The Impact of Genotype and Controlled Environment Cultivation Parameters on Tomato-Leaf-Derived Exosome-like Nanoparticle Yield and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation Conditions
2.2. Nanoparticle Isolation and Analysis
2.3. Metabolic Activity Evaluation
2.4. Statistical Analysis
3. Results
3.1. Impact of Tomato Genotype
3.2. Impact of Cultivation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Shinge, S.A.U.; Xiao, Y.; Xia, J.; Liang, Y.; Duan, L. New Insights of Engineering Plant Exosome-like Nanovesicles as a Nanoplatform for Therapeutics and Drug Delivery. Extracell. Vesicles Circ. Nucleic Acids 2022, 3, 150–162. [Google Scholar] [CrossRef]
- Chen, N.; Sun, J.; Zhu, Z.; Cribbs, A.P.; Xiao, B. Edible Plant-Derived Nanotherapeutics and Nanocarriers: Recent Progress and Future Directions. Expert Opin. Drug Deliv. 2022, 19, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F.; Kazemipour-Khabbazi, S.; Raimondo, S.; Dalirfardouei, R. Molecular Mechanisms and Therapeutic Application of Extracellular Vesicles from Plants. Mol. Biol. Rep. 2024, 51, 425. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ren, C.; Zhan, R.; Cao, Y.; Ren, Y.; Zou, L.; Zhou, C.; Peng, L. Exploring the Potential of Plant-Derived Exosome-like Nanovesicle as Functional Food Components for Human Health: A Review. Foods 2024, 13, 712. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-Y.; Li, C.-Q.; Zhang, Y.-L.; Ma, M.-W.; Cheng, W.; Zhang, G.-J. Emerging Drug Delivery Vectors: Engineering of Plant-Derived Nanovesicles and Their Applications in Biomedicine. IJN 2024, 19, 2591–2610. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Li, S.; Zhang, S.; Wang, J. Plant-Derived Exosome-like Nanoparticles and Their Therapeutic Activities. Asian J. Pharm. Sci. 2022, 17, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, X.; Luo, Q.; Xu, L.; Chen, F. An Efficient Method to Isolate Lemon Derived Extracellular Vesicles for Gastric Cancer Therapy. J. Nanobiotechnol. 2020, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, H.; Yin, H.; Bennett, C.; Zhang, H.; Guo, P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci. Rep. 2018, 8, 14644. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, Y.; Yu, J. Exosome-like Nanoparticles from Ginger Rhizomes Inhibited NLRP3 Inflammasome Activation. Mol. Pharm. 2019, 16, 2690–2699. [Google Scholar] [CrossRef]
- Deng, Z.; Rong, Y.; Teng, Y.; Mu, J.; Zhuang, X.; Tseng, M.; Samykutty, A.; Zhang, L.; Yan, J.; Miller, D.; et al. Broccoli-Derived Nanoparticle Inhibits Mouse Colitis by Activating Dendritic Cell AMP-Activated Protein Kinase. Mol. Ther. 2017, 25, 1641–1654. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, Y.; Mu, J.; Egilmez, N.K.; Zhuang, X.; Deng, Z.; Zhang, L.; Yan, J.; Miller, D.; Zhang, H.-G. Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites. Cancer Res. 2015, 75, 2520–2529. [Google Scholar] [CrossRef]
- Ishida, T.; Kawada, K.; Jobu, K.; Morisawa, S.; Kawazoe, T.; Nishimura, S.; Akagaki, K.; Yoshioka, S.; Miyamura, M. Exosome-like Nanoparticles Derived from Allium Tuberosum Prevent Neuroinflammation in Microglia-like Cells. J. Pharm. Pharmacol. 2023, 75, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.; Mu, J.; Dokland, T.; Zhuang, X.; Wang, Q.; Jiang, H.; Xiang, X.; Deng, Z.-B.; Wang, B.; Zhang, L.; et al. Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis. Mol. Ther. 2013, 21, 1345–1357. [Google Scholar] [CrossRef]
- Takakura, H.; Nakao, T.; Narita, T.; Horinaka, M.; Nakao-Ise, Y.; Yamamoto, T.; Iizumi, Y.; Watanabe, M.; Sowa, Y.; Oda, K.; et al. Citrus Limon L.-Derived Nanovesicles Show an Inhibitory Effect on Cell Growth in P53-Inactivated Colorectal Cancer Cells via the Macropinocytosis Pathway. Biomedicines 2022, 10, 1352. [Google Scholar] [CrossRef]
- Taşlı, P.N. Usage of Celery Root Exosome as an Immune Suppressant; Lipidomic Characterization of Apium Graveolens Originated Exosomes and Its Suppressive Effect on PMA /Ionomycin Mediated CD4 + T Lymphocyte Activation. J. Food Biochem. 2022, 46, e14393. [Google Scholar] [CrossRef] [PubMed]
- Viršilė, A.; Samuolienė, G.; Laužikė, K.; Šipailaitė, E.; Balion, Z.; Jekabsone, A. Species-Specific Plant-Derived Nanoparticle Characteristics. Plants 2022, 11, 3139. [Google Scholar] [CrossRef]
- Hao, S.; Yang, H.; Hu, J.; Luo, L.; Yuan, Y.; Liu, L. Bioactive Compounds and Biological Functions of Medicinal Plant-Derived Extracellular Vesicles. Pharmacol. Res. 2024, 200, 107062. [Google Scholar] [CrossRef]
- Arab, M.; Bahramian, B.; Schindeler, A.; Valtchev, P.; Dehghani, F.; McConchie, R. Extraction of Phytochemicals from Tomato Leaf Waste Using Subcritical Carbon Dioxide. Innov. Food Sci. Emerg. Technol. 2019, 57, 102204. [Google Scholar] [CrossRef]
- Junker-Frohn, L.V.; Lück, M.; Schmittgen, S.; Wensing, J.; Carraresi, L.; Thiele, B.; Groher, T.; Reimer, J.J.; Bröring, S.; Noga, G.; et al. Tomato’s Green Gold: Bioeconomy Potential of Residual Tomato Leaf Biomass as a Novel Source for the Secondary Metabolite Rutin. ACS Omega 2019, 4, 19071–19080. [Google Scholar] [CrossRef]
- Piccolo, V.; Pastore, A.; Maisto, M.; Keivani, N.; Tenore, G.C.; Stornaiuolo, M.; Summa, V. Agri-Food Waste Recycling for Healthy Remedies: Biomedical Potential of Nutraceuticals from Unripe Tomatoes (Solanum Lycopersicum L.). Foods 2024, 13, 331. [Google Scholar] [CrossRef]
- Feng, H.; Yue, Y.; Zhang, Y.; Liang, J.; Liu, L.; Wang, Q.; Feng, Q.; Zhao, H. Plant-Derived Exosome-Like Nanoparticles: Emerging Nanosystems for Enhanced Tissue Engineering. IJN 2024, 19, 1189–1204. [Google Scholar] [CrossRef] [PubMed]
- Mu, N.; Li, J.; Zeng, L.; You, J.; Li, R.; Qin, A.; Liu, X.; Yan, F.; Zhou, Z. Plant-Derived Exosome-Like Nanovesicles: Current Progress and Prospects. IJN 2023, 18, 4987–5009. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N.; Ferrier, L.; Spears, B.; Drewer, J.; Reay, D.; Skiba, U. CEA Systems: The Means to Achieve Future Food Security and Environmental Sustainability? Front. Sustain. Food Syst. 2022, 6, 891256. [Google Scholar] [CrossRef]
- Dsouza, A.; Newman, L.; Graham, T.; Fraser, E.D.G. Exploring the Landscape of Controlled Environment Agriculture Research: A Systematic Scoping Review of Trends and Topics. Agric. Syst. 2023, 209, 103673. [Google Scholar] [CrossRef]
- Gan, C.I.; Soukoutou, R.; Conroy, D.M. Sustainability Framing of Controlled Environment Agriculture and Consumer Perceptions: A Review. Sustainability 2022, 15, 304. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH Antioxidant Assay Revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.V.; Das, S.; Tran, M.T.; Hong, J.C.; Kim, J.-Y. Precision Genome Engineering for the Breeding of Tomatoes: Recent Progress and Future Perspectives. Front. Genome Ed. 2020, 2, 612137. [Google Scholar] [CrossRef]
- Schwarz, D.; Thompson, A.J.; Kläring, H.-P. Guidelines to Use Tomato in Experiments with a Controlled Environment. Front. Plant Sci. 2014, 5, 81576. [Google Scholar] [CrossRef]
- Lim, Y.; Seo, M.-G.; Lee, S.; An, J.-T.; Jeong, H.-Y.; Park, Y.; Lee, C.; Kwon, C.-T. Comparative Yield Evaluation of Mini-Tomato Cultivar in Two Hydroponic Systems. Hortic. Environ. Biotechnol. 2024, 65, 239–250. [Google Scholar] [CrossRef]
- Lai, J.J.; Chau, Z.L.; Chen, S.; Hill, J.J.; Korpany, K.V.; Liang, N.; Lin, L.; Lin, Y.; Liu, J.K.; Liu, Y.; et al. Exosome Processing and Characterization Approaches for Research and Technology Development. Adv. Sci. 2022, 9, 2103222. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Nielsen, S.D.-H.; Whitehead, B.; Nejsum, P.; Corredig, M.; Rasmussen, M.K. Importance of Isolation Method on Characteristics and Bioactivity of Extracellular Vesicles from Tomatoes. J. Food Compos. Anal. 2024, 129, 106064. [Google Scholar] [CrossRef]
- Rutter, B.D.; Innes, R.W. Extracellular Vesicles Isolated from the Leaf Apoplast Carry Stress-Response Proteins. Plant Physiol. 2017, 173, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Shkryl, Y.; Tsydeneshieva, Z.; Degtyarenko, A.; Yugay, Y.; Balabanova, L.; Rusapetova, T.; Bulgakov, V. Plant Exosomal Vesicles: Perspective Information Nanocarriers in Biomedicine. Appl. Sci. 2022, 12, 8262. [Google Scholar] [CrossRef]
- Sotelo-Cardona, P.; Lin, M.-Y.; Srinivasan, R. Growing Tomato under Protected Cultivation Conditions: Overall Effects on Productivity, Nutritional Yield, and Pest Incidences. Crops 2021, 1, 97–110. [Google Scholar] [CrossRef]
- Van Ploeg, D.; Heuvelink, E. Influence of Sub-Optimal Temperature on Tomato Growth and Yield: A Review. J. Hortic. Sci. Biotechnol. 2005, 80, 652–659. [Google Scholar] [CrossRef]
- Ke, X.; Yoshida, H.; Hikosaka, S.; Goto, E. Photosynthetic Photon Flux Density Affects Fruit Biomass Radiation-Use Efficiency of Dwarf Tomatoes under LED Light at the Reproductive Growth Stage. Front. Plant Sci. 2023, 14, 1076423. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zou, J.; Lin, S.; Jin, C.; Shi, M.; Yang, B.; Yang, Y.; Jin, D.; Li, R.; Li, Y.; et al. Effects of Different Light Intensity on the Growth of Tomato Seedlings in a Plant Factory. PLoS ONE 2023, 18, e0294876. [Google Scholar] [CrossRef]
- Kanski, L.; Kahle, H.; Naumann, M.; Hagenguth, J.; Ulbrich, A.; Pawelzik, E. Cultivation Systems, Light Intensity, and Their Influence on Yield and Fruit Quality Parameters of Tomatoes. Agronomy 2021, 11, 1203. [Google Scholar] [CrossRef]
Temperature | Nitrogen Nutrition | Lighting PPFD | |
---|---|---|---|
Low | T 18 °C N 250 mg L−1 PPFD 250 µmol m−2 s−1 | T 22 °C N 0 mg L−1 PPFD 250 µmol m−2 s−1 | T 22 °C N 250 mg L−1 PPFD 150 µmol m−2 s−1 |
Optimal; reference | T 22 °C N 250 mg L−1 PPFD 250 µmol m−2 s−1 | T 22 °C N 250 mg L−1 PPFD 250 µmol m−2 s−1 | T 22 °C N 250 mg L−1 PPFD 250 µmol m−2 s−1 |
High | T 26 °C N 250 mg L−1 PPFD 250 µmol m−2 s−1 | T 22 °C N 500 mg L−1 PPFD 250 µmol m−2 s−1 | T 22 °C N 250 mg L−1 PPFD 450 µmol m−2 s−1 |
Tomato Genotype | Fresh Weight, g | Dry Weight, g | Height, cm | Leaf Area, cm2 |
---|---|---|---|---|
Admiro | 25.0 ± 1.1 C | 2.92 ± 0.15 D | 31.7 ± 0.5 D | 348 ± 33 B |
Brooklyn | 22.4 ± 0.7 B | 2.08 ± 0.12 BC | 32.0 ± 1.6 D | 328 ± 30 B |
Roma | 27.0 ± 0.9 C | 2.47 ± 0.18 C | 23.7 ± 0.5 B | 380 ± 11 B |
Marmande | 21.7 ± 0.5 B | 1.81 ± 0.10 BC | 27.0 ± 0.8 C | 321 ± 20 B |
Betalux | 18.8 ± 0.1 A | 1.49 ± 0.06 A | 18.3 ± 0.5 A | 221 ± 16 A |
Tomato Cultivar | DPPH Scavenging Activity, mmol g−1 DW | ABTS Scavenging Activity, µmol g−1 DW | FRAP, µmol Fe(II) g−1 DW | |||
---|---|---|---|---|---|---|
Plant Material | Nanoparticle Preparation | Plant Material | Nanoparticle Preparation | Plant Material | Nanoparticle Preparation | |
Admiro | 321 ± 6 B | 1.07 ± 0.13 A | 1741 ± 33 C | 3.54 ± 0.31 A | 131 ± 2 C | n.d. |
Brooklyn | 273 ± 5 A | 1.08 ± 0.07 A | 1526 ± 17 A | 2.64 ± 0.55 A | 119 ± 1 A | n.d. |
Roma | 261 ± 4 A | 0.99 ± 0.14 A | 1555 ± 17 AB | 3.13 ± 0.20 A | 123 ± 2 AB | n.d. |
Marmande | 386 ± 9 C | 1.12 ± 00.5 A | 1874 ± 30 D | 2.41 ± 0.43 A | 159 ± 3 D | n.d. |
Betalux | 263 ± 12 A | 0.85 ± 0.18 A | 1642 ± 36 B | 3.10 ± 0.37 A | 128 ± 1 BC | n.d. |
Parameter | Fresh Weight, g | Dry Weight, g | Height, cm | Leaf Area, cm2 | |
---|---|---|---|---|---|
Temperature | 18 °C | 17.5 ± 0.3 A | 1.84 ± 0.11 B | 13.7 ± 0.5 A | 189 ± 12 A |
22 °C | 18.8 ± 0.1 A | 1.49 ± 0.06 A | 18.3 ± 0.5 B | 221 ± 16 B | |
26 °C | 21.0 ± 0.0 B | 1.71 ± 0.10 AB | 21.0 ± 0.8 C | 232 ± 37 B | |
Nitrogen nutrition | 0 mg L−1 | 21.2 ± 1.0 B | 1.68 ± 0.08 A | 23.7 ± 0.5 C | 229 ± 21 A |
250 mg L−1 | 18.8 ± 0.1 A | 1.49 ± 0.06 A | 18.3 ± 0.5 A | 221 ± 16 A | |
500 mg L−1 | 20.8 ± 0.9 AB | 1.52 ± 0.10 A | 20.7 ± 0.5 B | 194 ± 22 A | |
PPFD | 150 µmol m−2 s−1 | 12.4 ± 1.8 A | 0.78 ± 0.13 A | 14.6 ± 0.4 A | 165 ± 25 A |
250 µmol m−2 s−1 | 18.8 ± 0.1 B | 1.49 ± 0.06 B | 18.3 ± 0.5 B | 221 ± 16 B | |
450 µmol m−2 s−1 | 17.5 ± 0.1 B | 1.71 ± 0.05 B | 14.4 ± 0.1 A | 151 ± 9 A |
Parameter | Protein Content, mg g−1 DW | Particle Concentration, pcs ×1010 per g−1 of DW | RNR Content, mg g−1 DW | Mean Particle Size, nm | Span | |
---|---|---|---|---|---|---|
Temperature | 18 °C | 0.031 ± 0.004 A | 26.6 ± 2.63 A | 1.91 ± 0.01 B | 201 ± 2 A | 0.94 ± 0.02 B |
22 °C | 0.057 ± 0.004 B | 51.0 ± 6.66 B | 3.23 ± 0.01 C | 203 ± 6 A | 0.74 ± 0.03 A | |
26 °C | 0.029 ± 0.001 A | 23.9 ± 1.28 A | 0.33 ± 0.09 A | 227 ± 3 B | 0.96 ± 0.05 B | |
Nitrogen nutrition | 0 mg L−1 | 0.032 ± 0.004 A | 25.3 ± 4.28 A | 3.61 ± 0.01 C | 214 ± 7 B | 0.91 ± 0.05 B |
250 mg L−1 | 0.057 ± 0.004 B | 51.0 ± 6.66 B | 3.23 ± 0.01 B | 203 ± 6 AB | 0.74 ± 0.03 A | |
500 mg L−1 | 0.027 ± 0.005 A | 38.4 ± 2.44 AB | 2.88 ± 0.02 A | 197 ± 2 A | 0.82 ± 0.01 AB | |
PPFD | 150 µmol m−2 s−1 | 0.031 ± 0.001 A | 24.2 ± 1.64 A | 0.60 ± 0.02 A | 229 ± 10 B | 1.04 ± 0.02 B |
250 µmol m−2 s−1 | 0.057 ± 0.004 B | 51.0 ± 6.66 B | 3.23 ± 0.01 C | 203 ± 6 A | 0.74 ± 0.03 A | |
450 µmol m−2 s−1 | 0.032 ± 0.002 A | 28.2 ± 1.65 A | 1.30 ± 0.04 B | 212 ± 8 AB | 0.83 ± 0.06 A |
Parameter | DPPH Scavenging Activity, mmol g−1 DW | ABTS Scavenging Activity, µmol g−1 DW | FRAP, µmol Fe(II) g−1 DW | ||||
---|---|---|---|---|---|---|---|
Plant Material | Nanoparticle Preparation | Plant Material | Nanoparticle Preparation | Plant Material | Nanoparticle Preparation | ||
Temperature | 18 °C | 318 ± 5 B | 0.93 ± 0.03 A | 1785 ± 19 C | 4.38 ± 1.48 A | 138 ± 2 B | n.d. |
22 °C | 263 ± 12 A | 0.85 ± 0.18 A | 1642 ± 36 B | 3.10 ± 1.48 A | 128 ± 1 A | n.d. | |
26 °C | 259 ± 6 A | 0.83 ± 0.04 A | 1530 ± 5 A | 2.27 ± 0.30 A | 121 ± 4 A | n.d. | |
Nitrogen nutrition | 0 mg L−1 | 269 ± 6 A | 1.03 ± 0.01 A | 1467 ± 24 A | 2.75 ± 0.48 A | 115 ± 2 A | n.d. |
250 mg L−1 | 263 ± 12 A | 0.85 ± 0.18 A | 1642 ± 36 B | 3.10 ± 0.37 A | 128 ± 1 B | n.d. | |
500 mg L−1 | 264 ± 7 A | 0.97 ± 0.04 A | 1456 ± 44 A | 2.39 ± 0.51 A | 113 ± 3 A | n.d. | |
PPFD | 150 µmol m−2 s−1 | 229 ± 5 A | 0.67 ± 0.37 A | 1320 ± 58 A | 4.38 ± 1.48 A | 120 ± 1 A | n.d. |
250 µmol m−2 s−1 | 263 ± 12 B | 0.85 ± 0.18 A | 1642 ± 36 B | 3.10 ± 0.37 A | 128 ± 1 B | n.d. | |
450 µmol m−2 s−1 | 323 ± 11 C | 0.83 ± 0.04 A | 2174 ± 23 C | 2.27 ± 0.30 A | 164 ± 4 C | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viršilė, A.; Samuolienė, G.; Laužikė, K.; Mikalauskienė, E.; Balion, Z.; Jekabsone, A. The Impact of Genotype and Controlled Environment Cultivation Parameters on Tomato-Leaf-Derived Exosome-like Nanoparticle Yield and Properties. Horticulturae 2024, 10, 477. https://doi.org/10.3390/horticulturae10050477
Viršilė A, Samuolienė G, Laužikė K, Mikalauskienė E, Balion Z, Jekabsone A. The Impact of Genotype and Controlled Environment Cultivation Parameters on Tomato-Leaf-Derived Exosome-like Nanoparticle Yield and Properties. Horticulturae. 2024; 10(5):477. https://doi.org/10.3390/horticulturae10050477
Chicago/Turabian StyleViršilė, Akvilė, Giedrė Samuolienė, Kristina Laužikė, Emilija Mikalauskienė, Zbigniev Balion, and Aistė Jekabsone. 2024. "The Impact of Genotype and Controlled Environment Cultivation Parameters on Tomato-Leaf-Derived Exosome-like Nanoparticle Yield and Properties" Horticulturae 10, no. 5: 477. https://doi.org/10.3390/horticulturae10050477
APA StyleViršilė, A., Samuolienė, G., Laužikė, K., Mikalauskienė, E., Balion, Z., & Jekabsone, A. (2024). The Impact of Genotype and Controlled Environment Cultivation Parameters on Tomato-Leaf-Derived Exosome-like Nanoparticle Yield and Properties. Horticulturae, 10(5), 477. https://doi.org/10.3390/horticulturae10050477