Near-Freezing Temperature Storage Improves Peach Fruit Chilling Tolerance by Regulating the Antioxidant and Proline Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Fruit Treatment
2.2. Confirmation of Near-Freezing Point Temperature of Peach Fruit
2.3. Measurement of Incidence and Incidence Index of CI in Peach Fruit
2.4. Determination of Ion Leakage and Contents of Malonaldehyde and H2O2 in Peach Fruits
2.5. Determination of Proline Level and Related Enzyme Activities in Peach Fruits
2.6. Measurement of Enzyme Activities of Antioxidant in Fruit
2.7. Determination of Phenolics, Ascorbic Acid, and Free Radical Scavenging Capacity
2.8. Statistical Analysis
3. Results
3.1. NFT Storage Enhances the Chilling Tolerance of Peach Fruit
3.2. NFT Can Reduce Ion Leakage and Contents of MDA and H2O2
3.3. Effect of NFT Storage on Proline Metabolism in Peach Fruit
3.4. NFT Enhances the Antioxidant Defense System
3.5. Effects of NFT Storage on Phenolics Content, Ascorbic Acid Content, and DPPH Scavenging Capacity of Peach Fruit
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, J.B.; Wang, G.Y.; Tan, J.P.; Zheng, J.R.; Zhang, X.; Xu, F.; Cheng, S.Y.; Chen, Z.X.; Zhang, W.W.; Liao, Y.L. Identification of candidate genes involved in anthocyanin accumulation using illmuina-based RNA-seq in peach skin. Sci. Hortic. 2019, 250, 184–198. [Google Scholar] [CrossRef]
- Bustamante, C.A.; Brotman, Y.; Montia, L.L.; Gabilondoc, J.; Buddec, C.O.; Laraa, M.V.; Fernied, A.R.; Drincovicha, M.F. Differential lipidome remodeling during postharvest of peach varieties with different susceptibility to chilling injury. Physiol. Plantarum 2018, 163, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.S.; Guo, H.M.; Chen, S.Q.; Li, T.T.; Li, M.Q.; Rashid, A.; Xu, C.J.; Wang, K. Methyl jasmonate promotes phospholipid remodeling and jasmonic acid signaling to alleviate chilling injury in peach fruit. J. Agric. Food Chem. 2019, 67, 9958–9966. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.X.; Lin, H.T.; Fan, Z.Q.; Wang, H.; Lin, M.S.; Chen, Y.H.; Hung, Y.C.; Lin, Y.F. Inhibitory effect of propyl gallate on pulp breakdown of longan fruit and its relationship with ROS metabolism. Postharvest Biol. Technol. 2020, 168, 111272. [Google Scholar] [CrossRef]
- Marangoni, A.G.; Palma, T.; Stanley, D.W. Membrane effects in postharvest physiology. Postharvest Biol. Technol. 1996, 7, 193–217. [Google Scholar] [CrossRef]
- Wang, C.; Huang, D.; Tian, W.; Zhu, S. Nitric oxide alleviates mitochondrial oxidative damage and maintains mitochondrial functions in peach fruit during cold storage. Sci. Hortic. 2021, 287, 110249. [Google Scholar] [CrossRef]
- Yadu, B.; Chandrakar, V.; Meena, R.K.; Keshavkant, S. Glycinebetaine reduces oxidative injury and enhances fluoride stress tolerance via improving antioxidant enzymes, proline and genomic template stability in Cajanus cajan L. S. Afr. J. Bot. 2017, 111, 68–75. [Google Scholar] [CrossRef]
- Wei, T.L.; Wang, Z.X.; He, Y.F.; Xue, S.; Zhang, S.Q.; Pei, M.S.; Liu, H.N.; Yu, Y.H.; Guo, D.L. Proline synthesis and catabolism-related genes synergistically regulate proline accumulation in response to abiotic stresses in grapevines. Sci. Hortic. 2022, 305, 111373. [Google Scholar] [CrossRef]
- Ignatenko, A.; Talanova, V.; Repkina, N.; Titov, A. Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation. Acta Physiol. Plant. 2019, 41, 80. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, L.Q.; Zhao, M.Y.; Chen, Q.M.; Qin, Z.; Fang, Z.H.; Fujiwara, T. Chitooligosaccharide plays essential roles in regulating proline metabolism and cold stress tolerance in rice seedlings. Acta Physiol. Plant. 2019, 41, 77. [Google Scholar] [CrossRef]
- Niu, Y.; Ye, L.; Wang, Y.; Shi, Y.; Luo, A. Salicylic acid mitigates ‘Hayward’ kiwifruit chilling injury by regualting hormone and proline metabolism, as wella s maintaining cellular structure. Food Biosci. 2024, 57, 103573. [Google Scholar] [CrossRef]
- Okamoto, T.; Nakamura, T.; Zhang, J.T.; Aoyama, A.; Chen, F.S.; Fujinaga, T.; Shoji, T.; Hamakawa, H.; Sakai, H.; Manabe, T.; et al. Successful sub-zero non-freezing preservation of rat lungs at −2 °C utilizing a new supercooling technology. J. Heart Lung Transpl. 2018, 27, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.Y.; Liu, C.H.; Ying, T.J. Changes in quality of low-moisture conditioned pine nut (Pinus gerardiana) under near freezing temperature storage. CyTA-J. Food 2013, 11, 216–222. [Google Scholar] [CrossRef]
- Zhao, H.D.; Shu, C.; Fan, X.G.; Cao, J.K.; Jiang, W.B. Near-freezing temperature storage prolongs storage period and improves quality and antioxidant capacity of nectarines. Sci. Hortic. 2018, 228, 196–203. [Google Scholar] [CrossRef]
- Zhao, H.D.; Jiao, W.X.; Cui, K.B.; Fan, X.G.; Shu, C.; Zhang, W.L.; Cao, J.K.; Jiang, W.B. Near-freezing temperature storage enhances chilling tolerance in nectarine fruit through its regulation of soluble sugars and energy metabolism. Food Chem. 2019, 289, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Zhu, H.; Wang, J.; Chen, J.J.; Wang, X.L.; Zheng, Y.H. Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. J. Sci. Food Agri. 2013, 93, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, J.L.; Manzano, S.; Palma, F.; Carvajal, F.; Garrido, D.; Jamilena, M. Oxidative stress associated with chilling injury in immature fruit: Postharvest technological and biotechnological solutions. Int. J. Mol. Sci. 2017, 18, 1467. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.D.; Macrae, E.A.; Ferguson, I.B. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal. Biochem. 1984, 139, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Hayzer, D.J.; Leisinger, T. The gene-enzyme relationships of proline biosynthesis in escherichia coli. J. Gen. Appl. Microbiol. 1980, 118, 287–293. [Google Scholar] [CrossRef]
- Murahama, M.; Yoshida, T.; Hayashi, F.; Ichino, T.; Sanada, Y.; Wada, K. Purification and characterization of Δ1-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in spinach (Spinacia oleracea L.) leaves. Plant Cell Physiol. 2001, 42, 742–750. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, P.A.; de Souza Miranda, R.; Marques, E.C.; Prisco, J.T.; Gomes-Filho, E. Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis. J. Plant Growth Regul. 2018, 37, 911–924. [Google Scholar] [CrossRef]
- Wang, Y.S.; Tian, S.P.; Xu, Y. Effects of high oxygen concentration on pro- and anti-oxidant enzymes in peach fruits during postharvest periods. Food Chem. 2005, 91, 99–104. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Zhu, L.S.; Wang, J.; Xie, H.; Wang, J.H.; Han, Y.N.; Yang, J.H. Oxidative stress and lipid peroxidation in the earthworm Eisenia fetida induced by low doses of fomesafen. Environ. Sci. Pollut. Res. 2013, 20, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Li, J.; Yan, S.L.; Wang, Q.Z. Effects of ascorbic acid treatment on enzymatic browning and quality characteristics of fresh lotus rhizome juice. J. Chin. Inst. Food Sci. Technol. 2021, 21, 151–158. [Google Scholar]
- Alothman, M.; Kaur, B.; Fazilah, A.; Bhat, R.; Karim, A.A. Ozone-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. 2010, 11, 666–671. [Google Scholar] [CrossRef]
- Huan, C.; Han, S.; Jiang, L.; An, X.J.; Yu, M.L.; Xu, Y.; Ma, R.J.; Yu, Z.F. Postharvest hot air and hot water treatments affect the antioxidant system in peach fruit during refrigerated storage. Postharvest Biol. Technol. 2017, 126, 1–14. [Google Scholar] [CrossRef]
- Gao, H.; Lu, Z.M.; Yang, Y.; Wang, D.N.; Yang, T.; Cai, M.M.; Cao, W. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chem. 2018, 245, 659–666. [Google Scholar] [CrossRef]
- Wang, L.; Shan, T.M.; Xie, B.; Ling, C.; Shao, S.; Jin, P.; Zheng, Y.H. Glycie betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem. 2019, 272, 530–538. [Google Scholar] [CrossRef]
- Choi, H.R.; Jeong, M.J.; Baek, M.W.; Choi, J.H.; Lee, H.C.; Jeong, C.S.; Tilahun, S. Transcriptome analysis of pre-storage 1-MCP and high CO2-treated ‘Madoka’ peach fruit explains the reduction in chilling injury and improvement of storage period by delaying ripening. Int. J. Mol. Sci. 2021, 22, 4437. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Zhao, Y.; Li, Y.; Lv, H. 1-Methylcyclopropylene and heat treatment alleviate chilling injury in purple sweet potato by regulating ROS homeostasis. Sci. Hortic. 2024, 324, 112606. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Zhang, G.; Yan, Z.M.; Wang, Y.H.; Feng, Y.N.; Yuan, Y.N. Exogenous proline improve the growth and yield of lettuce with low potassium content. Sci. Hortic. 2020, 271, 109469. [Google Scholar] [CrossRef]
- Abdallah, M.M.S.; El Sebai, T.N.; Ramadan, A.A.E.M. El-Bassiouny, H.M.S. Physiological and biochemical role of proline, trehalose, and compost on enhancing salinity tolerance of quinoa plant. Bull. Natl. Res. Cent. 2020, 44, 275–282. [Google Scholar] [CrossRef]
- Singh, R.; Jha, A.B.; Misra, A.N.; Sharma, P. Entrapment of enzyme in the presence of proline: Effective approach to enhance activity and stability of horseradish peroxidase. 3 Biotech 2020, 10, 155. [Google Scholar] [CrossRef]
- Funck, D.; Baumgarten, L.; Stift, M.; Wirén, N.; Schönemann, L. Differential contribution of P5CS isoforms to stress tolerance in arabidopsis. Front. Plant Sci. 2020, 11, 565134. [Google Scholar] [CrossRef] [PubMed]
- Fabro, G.; Cislaghi, A.P.; Condat, F.; Borau, G.D.; Alvarez, M.E. The N-terminal domain of arabidopsis proline dehydrogenase affects enzymatic activity and protein oligomerization. Plant Physiol. Biochem. 2020, 154, 268–276. [Google Scholar] [CrossRef]
- Koenigshofer, H.; Loeppert, H.G. The up-regulation of proline synthesis in the meristematic tissues of wheat seedlings upon short-term exposure to osmotic stress. J. Plant Physiol. 2019, 237, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Pei, H.H.; Jiao, J.Q.; Jin, M.J.; Li, H.; Zhu, Q.G.; Ma, Y.P.; Rao, J.P. 1-methylcyclopropene treatment followed with ethylene treatment alleviates postharvest chilling injury of ‘Xuxiang’ kiwifruit during low-temperature storage. Food Control 2021, 130, 108340. [Google Scholar] [CrossRef]
- Putnam, C.D.; Arvai, A.S.; Bourne, Y.; Tainer, J.A. Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 1999, 296, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.M.; Ge, W.Y.; Zhou, Q.; Zhou, X.; Luo, M.L.; Zhao, Y.B.; Wei, B.D.; Ji, S.J. Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chem. 2021, 352, 129458. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Kumar, V.; Kumar, R.; Pahuja, S.K. Sorghum polyphenols: Plant stress, human health benefits, and industrial applications. Planta 2021, 254, 47. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Lee, C.Y. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. 2004, 44, 253–273. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Meng, S.; Fu, M.; Chen, Q. Near-Freezing Temperature Storage Improves Peach Fruit Chilling Tolerance by Regulating the Antioxidant and Proline Metabolism. Horticulturae 2024, 10, 337. https://doi.org/10.3390/horticulturae10040337
Zhao H, Meng S, Fu M, Chen Q. Near-Freezing Temperature Storage Improves Peach Fruit Chilling Tolerance by Regulating the Antioxidant and Proline Metabolism. Horticulturae. 2024; 10(4):337. https://doi.org/10.3390/horticulturae10040337
Chicago/Turabian StyleZhao, Handong, Shuqi Meng, Maorun Fu, and Qingmin Chen. 2024. "Near-Freezing Temperature Storage Improves Peach Fruit Chilling Tolerance by Regulating the Antioxidant and Proline Metabolism" Horticulturae 10, no. 4: 337. https://doi.org/10.3390/horticulturae10040337
APA StyleZhao, H., Meng, S., Fu, M., & Chen, Q. (2024). Near-Freezing Temperature Storage Improves Peach Fruit Chilling Tolerance by Regulating the Antioxidant and Proline Metabolism. Horticulturae, 10(4), 337. https://doi.org/10.3390/horticulturae10040337