Matabolomic Changes Induced by 6-Benzylaminopurine in Polygonatum cyrtonema
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Measurement of Total Polysaccharide Content
2.3. Measurement of Total Saponin Content
2.4. Sample Extraction for Metabolomic Analysis
2.5. UPLC-MS/MS Analysis
2.6. Qualitative and Quantitative Analysis of Metabolites
2.7. Statistical Analysis
3. Results
3.1. Effect of Plant Growth Regulators on Growth of P. cyrtonema
3.2. Effect of Plant Growth Regulators on Polysaccharide and Saponin Contents of P. cyrtonema Rhizome
3.3. Metabolomic Changes in P. cyrtonema Rhizome in Responses to 6-BA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (Part I), 2020th ed.; China Pharmaceutical Science and Technology Press: Beijing, China, 2020. (In Chinese) [Google Scholar]
- Chen, D.; Han, Z.; Si, J. Huangjing (Polygonati rhizoma) is an emerging crop with great potential to fight chronic and hidden hunger. Sci. China Life Sci. 2021, 64, 1564–1566. [Google Scholar] [CrossRef] [PubMed]
- Gvazava, L.N.; Kikoladze, V.S. Flavonoids from the plants Polygonatum polyanthemum and P. glaberrimum. Chem. Nat. Compd. 2011, 47, 818–819. [Google Scholar] [CrossRef]
- Lan, G.; Chen, H.; Chen, S.; Tian, J. Chemical composition and physicochemical properties of dietary fiber from Polygonatum odoratum as affected by different processing methods. Food Res. Int. 2012, 49, 406–410. [Google Scholar] [CrossRef]
- Jiang, Q.; Lv, Y.; Dai, W.; Miao, X.; Zhong, D. Extraction and bioactivity of Polygonatum polysaccharides. Int. J. Biol. Macromol. 2013, 54, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Huang, X.; Kong, L. Steroidal Saponins from Polygonatum cyrtonema. Chem. Nat. Compd. 2013, 49, 888–891. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, C.; Li, X.; Gao, Q.; Huang, L.; Xiao, P.; Gao, W. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 214, 274–291. [Google Scholar] [CrossRef]
- Rademacher, W. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Wu, X.; Gong, D.; Zhao, K.; Chen, D.; Dong, Y.; Gao, Y.; Wang, Q.; Hao, G. Research and development trends in plant growth regulators. Adv. Agrochem 2023, 3, 99–106. [Google Scholar] [CrossRef]
- Jamwal, K.; Bhattacharya, S.; Puri, S. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. Med. Aromat. Plants 2018, 9, 26–38. [Google Scholar] [CrossRef]
- Kim, O.-T.; Bang, K.-H.; Shin, Y.-S.; Lee, M.-J.; Jung, S.-J.; Hyun, D.-Y.; Kim, Y.-C.; Seong, N.-S.; Cha, S.-W.; Hwang, B. Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Rep. 2007, 26, 1941–1949. [Google Scholar] [CrossRef]
- Kim, O.T.; Kim, M.Y.; Hong, M.H.; Ahn, J.C.; Hwang, B. Stimulation of asiaticoside accumulation in the whole plant cultures of Centella asiatica (L.) Urban by elicitors. Plant Cell Rep. 2004, 23, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Tewari, R.K.; Paek, K.-Y. Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots. J. Plant Growth Regul. 2011, 30, 396–404. [Google Scholar] [CrossRef]
- Ali, M.B.; Yu, K.-W.; Hahn, E.-J.; Paek, K.-Y. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep. 2006, 25, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Yeung, E.C.; Hahn, E.-J.; Paek, K.-Y. Combined effects of phytohormone, indole-3-butyric acid, and methyl jasmonate on root growth and ginsenoside production in adventitious root cultures of Panax ginseng C.A. Meyer. Biotechnol. Lett. 2007, 29, 1789–1792. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.; Islam, S.; Mohammad, F.; Siddiqui, M.H. Gibberellic Acid: A Versatile Regulator of Plant Growth, Development and Stress Responses. J. Plant Growth Regul. 2023, 42, 7352–7373. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, Y.; Zhang, Z.; Wang, S.; Cheng, J.; Gao, Y.; Wang, W.; Ma, N.; Wang, Y. Transcriptomic analysis reveals GA3 is involved in regulating flavonoid metabolism in grape development for facility cultivation. Mol. Genet. Genom. 2023, 298, 845–855. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Zhang, S.; Wang, L.; Liang, X.; Wang, X.; Wu, H.; Zou, H.; Zhang, C.; Wang, M. Foliar Spraying of 6-Benzylaminopurine Promotes Growth and Flavonoid Accumulation in Mulberry (Morus alba L.). J. Plant Growth Regul. 2022, 41, 2232–2245. [Google Scholar] [CrossRef]
- Xing, X.; Cao, C.; Li, S.; Wang, H.; Xu, Z.; Qi, Y.; Tong, F.; Jiang, H.; Wang, X. α-naphthaleneacetic acid positively regulates soybean seed germination and seedling establishment by increasing antioxidant capacity, triacylglycerol mobilization and sucrose transport under drought stress. Plant Physiol. Biochem. 2023, 201, 107890. [Google Scholar] [CrossRef]
- Ullah, A.; Zeng, F.; Tariq, A.; Asghar, M.A.; Saleem, K.; Raza, A.; Naseer, M.A.; Zhang, Z.; Noor, J. Exogenous naphthaleneacetic acid alleviated alkalinity-induced morpho-physio-biochemical damages in Cyperus esculentus L. var. sativus Boeck. Front. Plant Sci. 2022, 13, 1018787. [Google Scholar] [CrossRef]
- Anwar, A.; Liu, Y.; Dong, R.; Bai, L.; Yu, X.; Li, Y. The physiological and molecular mechanism of brassinosteroid in response to stress: A review. Biol. Res. 2018, 51, 46. [Google Scholar] [CrossRef]
- Ali, B. Practical applications of brassinosteroids in horticulture—Some field perspectives. Sci. Hortic. 2017, 225, 15–21. [Google Scholar] [CrossRef]
- Doležalová, J.; Koudela, M.; Sus, J.; Ptáček, V. Effects of synthetic brassinolide on the yield of onion grown at two irrigation levels. Sci. Hortic. 2016, 202, 125–132. [Google Scholar] [CrossRef]
- Khatoon, F.; Kundu, M.; Mir, H.; Nandita, K. Exogenous Brassinolide Application Improves Growth, Yield and Quality of Strawberry Grown in the Subtropics. Erwerbs-Obstbau 2023, 65, 2271–2279. [Google Scholar] [CrossRef]
- Atteya, A.K.G.; El-Serafy, R.S.; El-Zabalawy, K.M.; Elhakem, A.; Genaidy, E.A.E. Brassinolide Maximized the Fruit and Oil Yield, Induced the Secondary Metabolites, and Stimulated Linoleic Acid Synthesis of Opuntia ficus-indica Oil. Horticulturae 2022, 8, 452. [Google Scholar] [CrossRef]
- Zhou, X.; Xiao, Z.; Huang, Z.; Zeng, M.; Li, F.; Wu, X. Effects of macroelement concentration on growth and secondary metabolites contents of Polygonatum cyrtonema’s adventitious bud. J. Southwest For. Univ. (Nat. Ences) 2017, 37, 74–79. (In Chinese) [Google Scholar]
- Zhang, J.; Wang, Y.Z.; Yang, M.Q.; Yang, W.Z.; Yang, S.B.; Zhang, J.Y. Identification and evaluation of Polygonatum kingianum with different growth ages based on data fusion strategy. Microchem. J. 2021, 160, 105662. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, B.; Fan, F.; Shen, Q.; Chen, S.; Huang, S.; Su, S. Effect of forest types and canopy density on polysaccharide content of Polygonatum cyrtonema. Chin. Agric. Sci. Bull. 2016, 32, 102–105. (In Chinese) [Google Scholar]
- Liu, Y.J.; Wang, S.M.; Wu, Y.Q.; Yao, L.W.; Jiang, Y.F.; Xie, J.Q.; Ge, Y.J.; Zhu, H. Regression and diameter analysis of the root growth law and the output of Polygonatum cyrtonema. J. Chin. Med. Mater. 2018, 41, 2727–2732. (In Chinese) [Google Scholar]
- Nielsen, S.S. (Ed.) Food Analysis Laboratory Manual; Springer: New York, NY, USA, 2010; pp. 47–53. [Google Scholar]
- Zhao, Y.; Ma, Y.; Li, J.; Liu, B.; Liu, X.; Zhang, J.; Zhang, M.; Wang, C.; Zhang, L.; Lv, W.; et al. Transcriptomics–metabolomics joint analysis: New highlight into the triterpenoid saponin biosynthesis in quinoa (Chenopodium quinoa Willd.). Front. Plant Sci. 2022, 13, 964558. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, X.; Tan, Q.; Xiao, Q.; Mei, S. A comparative metabolomics study of flavonoids in radish with different skin and flesh colors (Raphanus sativus L.). J. Agric. Food Chem. 2020, 68, 14463–14470. [Google Scholar] [CrossRef]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography−mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Qiu, Y.X.; Gong, L.M.; Wang, W.; Wen, R.D. A review of Polygonatum Mill. genus: Its taxonomy, chemical constituents, and pharmacological effect due to processing changes. Molecules 2022, 27, 4821. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.Q.; Liu, P.; Wu, W.X.; Li, D.; Shang, E.-X.; Guo, S.; Qian, D.W.; Yan, H.; Wang, W.; Duan, J.-A. Multi-constituents variation in medicinal crops processing: Investigation of nine cycles of steam-sun drying as the processing method for the rhizome of Polygonatum cyrtonema. J. Pharm. Biomed. Anal. 2022, 209, 114497. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Fang, H.; Zhang, J.; Lu, L.; Gu, X.; Zheng, Y. A review on the application, phytochemistry and pharmacology of Polygonatum odoratum, an edible medicinal plant. J. Future Foods 2023, 3, 240–251. [Google Scholar] [CrossRef]
- Tang, C.; Yu, Y.-M.; Qi, Q.-L.; Wu, X.-D.; Wang, J.; Tang, S.-A. Steroidal saponins from the rhizome of Polygonatum sibiricum. J. Asian Nat. Prod. Res. 2019, 21, 197–206. [Google Scholar] [CrossRef]
- Bai, H.; Li, W.; Zhao, H.; Anzai, Y.; Li, H.; Guo, H.; Kato, F.; Koike, K. Isolation and structural elucidation of novel cholestane glycosides and spirostane saponins from Polygonatum odoratum. Steroids 2014, 80, 7–14. [Google Scholar] [CrossRef]
- Li, X.C.; Yang, C.R.; Ichikawa, M.; Matsuura, H.; Kasai, R.; Yamasaki, K. Steroid saponins from Polygonatum kingianum. Phytochemistry 1992, 31, 3559–3563. [Google Scholar] [PubMed]
- Qin, H.L.; Li, Z.H.; Wang, P.; Si, L.X. The new secondary metabolite from Polygonatum odoratum. Zhongguo Zhong Yao Za Zhi 2004, 29, 42–44. (In Chinese) [Google Scholar]
- Wang, D.M.; Li, D.W.; Zhu, W.; Zhang, J.F.; Peng, P. Steroidal saponins from the rhizomes of Polygonatum odoratum. Nat. Prod. Res. 2009, 23, 940–947. [Google Scholar] [CrossRef]
- Wang, W.; Dabu, X.; He, J.; Yang, H.; Yang, S.; Chen, J.; Fan, W.; Zhang, G.; Cai, J.; Ai, H.; et al. Polygonatone H, a new homoisoflavanone with cytotoxicity from Polygonatum Cyrtonema Hua. Nat. Prod. Res. 2019, 33, 1727–1733. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, J.-Y.; Wang, Y.-J.; Zheng, W.; Zhang, J.; Chen, X.-J.; Cen, S.; Yu, L.-Y.; Ma, B.-P. Steroidal glycosides, homoisoflavanones and cinnamic acid derivatives from Polygonatum odoratum and their inhibitory effects against influenza A virus. Fitoterapia 2020, 146, 104689. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, F.; Qi, J.; Song, X.-C.; Hu, Z.-F.; Zhu, D.-N.; Yu, B.-Y. Homoisoflavonoids from the Fibrous Roots of Polygonatum odoratum with Glucose Uptake-Stimulatory Activity in 3T3-L1 Adipocytes. J. Nat. Prod. 2010, 73, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Poojari, R. Embelin—A drug of antiquity: Shifting the paradigm towards modern medicine. Expert Opin. Investig. Drugs 2014, 23, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol. 2022, 13, 820969. [Google Scholar] [CrossRef] [PubMed]
- Min, Z.; Tang, Y.; Hu, X.-T.; Zhu, B.-L.; Ma, Y.-L.; Zha, J.-S.; Deng, X.-J.; Yan, Z.; Chen, G.-J. Cosmosiin increases ADAM10 expression via mechanisms involving 5′UTR and PI3K signaling. Front. Mol. Neurosci. 2018, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.-H.; Jin, M.-L.; Morris, G.A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P.; et al. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food Sci. Nutr. 2016, 56, S60–S84. [Google Scholar] [CrossRef]
- Lu, X.; Fei, L.; Li, Y.; Du, J.; Ma, W.; Huang, H.; Wang, J. Effect of different plant growth regulators on callus and adventitious shoots induction, polysaccharides accumulation and antioxidant activity of Rhodiola dumulosa. Chin. Herb. Med. 2023, 15, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xia, L.; Peng, F.; Song, C.; Manzoor, M.A.; Cai, Y.; Jin, Q. Transcriptomics and metabolomics changes triggered by exogenous 6-benzylaminopurine in relieving epicotyl dormancy of Polygonatum cyrtonema Hua seeds. Front. Plant Sci. 2022, 13, 961899. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.M.; Yang, Y.Y.; Chen, N.H.; Zeng, Z.X.; Ji, S.J.; Shan, W.; Kuang, J.F.; Lu, W.J.; Su, X.G.; Chen, J.Y.; et al. Physiological and transcription analyses reveal regulatory pathways of 6-benzylaminopurine delaying leaf senescence and maintaining quality in postharvest Chinese flowering cabbage. Food Res. Int. 2022, 157, 111455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yang, H.; Guo, B.; Hu, Z. Matabolomic Changes Induced by 6-Benzylaminopurine in Polygonatum cyrtonema. Horticulturae 2024, 10, 327. https://doi.org/10.3390/horticulturae10040327
Liu X, Yang H, Guo B, Hu Z. Matabolomic Changes Induced by 6-Benzylaminopurine in Polygonatum cyrtonema. Horticulturae. 2024; 10(4):327. https://doi.org/10.3390/horticulturae10040327
Chicago/Turabian StyleLiu, Xincheng, Huidong Yang, Bin Guo, and Zhongdong Hu. 2024. "Matabolomic Changes Induced by 6-Benzylaminopurine in Polygonatum cyrtonema" Horticulturae 10, no. 4: 327. https://doi.org/10.3390/horticulturae10040327
APA StyleLiu, X., Yang, H., Guo, B., & Hu, Z. (2024). Matabolomic Changes Induced by 6-Benzylaminopurine in Polygonatum cyrtonema. Horticulturae, 10(4), 327. https://doi.org/10.3390/horticulturae10040327