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Abstract: Accurate and rapid determination of moisture content is essential in crop production
and decision-making for irrigation. Near-infrared (NIR) spectroscopy has been shown to be a
promising method for determining moisture content in various agricultural products, including herbs
and vegetables. This study tested the hypothesis that NIR spectroscopy is effective in accurately
measuring the moisture content of Genovese basil (Ocimum basilicum L.), with the objective of
developing a respective calibration model. Spectral data were obtained from a total of 120 basil
leaf samples over a period of six days. These included freshly harvested and detached leaves,
as well as those left in ambient air for 1–6 days. Five spectra were taken from each leaf using a
handheld NIR spectrophotometer, which covers the first and second overtones of the NIR spectral
region: 950–1650 nm. After the spectral acquisition, the leaves were weighed for fresh mass and then
put in an oven for 72 h at 80 ◦C to determine the dry weight and calculate the reference moisture
content. The calibration model was developed using multivariate analysis in MATLAB, including
preprocessing and regression modeling. The data obtained from 75% of the samples were used for
model training and 25% for validation. The final model demonstrates strong performance metrics.
The root mean square error of calibration (RMSEC) is 2.9908, the root mean square error of cross-
validation (RMSECV) is 3.2368, and the root mean square error of prediction (RMSEP) reaches 2.4675.
The coefficients of determination for calibration (R2C) and cross-validation (R2CV) are consistent, with
values of 0.829 and 0.80, respectively. The model’s predictive ability is indicated by a coefficient of
determination for prediction (R2P) of 0.86. The range error ratio (RER) stands at 11.045—highlighting
its predictive performance. Our investigation, using handheld NIR spectrophotometry, confirms
NIR’s usefulness in basil moisture determination. The rapid determination offers valuable insights
for irrigation and crop management.

Keywords: moisture content determination; optical sensing; basil; handheld NIR sensor; indoor farming

1. Introduction

Accurate determination of the moisture content of leaves is a critical factor in successful
crop production and efficient irrigation practices [1]. Moisture content directly influences
the quality and yield of agricultural products, affecting various aspects such as shelf
life, texture, and nutritional value [2,3]. Water plays a crucial role in regulating plant
biochemical activities [4], and when plants experience water stress, it hinders transpiration
and lowers the efficiency of photosynthesis. This, in turn, can result in the closure of
stomata, limiting crop productivity [5–7]. Therefore, maintaining the right moisture levels
in plants is vital for optimal plant growth, as both excessive and insufficient moisture can
lead to detrimental outcomes, including reduced crop yield, increased susceptibility to
diseases, and poor irrigation management [8].

Near-infrared (NIR) spectroscopy has emerged as a powerful analytical technique
in the field of agriculture and horticulture [9]. It relies on the interaction of near-infrared
light with molecular vibrations in the sample, allowing for the non-destructive and rapid
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analysis of various properties, including moisture content. NIR spectroscopy capitalizes on
the fact that different chemical compounds absorb and reflect light at specific wavelengths,
providing valuable information about the composition of the sample [10]. NIR spectroscopy
has great potential to become a pivotal tool in plant science due to its non-destructive,
rapid analysis capabilities with minimal sample preparation. Advances in miniaturization,
optics, and digitalization, alongside increased availability of computational power, are
transforming NIR spectroscopy into a versatile, efficient, and widely available analytical
method for real-time plant analysis and research. Extensive research has been conducted
on the application of NIR spectroscopy in determining the moisture content of vegetables,
specifically focusing on those characterized by high moisture content [1,3,11–13]. The
considerable water content and, consequently, the presence of hydrogen bonds in these
vegetables contribute to an increased involvement of hydroxyl (OH) groups in their water
structure. This presence of OH groups enhances the capacity of free water molecules to
effectively absorb NIR light [12,14,15].

On the positive side, NIR spectroscopy can significantly enhance precision agriculture
practices by providing detailed insights into crop health, soil properties, and water content
without destructive testing, making it a valuable tool for optimizing irrigation, fertilization,
and pest management practices. Moreover, NIR technology’s ability to rapidly analyze the
nutrient content of soils and plants can lead to more efficient use of fertilizers, reducing
environmental impacts and costs. However, the implementation of NIR technology is not
without its drawbacks. The initial cost of NIR equipment and the complexity of interpreting
NIR data can be significant barriers for small- to medium-sized enterprises. This complexity
necessitates specialized training or hiring of skilled personnel, adding to operational costs.
Additionally, NIR’s effectiveness can vary significantly with environmental conditions such
as lighting and humidity, potentially leading to inaccuracies in data collection. Therefore,
while NIR technology presents a promising tool for enhancing crop production efficiency
and sustainability, its application must be carefully managed to overcome these challenges.

Despite the promising potential of NIR spectroscopy in moisture content determina-
tion, a research gap exists in its application to basil leaves. Prior studies have predomi-
nantly focused on assessing moisture content and quality in leafy vegetables like lettuce
or spinach [1,11,16,17], leaving basil, a significant and versatile herb within the indoor
farming sector [18], largely unexplored in terms of such assessments. Furthermore, given
basil’s widespread culinary and medicinal use [19], the development of a dependable
method for accurately predicting its moisture content holds considerable significance for
the agricultural community. Our study aims to bridge this gap by developing a robust
calibration model that utilizes NIR spectroscopy to predict the moisture content of basil
leaves accurately. Other herbs from the Lamiaceae family, such as oregano, mint, sage,
and thyme, as well as common horticultural crops like parsley and cilantro, share similar
characteristics with basil, including growth conditions, moisture content, irrigation regimes,
and farming practices [20,21]. These similarities suggest that advancements in moisture
content determination for basil may also benefit these crops. This model holds promise for
enhancing irrigation management and crop production and contributes to advancing our
understanding of how NIR spectroscopy can be harnessed for moisture analysis in specific
agricultural products.

Moreover, contemporary research predominantly focuses on utilizing remote sensing
and spectral imaging for assessing water and moisture content in plants [4]. Despite
these approaches providing reasonably accurate results for large-scale estimates, these
methods fall short in detecting minor fluctuations and providing real-time information on
the physiological water level of fresh foliage. Consequently, this limitation makes them less
practical for applications such as indoor farming and precision agriculture settings, where
a critical need exists for real-time and precise determination of biochemical parameters to
facilitate the effective control of environmental conditions [4]. Recognizing this limitation,
the current study introduces the application of a handheld NIR sensor. This technology
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represents a significant advancement by enabling real-time, on-site monitoring capabilities,
thereby surmounting the drawbacks associated with previously established methods.

2. Materials and Methods

The process of developing a model to enable non-destructive, real-time measurements
of basil moisture content is summarized in Figure 1. The figure outlines the steps from
spectral data acquisition using the handheld spectrometer to spectral preprocessing, vari-
able selection, model calibration, validation, prediction, and the performance metrics used
for model optimization. It serves as a visual guide to the methodology employed in the
study, as elaborated on in subsequent sections.
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Figure 1. Methodology overview.

2.1. Sample Preparation and Spectral Data Acquisition

A total of 20 fully grown Genovese basil plants (Ocimum basilicum L.), cultivated
in a hydroponic controlled environment (SweGreen, Stockholm, Sweden), were selected
randomly from a batch for this study (Figure 2a). The growth conditions were maintained
at an optimum temperature of 22◦ Celsius, a relative humidity of 65%, and a light cycle of
16 h light and 8 h dark.

For irrigation, the basil plants received a hydroponic solution prepared according to
the company recipe, which contains a comprehensive mix of micro and macro elements
crucial for the growth of leafy green herbs. This solution was formulated to achieve an
electrical conductivity (EC) of 1.4 mS/cm, ensuring optimal levels and availability of
nutrients for the plants. The nutrient solution was applied through the fertigation method,
delivering essential nutrients directly to the root zone. The irrigation schedule followed a
precise regimen, with the solution applied four times a day at intervals of 6 h, starting at
10 am.

The illumination in the cultivation environment was provided by LED lights with
a light intensity (photosynthetic photon flux density, PPFD) of 200 µmol·s−1·m−2. This
controlled growth environment aimed to promote healthy and uniform plant develop-
ment, ensuring the reliability and consistency of the spectral data collected for subsequent
analysis.
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To ensure optimal freshness and prevent water stress, the entire basil plants, along with
their substrate (rockwool cube) and roots, were carefully harvested during the vegetative
growth stage, 40 days after planting. Through the collection process, a total of 123 basil leaf
samples were gathered over a duration of six days, including the day of harvesting. This
collection encompassed diverse scenarios, including freshly harvested detached leaves left
in ambient air for durations ranging from 1 to 6 days. The criteria for choosing the leaves
involved randomized selection from the whole canopy, ensuring unbiased representation
from different parts of it to cover all sizes and ages of leaves. This variation in sample
conditions aimed to capture a comprehensive range of moisture content levels.

To acquire spectral data, a handheld near-infrared spectrophotometer MicroNIR
1700 ES with an Ø8 mm adapter (both Viavi Solutions, Scottsdale, AZ, USA) allowing
use on small leaves was employed. This portable device covers the first and second over-
tones of the NIR spectral region, spanning from 950 to 1650 nm, with a pixel-to-pixel
interval of 6.2 nm and spectral bandwidth of <1.25% of the center wavelength. The spec-
tral data obtained from the device comprised a total of 125 spectral variables across the
entire spectral range. Despite its portability, the device is sensitive to external disturbances
such as ambient light and temperature fluctuations, particularly in open-field applications,
which may influence the accuracy of measurements [22]. To address this sensitivity, it is
recommended to collect background and dark scans frequently. In controlled laboratory
settings or indoor farms, where environmental conditions can be regulated, this sensitivity
can be minimized or eliminated, making it a suitable tool for precise spectral analysis.
Additionally, user operation can affect measures, particularly in terms of positioning and
handling of the device during data collection. To minimize these effects, standardized pro-
tocols were followed, and care was taken to maintain consistent measurement conditions
across all samples. The data collection process involved acquiring five distinct spectra
from different parts of each basil leaf including the central vein and the lamina, ensuring a
robust and representative dataset for subsequent analysis (Figure 2b). The dataset initially
consisted of 123 samples, with each sample comprising 5 readings, resulting in a total of
615 spectral readings. Following data treatments and variable selection, the final dataset
comprised 64 spectral variables and 428 sample readings.
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2.2. Moisture Measurement

Following spectral acquisition, each basil leaf was weighed to determine its fresh
mass. Subsequently, the leaves underwent an oven-drying process at 80 ◦C for 72 h [23].
This procedure allowed for the determination of dry mass, which served as the basis for
calculating the reference moisture content of the leaves [24].

MC =
M1 − M2

M1
× 100%

where M1 is the mass of the leaves before drying, M2 is the mass after drying, and MC is
the moisture content in plant leaves as a percentage of mass.

2.3. Data Processing and Model Development

The data analysis process was performed using MATLAB software (Version R2023a,
The MathWorks, Inc., Natick, MA, USA), with the PLS toolbox (Version 9.2.1, Eigenvector
Research, Inc., Wenatchee, WA, USA) being employed for the development of the model.
The acquired spectral and reference data were loaded into MATLAB for subsequent analysis
inspired by Vitalis et al.’s [3] and Zhou et al.’s [1] studies. The dataset was divided into
calibration and validation sets, with the Onion algorithm [25] employed to achieve a
partition of 75% for calibration and 25% for validation.

A series of data treatment approaches were explored to optimize the quality, reliability,
and interpretability of the spectral data. The initial phase involved the application of
Multiplicative Scatter Correction (MSC) [26], a normalization method to correct for scatter
effects in NIR spectra, which can arise due to particle size variations or differences in path
length, and Standard Normal Variate (SNV) transformation [27] to eliminate the effects of
multiplicative scaling in the spectra. To remove noise from spectral data while preserving
the shape of spectral features, Savitzky–Golay smoothing (SG) [28] was employed. Addi-
tionally, derivatives were used to enhance spectral features and mean centering to remove
the mean spectrum from each sample, focusing the analysis on spectral variations in the
spectral data. Autoscaling was applied to the reference data to optimize compatibility
with the spectral data and give each variable the same weight and prior importance in the
analysis [29].

Each treatment technique was systematically evaluated to determine its impact on
improving the predictive accuracy of the calibration model. Finally, the best combination
of sample pretreatment and spectra pretreatment was decided according to the effect on
the regression model. Moreover, an additional step was taken to address extreme values,
where nine samples with less than 50 percent moisture content were removed, followed by
the reconstruction of the model.

Two variable selection methods, Genetic Algorithm (GA) [30], and Variable Impor-
tance in Projection (VIP) [31] were compared to determine the most effective approach
for selecting the relevant spectral variables in the calibration model. The criteria for eval-
uation included their ability to identify spectral variables with significant contributions
to the model’s overall predictive performance and consider computational efficiency, in-
cluding the time taken to identify the variables. The GA settings were configured as
double crossover, and the generations, population size, and mutation rate were set to
100, 64, and 0.005, respectively. GA, a biologically inspired technique, initiates with a
random population, iteratively evolving new generations by scoring individuals based on
fitness, normalizing these scores, selecting parents including elite members, and generating
children through mutation or crossover. The current population is then replaced by the
children, and this process continues until a stopping criterion is met. GA, resembling
natural selection, iteratively refines populations to optimize solutions within defined con-
straints [32]. On the other hand, VIP scores evaluate the importance of each variable in a
Partial Least Squares (PLS) model. A variable with a VIP score close to or greater than 1
is considered important, while those with scores significantly below 1 are less crucial and
may be discarded [33].
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3. Results and Discussion

An initial PLS model was constructed using the raw data. The initial model was
formulated with four latent variables. Preprocessing of the spectral data involved multiple
steps to enhance the robustness of the model. These included applying MSC and mean
centering (Figure 3) [29]. During the development of the calibration model, it was observed
that the model’s performance was adversely affected by the presence of nine extreme
values, particularly those with lower moisture content. These extreme values introduced
bias, which compromised the accuracy of the calibration model. To address this issue,
samples with less than 50 percent moisture content were excluded from the dataset, and a
new model was developed. The choice of 50 percent as the threshold for excluding extreme
values was influenced by both the distinctive spectral patterns observed and the significant
deviation of these spectra from the majority. Additionally, this threshold aligns with the
considerations in prior studies. Zhang et al. [34] highlighted that the normal range of water
content in leaves can range from 98% in completely turgid leaves to roughly 30–40% in
dying and highly dehydrated ones, depending on the variety and species of the plant.
Considering the normal water content of leaves at initial wilting is about 60 to 70 percent,
the selected threshold of 50% ensured the exclusion of samples that deviated significantly
from the expected moisture content range in basil leaves.

Following the refinement of the dataset, the model development process continued
with the comparison of two variable selection methods: GA and VIP. Through this compar-
ison, VIP emerged as the superior method, displaying a better model fit and significantly
reduced computational time. The computational time for VIP was 5 s, while GA required
16 min and 22 s to complete the variable selection process. Consequently, the final model
was established based on VIP as the variable selection method (Figure 4). The selected
areas identified by this algorithm aligned with the spectra of a leaf sample showing a big
peak around 1470 nm and a minor peak at 1156 nm (Figure 3). These are ascribed to the
stretching mode’s -OH first overtone and water bands, respectively [35–37]. According
to Lacaze and Joffre [38], in the near-infrared and short-wave infrared regions, water ex-
hibits four major absorption peaks at approximately 975, 1175, 1450, and 1950 nm. These
wavelengths align with the approximated areas identified as significant in our VIP-selected
regions and suggest a compelling association between the molecular vibrations of water
and the specific spectral features deemed significant in our model.

Horticulturae 2024, 10, 336 6 of 13 
 

 

greater than 1 is considered important, while those with scores significantly below 1 are 
less crucial and may be discarded [33]. 

3. Results and Discussion 
An initial PLS model was constructed using the raw data. The initial model was 

formulated with four latent variables. Preprocessing of the spectral data involved multiple 
steps to enhance the robustness of the model. These included applying MSC and mean 
centering (Figure 3) [29]. During the development of the calibration model, it was 
observed that the model’s performance was adversely affected by the presence of nine 
extreme values, particularly those with lower moisture content. These extreme values 
introduced bias, which compromised the accuracy of the calibration model. To address 
this issue, samples with less than 50 percent moisture content were excluded from the 
dataset, and a new model was developed. The choice of 50 percent as the threshold for 
excluding extreme values was influenced by both the distinctive spectral patterns 
observed and the significant deviation of these spectra from the majority. Additionally, 
this threshold aligns with the considerations in prior studies. Zhang et al. [34] highlighted 
that the normal range of water content in leaves can range from 98% in completely turgid 
leaves to roughly 30–40% in dying and highly dehydrated ones, depending on the variety 
and species of the plant. Considering the normal water content of leaves at initial wilting 
is about 60 to 70 percent, the selected threshold of 50% ensured the exclusion of samples 
that deviated significantly from the expected moisture content range in basil leaves. 

 

 

 

 

 

 

 
Figure 3. Cont.



Horticulturae 2024, 10, 336 7 of 12Horticulturae 2024, 10, 336 7 of 13 
 

 

 

 
Figure 3. (a) Raw spectra of all basil samples. (b) Spectra after applying MSC and SNV preprocessing 
methods and (c) after removing extreme values. Each color corresponds to individual spectrum. 

Following the refinement of the dataset, the model development process continued 
with the comparison of two variable selection methods: GA and VIP. Through this 
comparison, VIP emerged as the superior method, displaying a better model fit and 
significantly reduced computational time. The computational time for VIP was 5 s, while 
GA required 16 min and 22 s to complete the variable selection process. Consequently, the 
final model was established based on VIP as the variable selection method (Figure 4). The 
selected areas identified by this algorithm aligned with the spectra of a leaf sample 
showing a big peak around 1470 nm and a minor peak at 1156 nm (Figure 3). These are 
ascribed to the stretching mode’s -OH first overtone and water bands, respectively [35–
37]. According to Lacaze and Joffre [38], in the near-infrared and short-wave infrared 
regions, water exhibits four major absorption peaks at approximately 975, 1175, 1450, and 
1950 nm. These wavelengths align with the approximated areas identified as significant 
in our VIP-selected regions and suggest a compelling association between the molecular 
vibrations of water and the specific spectral features deemed significant in our model. 

Figure 3. (a) Raw spectra of all basil samples. (b) Spectra after applying MSC and SNV preprocessing
methods and (c) after removing extreme values. Each color corresponds to individual spectrum.

The final calibration model (Figure 5), developed with eight latent variables, exhibited
promising performance metrics, including improved distribution of data along the regres-
sion line. The model achieved a root mean square error of calibration (RMSEC) of 2.9908,
a root mean square error of cross-validation (RMSECV) of 3.2368, and a root mean square
error of prediction (RMSEP) of 2.4675. Additionally, the coefficients of determination for
calibration (R2C) and cross-validation (R2CV) were 0.829 and 0.80, respectively, indicating
strong consistency. The model’s predictive capability was underscored by a coefficient of
determination for prediction (R2P) of 0.86. The range error ratio (RER) was used to evaluate
the model’s performance [39]. Based on the American Association of Cereal Chemists [40],
when RER ≥ 10, the model is acceptable for quality control, and if RER ≥ 15, the model
is perfect for research quantification. The RER achieved for this model is 11.045, which
indicates a high predictive performance.
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A summary of the key performance metrics has been provided in Table 1 to facilitate a
clear comparison between the initial and final calibration models.

The model evolved to encompass seven important latent variables, which increased to
eight in the final model after the exclusion of extreme values. An increase in the number of
latent variables can indicate a better representation of the underlying data structure [41].
However, to avoid overfitting when adding more latent variables, it is essential to review
explained variance plots to identify the point at which most of the change occurs. If the
quality of the prediction decreases when the number of latent variables increases, this
indicates that the model is overfitting the data [41,42].
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Table 1. Summary of performance metrics of all the models.

Metric Initial Model
with Raw Data

Model Including
the All Samples

Final Model after
Removing Extreme Values

Number of Latent Variables 4 7 8

RMSEC 8.4902 4.906 2.9908

RMSECV 8.5456 5.1150 3.2368

RMSEP 5.8949 6.3540 2.4675

Calibration Bias 0.2997 4.2633 × 10−14 2.8422 × 10−14

CV Bias 0.2949 −0.0183 −0.0198

Prediction Bias −0.4765 −0.1930 −0.5421

R2C 0.818 0.945 0.829

R2CV 0.816 0.940 0.80

R2P 0.706 0.880 0.860

The final model after removing extreme values performed better in terms of error
metrics, showing minimal disparities among RMSEC, RMSECV, and RMSEP. This affirms
its robust performance both for the observations in the calibration dataset and external
samples [43], indicating enhanced predictive accuracy [44]. Moreover, while bias metrics
measure the deviation of the model’s predictions from the actual values for the respective
datasets [45], both the model including all samples and the final model show reduced
biases compared to the initial model with raw data, indicating a better fit to the data.
Notably, no additional outlier detection was performed beyond the removal of extreme
values mentioned earlier. The very low values of bias in the final models suggest that the
models are well calibrated and do not exhibit any systematic errors in their predictions [46].

These findings collectively highlight the robustness and reliability of the final calibra-
tion model in accurately predicting basil moisture content using NIR spectroscopy. This
study’s results indicate the possibility for extending to other herbs and leafy greens com-
monly cultivated indoors, which have similar growth conditions and periods. Furthermore,
the findings indicate the potential of generalizing to other growing conditions or stages, as
similar methodologies have demonstrated success in related studies. For instance, in two
parallel studies conducted by Bravo and Johnson [35] on eucalyptus and Ma et al. [47] on
mulberry leaves, employing the same handheld NIR sensor, similar results were observed,
further reinforcing the validity of the current approach. In addition to the progress made
in this study, it is worth considering the exploration of alternative modeling approaches
and machine learning such as Artificial Neural Networks (ANNs) in future analyses to
enhance the accuracy and predictive capabilities of moisture content determination, which
has shown promising results in other studies [3,8,12]. The use of ANN, a facet of machine
learning known for its ability to model complex relationships and patterns, has demon-
strated promising results in various studies across different fields, especially agriculture
and plant science [48–51]. Incorporating ANNs into the assessment of moisture content
in basil leaves could offer a deeper understanding of the data, enabling the development
of models that can accurately predict moisture levels under a wider range of conditions.
This approach would leverage the strengths of machine learning to identify subtle patterns
and correlations that traditional analytical methods might overlook, thereby enhancing the
robustness and reliability of moisture assessments.

Prior research has extensively explored the use of NIR spectroscopy for moisture con-
tent analysis in various agricultural products, emphasizing its efficacy in non-destructively
gauging water content. However, the application of this technology specifically to basil
(Ocimum basilicum L.) within the context of precision agriculture and indoor farming is, to
the best of our knowledge, a pioneering approach. In addition, the development of a robust
calibration model using a handheld NIR spectrophotometer enhances the practicality and
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accessibility of moisture content analysis in basil leaves. This advancement not only fills
a critical gap in the existing literature, which has predominantly concentrated on leafy
vegetables like lettuce or spinach, but also underscores the potential for this technology to
improve irrigation management and crop production efficiency, especially in controlled
environment agriculture. Real-time, on-site monitoring capabilities have the potential to
overcome the limitations of existing methods, which are often not feasible for immediate or
precise moisture level assessments. The use of a handheld device for such measurements
represents a significant step forward in agricultural practices, offering the possibility for
more adaptive and sustainable farming methods tailored to the specific needs of crops at
any given time.

4. Conclusions

The findings of this investigation, utilizing a handheld NIR spectrophotometer, have
established the practicality of NIR technology for assessing moisture content in basil
leaves within a controlled environment. The non-invasive and rapid determination of
moisture content provides a valuable metric for monitoring the hydration levels of basil
plants, offering precise insights into irrigation management, refining irrigation strategies,
and optimizing crop management in indoor farming settings. As the field of controlled
environment agriculture continues to advance, ongoing research efforts will be pivotal
in enhancing the accuracy, specificity, and robustness of the calibration model. By doing
so, we can anticipate improved methods for tracking and maintaining optimal moisture
levels in basil cultivation, contributing to the efficiency and sustainability of indoor farming
practices as well as sustaining optimal plant growth and productivity. Moreover, it is worth
considering the exploration of alternative modeling approaches and machine learning
in future investigations, as these techniques have the potential to further enhance the
accuracy and predictive capabilities of moisture content determination in leaves using NIR
spectroscopy. Through these efforts, the agricultural sector, especially indoor farming, can
look forward to more efficient resource use, improved crop yields, and the advancement of
sustainable farming practices that are better aligned with future needs and environmental
considerations.
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