Consumers’ Perceptions for an Outdoor Ornamental Plant: Exploring the Influence of Novel Plant Diseases Diagnostics and Sustainable Nurseries Cultivation Management
Abstract
:1. Introduction
1.1. Background and Justification
1.2. Literature Review
1.3. Aims and Research Questions
2. Methodology
2.1. Selection of the Attributes and Their Levels
2.2. Experimental Design and Choice Set
2.3. Sampling and Social Survey
2.4. Econometric Models
3. Results
3.1. Descriptive Statistics Results
3.2. Econometric Results
4. Discussion and Conclusions
4.1. Key Findings at a Glance
4.2. Importance and Implications of the Findings
4.3. Comparison of the Findings
4.4. Limitations of the Study and Future Research Areas
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardwell, K.; Dennis, G.; Flannery, A.R.; Fletcher, J.; Luster, D.; Nakhla, M.; Rice, A.; Shiel, P.; Stack, J.; Walsh, C.; et al. Principles of diagnostic assay validation for plant pathogens: A basic review of concepts. Plant Health Prog. 2018, 19, 272–278. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority Panel on Plant Health). Update of the Xylella spp. host plant database-systemic literature search up to 30 June 2021. EFSA J. 2022, 20, e07356. [Google Scholar]
- Castro, C.; DiSalvo, B.; Roper, M.C. Xylella fastidiosa: A reemerging plant pathogen that threatens crops globally. PLoS Pathog. 2021, 17, e1009813. [Google Scholar] [CrossRef] [PubMed]
- Greco, D.; Aprile, A.; De Bellis, L.; Luvisi, A. Diseases caused by Xylella fastidiosa in Prunus genus: An overview of the research on an increasingly widespread pathogen. Front. Plant Sci. 2021, 12, 712452. [Google Scholar] [CrossRef] [PubMed]
- Landa, B.B.; Saponari, M.; Feitosa-Junior, O.R.; Giampetruzzi, A.; Vieira, F.J.; Mor, E.; Robatzek, S. Xylella fastidiosa’s relationships: The bacterium, the host plants, and the plant microbiome. New Phytol. 2022, 234, 1598–1605. [Google Scholar] [CrossRef]
- Cardone, G.; Digiaro, M.; Djelouah, K.; Frem, M.; Rota, C.; Lenders, A.; Fucilli, V. Socio-economic risks posed by a new plant disease in the Mediterranean basin. Diversity 2022, 14, 975. [Google Scholar] [CrossRef]
- Loconsole, G.; Zicca, S.; Manco, L.; El Habib, O.; Altamura, G.; Potere, O.; Elicio, V.; Valentini, F.; Boscia, D.; Saponari, M. Diagnostic procedures to detect Xylella fastidiosa in nursery stocks and consignments of plants for planting. Agriculture 2021, 11, 922. [Google Scholar] [CrossRef]
- Bozzo, F.; Frem, M.; Fucilli, V.; Cardone, G.; Garofoli, P.F.; Geronimo, S.; Petrontino, A. Landscape and vegetation patterns zoning is a methodological tool for management costs implications due to Xylella fastidiosa invasion. Land 2022, 11, 1105. [Google Scholar] [CrossRef]
- Frem, M.; Petrontino, A.; Fucilli, V.; Sansiviero, C.; Bozzo, F. Sustainable viticulture of Italian grapevines: Environmental Evaluation and societal cost estimation using EU farm accountancy data network. Horticulturae 2023, 9, 1239. [Google Scholar] [CrossRef]
- Schimmenti, E.; Galati, A.; Borsellini, V.; Levoli, C.; Lupi, C.; Tinervia, S. Behaviour of consumers of conventional and organic flowers and ornamental plants in Italy. Hortic. Sci. 2013, 40, 162–171. [Google Scholar] [CrossRef]
- Grymshi, D.; Crespo-Cebada, E.; Elghannam, A.; Mesías, F.J.; Díaz, C. Understanding consumer attitudes towards ecolabeled food products: A latent class analysis regarding their purchasing motivations. Agribusiness 2022, 38, 93–107. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Improving aerial and root quality traits of two landscaping shrubs stem cuttings by applying a commercial brown seaweed extract. Horticulturae 2022, 8, 806. [Google Scholar] [CrossRef]
- Ali, Q.; Ahmar, S.; Sohail, M.A.; Kamran, M.; Ali, M.; Saleem, M.H.; Rizwan, M.; Ahmed, A.M.; Mora-Poblete, F.; do Amaral Júnior, A.T.; et al. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. Environ. Sci. Pollut. Res. 2021, 28, 9002–9019. [Google Scholar] [CrossRef] [PubMed]
- Dheeraj, A.; Chand, S. LWDN: Lightweight DenseNet model for plant disease diagnosis. J. Plant Dis. Prot. 2024, 131, 1043–1059. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. DLMC-Net: Deeper lightweight multi-class classification model for plant leaf disease detection. Ecol. Inform. 2023, 75, 102025. [Google Scholar] [CrossRef]
- Fan, X.; Luo, P.; Mu, Y.; Zhou, R.; Tjahjadi, T.; Ren, Y. Leaf image-based plant disease identification using transfer learning and feature fusion. Comput. Electron. Agric. 2022, 196, 106892. [Google Scholar] [CrossRef]
- Dhaka, V.S.; Kundu, N.; Rani, G.; Zumpano, E.; Vocaturo, E. Role of internet of things and deep learning techniques in plant disease detection and classification: A focused review. Sensors 2023, 23, 7877. [Google Scholar] [CrossRef] [PubMed]
- Jafar, A.; Bibi, N.; Naqvi, R.A.; Sadeghi-Niaraki, A.; Jeong, D. Revolutionizing agriculture with artificial intelligence: Plant disease detection methods, applications, and their limitations. Front. Plant Sci. 2024, 15, 1356260. [Google Scholar] [CrossRef]
- Devi, B.M.; Guruprasath, S.; Balu, P.; Chattopadhyay, A.; Thilagar, S.S.; Dhanabalan, K.V.; Choudhary, M.; Moparthi, S.; Jailani, A.A.K. Dissecting diagnostic and management strategies for plant viral diseases: What next? Agriculture 2024, 14, 284. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae 2024, 10, 49. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Tang, B.; Gu, M. Growth responses and root characteristics of lettuce grown in aeroponics, hydroponics, and substrate culture. Horticulturae 2018, 4, 35. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A.; Siomos, A.; Menexes, G.; Dangitsis, C.; Kintzonidis, D. Assessing quantitative criteria for characterization of quality categories for grafted watermelon seedlings. Horticulturae 2019, 5, 16. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M. Effects of biochar on container substrate properties and growth of plants—A review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Vendrame, W.A. Innovation in propagation and cultivation of ornamental plants. Horticulturae 2022, 8, 229. [Google Scholar] [CrossRef]
- Darras, A.I. Implementation of sustainable practices to ornamental plant cultivation worldwide: A critical review. Agronomy 2020, 10, 1570. [Google Scholar] [CrossRef]
- Benninga, J.; Reymann, D. Marketing features of ornamentals as appreciated by the market. Acta Hortic. 2000, 536, 479–484. [Google Scholar] [CrossRef]
- Khachatryan, H. Comparing the effects of environmental and economic benefits related information on consumers’ preferences and demand for ornamental plants. Proc. Fla. State Hortic. Soc. 2000, 126, 305–309. [Google Scholar]
- Townsley-Brascamp, W.; Marr, N.E. Evaluation and analysis of consumer preferences for outdoor ornamental plants. Acta Hortic. 1995, 391, 199–208. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Khachatryan, H. Ornamental plants in the United States: An econometric analysis of a household-level demand system. Agribusiness 2017, 33, 226–241. [Google Scholar] [CrossRef]
- Dos Santos, P.L.F.; De Castilho, R.M.N. Germination and development of ornamental sunflower seedlings in substrates. Ornam. Hortic. 2018, 24, 303–310. [Google Scholar] [CrossRef]
- Wagstaffe, J.; Cameron, R.W.; Hadley, P.; Bisgrove, R. Do Protocols for the intensive production of Coreopsis grandiflora affect its garden performance. Sci. Hortic. 2014, 175, 236–242. [Google Scholar] [CrossRef]
- Palma, M.A.; Chen, Y.; Hall, C.; Bessler, D.; Leatham, D. Consumer preferences for potted orchids in the Hawaiian market. Hort Technol. 2010, 20, 239–244. [Google Scholar] [CrossRef]
- Rihn, A.; Khachatryan, H.; Campbell, B.; Hall, C.; Behe, B. Consumers’ preferences for organic production methods and origin promotions on ornamental plants: Evidence from eye-tracking experiments. Agric. Econ. 2016, 47, 599–608. [Google Scholar] [CrossRef]
- Čop, T.; Njavro, M. Application of discrete choice experiment in agricultural risk management: A review. Sustainability 2022, 14, 10609. [Google Scholar] [CrossRef]
- Johansson, J.V.; Bentzen, H.B.; Shah, N.; Haraldsdóttir, E.; Jónsdóttir, G.A.; Kaye, J.; Mascalzoni, D.; Veldwijk, J. Preferences of the public for sharing health data: Discrete choice experiment. JMIR Med. Inform. 2021, 9, e29614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Wang, Z.; Li, X.; Pang, X.; Wang, S. Application of discrete choice experiment in health care: A bibliometric analysis. Front. Public Health 2021, 9, 673698. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef]
- Frem, M.; Fucilli, V.; Petrontino, A.; Acciani, C.; Bianchi, R.; Bozzo, F. Nursery plant production models under quarantine pests’ outbreak: Assessing the environmental implications and economic viability. Agronomy 2022, 12, 2964. [Google Scholar] [CrossRef]
- Petrontino, A.; Frem, M.; Fucilli, V.; Tricarico, G.; Bozzo, F. Health-Nutrients and Origin Awareness: Implications for regional wine market-segmentation strategies using a latent analysis. Nutrients 2022, 14, 1385. [Google Scholar] [CrossRef]
- Petrontino, A.; Madau, F.; Frem, M.; Fucilli, V.; Bianchi, R.; Campobasso, A.A.; Pulina, P.; Bozzo, F. Seafood choice and consumption behavior: Assessing the willingness to pay for an edible sea urchin. Foods 2023, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Louviere, J.J.; Islam, T.; Wasi, N.; Street, D.; Burgess, L. Designing discrete choice experiments: Do optimal designs come at a price? J. Consum. Res. 2008, 35, 360–375. [Google Scholar] [CrossRef]
- Bush, S. Optimal designs for stated choice experiments generated from fractional factorial designs. J. Stat. Theory Pract. 2014, 8, 367–381. [Google Scholar] [CrossRef]
- Bhat, C.R. Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences. Transp. Res. Part B Methodol. 2003, 37, 837–855. [Google Scholar] [CrossRef]
- Street, D.J.; Burgess, L. Designs for choice experiments for the multinomial logit model. In Design and Analysis of Experiments, Special Designs and Applications, 3rd ed.; Hinkelmann, K., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 331–378. [Google Scholar]
- DeLong, K.L.; Syrengelas, K.G.; Grebitus, C.; Nayga, R.M. Visual versus text attribute representation in choice experiments. J. Behav. Exp. Econ. 2021, 94, 101729. [Google Scholar] [CrossRef]
- Murwirapachena, G.; Dikgang, J. The effects of presentation formats in choice experiments. Environ. Econ. Policy Stud. 2022, 24, 421–445. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica. Italian Population in 2020. Available online: https://dati.istat.it/ (accessed on 22 May 2021).
- Kokiçi, H.; Çota, E.; Frem, M.; La Notte, P.; Sallaku, F.; Xhemali, B.; Haddad, N.; Frasheri, D.; Pasko, P.; Limani, B.; et al. Knowledge of xylem feeders (Hemiptera: Auchenorrhyncha) in Albanian olive orchards in readiness for a potential outbreak with Xylella fastidiosa invasion. Ann. Société Entomol. Fr. (NS) 2024, 60, 1–14. [Google Scholar] [CrossRef]
- Wei, X.; Khachatryan, H.; Hodges, A.; Hall, C.; Palma, M.; Torres, A.; Brumfield, R. Exploring market choices in the US ornamental horticulture industry. Agribusiness 2023, 39, 65–109. [Google Scholar] [CrossRef]
- Yu, C.; Campbell, B.; Hall, C.; Behe, B.; Dennis, J.; Khachatryan, H. Consumer preference for sustainable attributes in plants: Evidence from experimental auctions. Agribusiness 2016, 32, 222–235. [Google Scholar] [CrossRef]
- Boumaza, R.; Demotes-Mainard, S.; Huché-Thélier, L.; Guérin, V. Visual characterization of the aesthetic quality of the rosebush. J. Sens. Stud. 2009, 24, 774–796. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Li, M.; Liu, J.; Jin, W. Residents’ preferences for roses, features of rose plantings and the relations between them in built-up areas of Beijing, China. Urban For. Urban Green. 2017, 27, 1–8. [Google Scholar] [CrossRef]
- Mayett-Moreno, Y.; Popp, J.S.; Sabogal-Salamanca, M.; Rodríguez-Piñeros, S.; Salomé-Castañeda, E.; Flores-Alonso, D.A. Consumers’ and retailers’ attitudes towards a Mexican native species of Aztec Lily as an ornamental plant. Sustainability 2018, 10, 224. [Google Scholar] [CrossRef]
- Knuth, M.J.; Khachatryan, H.; Hall, C.R. How consistent are Consumers in their decisions? Investigation of houseplant purchasing. Behav. Sci. 2021, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Behe, B.K. Factors affecting US consumer patronage of garden centers and mass-merchandisers. Acta Hortic. 2009, 831, 301–308. [Google Scholar]
- Wollaeger, H.M.; Getter, K.L.; Behe, B.K. Consumer preferences for traditional, neonicotinoid-free, bee-friendly, or biological control pest management practices on floriculture crops. HortScience 2015, 50, 721–732. [Google Scholar] [CrossRef]
- Kalaman, H.; Wilson, S.B.; Mallinger, R.E.; Knox, G.W.; Kim, T.; Begcy, K.; van Santen, E. Evaluation of native and nonnative ornamentals as pollinator plants in Florida: II. Floral Resource Value. HortScience 2022, 57, 137–143. [Google Scholar] [CrossRef]
Attribute (Code) | Level Number | Level |
---|---|---|
Phytosanitary diagnosis in nursery (Code: diagnosis) | 2 |
|
Nursery cultivation technique (Code: technique) | 2 |
|
Price (Code: price) | 4 |
|
Input or Resource for the Abelia grandiflora Cultivation Process | Conventional Cultivation Technique | Sustainable Cultivation Technique |
---|---|---|
Stock mother plants and cuttings | Use of pot-bred mother plants from previous production cycles carried out at the same nursery level and may not guarantee healthy potted plants | Use of certified planting material from accredited organisms that may guarantee healthy potted plants |
Rooting promotors and cutting propagation | Use of chemical plant growth regulator (as a source of auxin only—rooting powder hormone—IBA at a concentration of 0.5% w/w) Massive use of biocontrol fungus | Use of a bio root stimulator and balanced shoots (as a natural source of auxins, cytokinin, polysaccharides, and vitamins) Use of brown seaweed-extract-based biostimulants (at a concentration of 1 mL L−1) Low application of biocontrol fungus |
Labor | Requires increased working hours during the production cycle | Requires few working hours during the production cycle |
Chemical treatment | Massive use of chemical fungicides | Low application of chemical fungicides |
Consumables (pots) | Requires more pots due to a potentially high mortality rate | Requires fewer pots due to a potentially lower mortality rate |
Consumables (water, fuel) | Requires greater fuel and water resources due to a relatively high production cycle duration | Requires fewer fuel and water resources due to a relatively low production cycle duration |
Whole production cycle duration in days | 280 days due to more days for the rooting phase owing to the use of a relative low concentration of bio root stimulators | 260 days due to less days for the rooting phase, owing to the use of a relatively high concentration of bio root stimulators |
Sustainable cultivation technique | Absence (non-use) of plant phytosanitary diagnosis | Conventional cultivation technique | Use of a novel plant phytosanitary diagnostic protocol | No-Buy |
I opt for: | ☐ Option A | ☐ Option B | ☐ Option C |
MNL | RPL | |
---|---|---|
Log likelihood function (L) | −3880 | −3258 |
Number of independent variables (K) | 4 | 33 |
Akaike information criterion (Inf.Cr.AIC) | 7768 | 6853 |
Bayesian information criterion (BIC) | 7792 | 6788 |
MNL | |||||||
---|---|---|---|---|---|---|---|
Code of the Attribute (as Described in Table 1) | Coefficient | Standard Error | z | Prob.|z| > Z * | 95% Confidence Interval | ||
Diagnosis | 0.97 | *** | 0.09 | 10.49 | 0.00 | 0.79 | 1.15 |
Technique | 0.75 | *** | 0.07 | 10.79 | 0.00 | 0.61 | 0.88 |
Price | −0.1 | *** | 0.01 | −8.68 | 0.00 | −0.13 | −0.08 |
Alternative specific constant ASC (Opt-out) | −0.33 | *** | 0.06 | −5.13 | 0.00 | −0.45 | −0.2 |
RPL | |||||||
Random Parameter | Coefficient | Standard Error | z | Prob.|z| > Z * | 95% Confidence Interval | ||
Price | −1.15 | *** | 0.13 | −8.69 | 0.00 | −1.41 | −0.89 |
Nonrandom parameters | |||||||
Diagnosis | 1.27 | *** | 0.1 | 12.35 | 0.00 | 1.07 | 1.48 |
Technique | 1.03 | *** | 0.08 | 12.77 | 0.00 | 0.87 | 1.19 |
Alternative specific constant ASC (Opt-out) | −1.09 | *** | 0.08 | −13.42 | 0.00 | −1.25 | −0.93 |
Heterogeneity in Mean | Coefficient | Standard Error | z | Prob.|z| > Z * | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Price × Frequency | ||||||
Rarely | 0.25 ** | 0.10 | 2.51 | 0.01 | 0.05 | 0.45 |
Once a year | 0.39 *** | 0.11 | 3.55 | 0.00 | 0.18 | 0.61 |
More than once a year | 0.33 *** | 0.11 | 3.19 | 0.00 | 0.13 | 0.54 |
Once a month | 0.47 *** | 0.12 | 4.01 | 0.00 | 0.24 | 0.70 |
More than once a month | 0.59 *** | 0.13 | 4.48 | 0.00 | 0.33 | 0.85 |
Price × Place of purchase | ||||||
E-commerce | 0.20 * | 0.16 | 1.26 | 0.21 | −0.11 | 0.51 |
Peddler | 0.27 *** | 0.10 | 2.58 | 0.01 | 0.06 | 0.47 |
Shopping mall | 0.24 *** | 0.09 | 2.62 | 0.01 | 0.06 | 0.42 |
Specialized shop/florist | 0.28 *** | 0.09 | 3.20 | 0.00 | 0.11 | 0.45 |
Garden center | 0.19 * | 0.11 | 1.75 | 0.08 | −0.02 | 0.41 |
Nursery (direct producer) | 0.30 *** | 0.09 | 3.38 | 0.00 | 0.13 | 0.48 |
Price × Gender | ||||||
Gender (male) | 0.06 * | 0.04 | 1.62 | 0.10 | −0.01 | 0.13 |
Price × Age | ||||||
Age | 0.00 * | 0.00 | −1.43 | 0.15 | 0.00 | 0.00 |
Price × Level of education | ||||||
Year of study | 0.01 ** | 0.00 | 2.20 | 0.03 | 0.00 | 0.02 |
Attribute | EUR |
---|---|
Phytosanitary diagnosis in nursery (Code: diagnosis) | 1.10 |
Nursery cultivation technique (Code: technique) | 0.90 |
Overall average | 1.00 |
Variable |Class| | Coefficients | Standard Error | z | Prob.|z| > Z * | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Price |1| | 0.14830 ** | 0.05815 | 2.55 | 0.0108 | 0.03433 | 0.26228 |
Diagnosis |1| | 3.34491 *** | 0.3965 | 8.44 | 0 | 2.56778 | 4.12203 |
Technique |1| | 1.46855 *** | 0.30707 | 4.78 | 0 | 0.86671 | 2.07038 |
Opt-out |1| | −0.02551 | 0.414 | −0.06 | 0.9509 | −0.83694 | 0.78591 |
Price |2| | −0.11389 *** | 0.03094 | −3.68 | 0.0002 | −0.17454 | −0.05325 |
Diagnosis |2| | 0.69281 *** | 0.20196 | 3.43 | 0.0006 | 0.29698 | 1.08864 |
Technique |2| | 1.11086 *** | 0.15424 | 7.2 | 0 | 0.80855 | 1.41318 |
Opt-out |2| | −1.79515 *** | 0.32509 | −5.52 | 0 | −2.43232 | −1.15797 |
Price |3| | −0.82441 *** | 0.11607 | −7.1 | 0 | −1.0519 | −0.59691 |
Diagnosis |3| | 0.88302 ** | 0.34764 | 2.54 | 0.0111 | 0.20166 | 1.56438 |
Technique |3| | 1.19945 *** | 0.33337 | 3.6 | 0.0003 | 0.54605 | 1.85284 |
Opt-out |3| | −4.16053 *** | 0.45458 | −9.15 | 0 | −5.05149 | −3.26957 |
Price |4| | −0.13416 *** | 0.03921 | −3.42 | 0.0006 | −0.21102 | −0.05731 |
Diagnosis |4| | 1.80417 *** | 0.30992 | 5.82 | 0 | 1.19674 | 2.41159 |
Technique |4| | 1.26312 *** | 0.20934 | 6.03 | 0 | 0.85281 | 1.67343 |
Opt-out |4| | 1.20360 *** | 0.229 | 5.26 | 0 | 0.75477 | 1.65244 |
Price |5| | −0.24909 | 0.3517 | −0.71 | 0.4788 | −0.93841 | 0.44022 |
Diagnosis |5| | −0.14798 | 1.57975 | −0.09 | 0.9254 | −3.24423 | 2.94828 |
Technique |5| | −2.04314 | 1.72048 | −1.19 | 0.235 | −5.41523 | 1.32894 |
Opt-out |5| | 2.90442 *** | 1.00348 | 2.89 | 0.0038 | 0.93764 | 4.87121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frem, M.; Petrontino, A.; Fucilli, V.; De Lucia, B.; Tria, E.; Campobasso, A.A.; Calderoni, F.; Bozzo, F. Consumers’ Perceptions for an Outdoor Ornamental Plant: Exploring the Influence of Novel Plant Diseases Diagnostics and Sustainable Nurseries Cultivation Management. Horticulturae 2024, 10, 501. https://doi.org/10.3390/horticulturae10050501
Frem M, Petrontino A, Fucilli V, De Lucia B, Tria E, Campobasso AA, Calderoni F, Bozzo F. Consumers’ Perceptions for an Outdoor Ornamental Plant: Exploring the Influence of Novel Plant Diseases Diagnostics and Sustainable Nurseries Cultivation Management. Horticulturae. 2024; 10(5):501. https://doi.org/10.3390/horticulturae10050501
Chicago/Turabian StyleFrem, Michel, Alessandro Petrontino, Vincenzo Fucilli, Barbara De Lucia, Emanuela Tria, Adele Annarita Campobasso, Federica Calderoni, and Francesco Bozzo. 2024. "Consumers’ Perceptions for an Outdoor Ornamental Plant: Exploring the Influence of Novel Plant Diseases Diagnostics and Sustainable Nurseries Cultivation Management" Horticulturae 10, no. 5: 501. https://doi.org/10.3390/horticulturae10050501
APA StyleFrem, M., Petrontino, A., Fucilli, V., De Lucia, B., Tria, E., Campobasso, A. A., Calderoni, F., & Bozzo, F. (2024). Consumers’ Perceptions for an Outdoor Ornamental Plant: Exploring the Influence of Novel Plant Diseases Diagnostics and Sustainable Nurseries Cultivation Management. Horticulturae, 10(5), 501. https://doi.org/10.3390/horticulturae10050501