spectrum Fungal Resistance in Apple (Malus × Domestica). Plant J. 2021, 108, 1522–1538. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.; Arafat, Y.; Lin, W. Studies on Fungal Communities and Functional Guilds Shift in Tea Continuous Cropping Soils by High-Throughput Sequencing. Ann. Microbiol. 2020, 70, 7. [Google Scholar] [CrossRef]
- Michalski, A.; Damoc, E.; Lange, O.; Denisov, E.; Nolting, D.; Müller, M.; Viner, R.; Schwartz, J.; Remes, P.; Belford, M.; et al. Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes. Mol. Cell. Proteom. 2012, 11, O111.013698. [Google Scholar] [CrossRef]
- Nagaraj, N.; Alexander Kulak, N.; Cox, J.; Neuhauser, N.; Mayr, K.; Hoerning, O.; Vorm, O.; Mann, M. System-Wide Perturbation Analysis with Nearly Complete Coverage of the Yeast Proteome by Single-Shot Ultra HPLC Runs on a Bench Top Orbitrap. Mol. Cell. Proteom. 2012, 11, M111.013722. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Filajdic, N. Identification and Distribution of Alternaria mali on Apples in North Carolina and Susceptibility of Different Varieties of Apples to Alternaria Blotch. Plant Dis. 1991, 75, 1045. [Google Scholar] [CrossRef]
- Filajdić, N. Influence of Temperature and Wetness Duration on Infection of Apple Leaves and Virulence of Different Isolates of Alternaria mali. Phytopathology 1992, 82, 1279. [Google Scholar] [CrossRef]
- Sutton, T.B.; Sanhueza, R.M. Necrotic Leaf Blotch of Golden Delicious—Glomerella Leaf Spot: A Resolution of Common Names. Plant Dis. 1998, 82, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Araújo, L.; Gonçalves, A.E.; Stadnik, M.J. Ulvan Effect on Conidial Germination and Appressoria Formation of Colletotrichum Gloeosporioides. Phytoparasitica 2014, 42, 631–640. [Google Scholar] [CrossRef]
- Ali, S.; Tyagi, A.; Rajarammohan, S.; Mir, Z.A.; Bae, H. Revisiting Alternaria-Host Interactions: New Insights on Its Pathogenesis, Defense Mechanisms and Control Strategies. Sci. Hortic. 2023, 322, 112424. [Google Scholar] [CrossRef]
- Tanahashi, M.; Nakano, T.; Akamatsu, H.; Kodama, M.; Otani, H.; Osaki-Oka, K. Alternaria alternata Apple Pathotype (A. mali) Causes Black Spot of European Pear. Eur. J. Plant Pathol. 2016, 145, 787–795. [Google Scholar] [CrossRef]
District | Number of Strains | Alternaria Leaf Spot (Alternaria alternata f. sp. mali) | Glomerella Leaf Spot (Glomerella cingulate) | Marssonina Leaf Spot (Marssonina coronaria) |
---|---|---|---|---|
Laishan | 23 | 18 (78.26%) | 0 | 6 (26.08%) |
Muping | 24 | 16 (66.67%) | 2 (8.33%) | 4 (16.67%) |
Haiyang | 23 | 16 (48.48%) | 0 | 7 (21.21%) |
Qixia | 20 | 15 (75%) | 1 (5%) | 14 (58.33%) |
Zhaoyuan | 24 | 19 (79.16%) | 5 (20.83%) | 13 (54.16%) |
Species | Strain Number | ITS | Beta-Tubulin | Alt a 1 | |||
---|---|---|---|---|---|---|---|
GenBank Accession Numbers | Percent Identity | GenBank Accession Numbers | Percent Identity | GenBank Accession Numbers | Percent Identity | ||
A.alternata | ALT2 | MF422130.1 | 98.95% | KY814630.1 | 99.42% | OP311599.1 | 99.54% |
A.alternata | ALT3 | ON973886.1 | 99.63% | ON667992.1 | 99.42% | OR464084.1 | 98.44% |
A.alternata | ALT4 | MZ930190.1 | 99.81% | ON667994.1 | 99.42% | OQ686979.1 | 99.54% |
A.alternata | ALT5 | ON712167.1 | 99.82% | KY814629.1 | 100% | OQ831518.1 | 100% |
A.alternata | ALT6 | KJ739872.1 | 99.12% | ON667994.1 | 98.83% | JQ282256.1 | 98.63% |
A.alternata | ALT7 | MH553296.1 | 99.47% | KY814628.1 | 99.22% | OR061063.1 | 98.13% |
Family | Accession | Score | Mass | emPAI | Description |
---|---|---|---|---|---|
2 | XP_018388203.1 | 1369 | 39,294 | 1.91 | ABC-type Fe3+ transport system |
3 | XP_018381613.1 | 1273 | 69,031 | 2.01 | alcohol oxidase |
4 | XP_018391646.1 | 1114 | 83,911 | 0.74 | hypothetical protein CC77DRAFT_1015550 |
5 | XP_018384467.1 | 977 | 102,106 | 0.51 | hypothetical protein CC77DRAFT_966271 |
7 | XP_018383919.1 | 920 | 70,717 | 0.27 | phosphodiesterase/alkaline phosphatase D precursor |
8 | XP_018382257.1 | 861 | 49,528 | 0.41 | hypothetical protein CC77DRAFT_1011906 |
10 | XP_018384413.1 | 738 | 33,689 | 0.86 | alpha/beta-hydrolase |
11 | XP_018382523.1 | 645 | 44,564 | 0.76 | glycoside hydrolase |
13 | XP_018387936.1 | 592 | 40,664 | 0.68 | hypothetical protein CC77DRAFT_733950 |
14 | XP_018390870.1 | 571 | 56,346 | 0.96 | FAD-binding domain-containing protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Gong, S.; Li, Y.; Tang, J.; Li, T.; Zhang, Q. Pathogenic Factors and Mechanisms of the Alternaria Leaf Spot Pathogen in Apple. Horticulturae 2024, 10, 212. https://doi.org/10.3390/horticulturae10030212
Cao C, Gong S, Li Y, Tang J, Li T, Zhang Q. Pathogenic Factors and Mechanisms of the Alternaria Leaf Spot Pathogen in Apple. Horticulturae. 2024; 10(3):212. https://doi.org/10.3390/horticulturae10030212
Chicago/Turabian StyleCao, Chen, Shun Gong, Yan Li, Jinqi Tang, Tianzhong Li, and Qiulei Zhang. 2024. "Pathogenic Factors and Mechanisms of the Alternaria Leaf Spot Pathogen in Apple" Horticulturae 10, no. 3: 212. https://doi.org/10.3390/horticulturae10030212
APA StyleCao, C., Gong, S., Li, Y., Tang, J., Li, T., & Zhang, Q. (2024). Pathogenic Factors and Mechanisms of the Alternaria Leaf Spot Pathogen in Apple. Horticulturae, 10(3), 212. https://doi.org/10.3390/horticulturae10030212