Response to Various Water Regimes of the Physiological Aspects, Nutritional Water Productivity, and Phytochemical Composition of Bush Tea (Athrixia phylicoides DC.) Grown under a Protected Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Material Description
2.3. Experimental Description
2.4. Data Collection
2.4.1. Gas Exchange and Chlorophyll Fluorescence Measurements
2.4.2. Yield and Yield Components
2.4.3. Determination of Nutritional Composition (NC)
2.4.4. Determination of Nutritional Water Productivity (NWP)
2.4.5. Metabolite Extraction
2.4.6. Liquid Chromatography-Quadruple Time-of-Flight Tandem Mass Spectrometry (LC-MS/MS)
2.4.7. Molecular Networking
2.5. Data Analysis
3. Results and Discussion
3.1. Gas Exchange and Chlorophyll Fluorescence Measurements
3.2. Yield
3.3. Elemental Composition
3.4. Nutritional Water Productivity
3.5. Multivariate Data Analysis
3.6. Major Chemical Class of Bush Tea Metabolomics
3.6.1. Molecular Networking
3.6.2. Impact of Water on Communic Acids
3.6.3. Impact of Water on Caftaric Acids
3.6.4. Impact of Water on Mono-acyl Chlorogenic Acids
3.6.5. Impact of Water on Caffeoylquinic Acids
3.6.6. Impact of Water on Methyl Chlorogenate Acids
3.6.7. Impact of Water on Flavonoids
3.6.8. Impact of Water on Triterpenoid and 3-coumaroyl-4-caffeoylquinic Acids
3.6.9. Impact of Water on Feruloyl-caffeoylquinic Acids
3.6.10. Impact of Water on Tri-caffeoylquinic Acids
3.6.11. Impact of Water on Di-caffeoylglucosides and Di-caffeoyl Glucarate Acids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joubert, E.; Gelderblom, W.C.A.; Louw, A.; de Beer, D. South African Herbal Teas: Aspalathus linearis, Cyclopia Spp. and Athrixia phylicoides—A Review. J. Ethnopharmacol. 2008, 119, 376–412. [Google Scholar] [CrossRef]
- Steyn, B.; Antonites, A. Plant Use in Southern Africa’s Middle Iron Age: The Archaeobotany of Mutamba. Azania Archaeol. Res. Afr. 2019, 54, 350–368. [Google Scholar] [CrossRef]
- Mudau, F.N.; Soundy, P.; Du Toit, E.S.; Olivier, J. Variation in Polyphenolic Content of Athrixia phylicoides (L.) (Bush Tea) Leaves with Season and Nitrogen Application. S. Afr. J. Bot. 2006, 72, 398–402. [Google Scholar] [CrossRef]
- Tshikhudo, P.P.; Ntushelo, K.; Kanu, S.A.; Mudau, F.N. Influence of Ecological Parameters on Growth of Bush Tea (Athrixia phylicoides DC.) in Limpopo Province, South Africa. Appl. Ecol. Environ. Res. 2020, 18, 4167–4177. [Google Scholar] [CrossRef]
- Rakuambo, Z.J. Indigenous Knowledge of Bush Tea (Athrixia phylicoides) and Effect of Fertigation Frequency and Growing Medium on Plant Growth; University of Pretoria: Pretoria, South Africa, 2007; ISBN 9798380883122. [Google Scholar]
- Tshivhandekano, I.; Mudau, F.N.; Soundy, P.; Ngezimana, W. Effect of Cultural Practices and Environmental Conditions on Yield and Quality of Herbal Plants: Prospects Leading to Research on Influence of Nitrogen Fertilization, Planting Density and Eco-Physiological Parameters on Yield and Quality of Field-Grown Bush Tea (Athrixia phylicoides DC.). J. Med. Plants Res. 2013, 7, 2489–2493. [Google Scholar]
- Lerotholi, L.; Chaudhary, S.K.; Combrinck, S.; Viljoen, A. Bush Tea (Athrixia phylicoides): A Review of the Traditional Uses, Bioactivity and Phytochemistry. S. Afr. J. Bot. 2017, 110, 4–17. [Google Scholar] [CrossRef]
- Tshikhudo, P.P.; Ntushelo, K.; Kanu, S.A.; Mudau, F.N. Growth Response of Bush Tea (Athrixia phylicoides DC.) to Climatic Conditions in Limpopo Province, South Africa. S. Afr. J. Bot. 2019, 121, 500–504. [Google Scholar] [CrossRef]
- Ramphinwa, M.L.; Mchau, G.R.A.; Mashau, M.E.; Madala, N.E.; Chimonyo, V.G.P.; Modi, T.A.; Mabhaudhi, T.; Thibane, V.S.; Mudau, F.N. Eco-Physiological Response of Secondary Metabolites of Teas: Review of Quality Attributes of Herbal Tea. Front. Sustain. Food Syst. 2023, 7, 990334. [Google Scholar] [CrossRef]
- Gatabazi, A.; Marais, D.; Steyn, M.; Araya, H.; Du Plooy, C.; Ncube, B.; Mokgehle, S. Effect of Water Regimes and Harvest Times on Yield and Phytochemical Accumulation of Two Ginger Species. Sci. Hortic. 2022, 304, 111353. [Google Scholar] [CrossRef]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.T.; Mafongoya, P. The Potential Role of Neglected and Underutilized Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef]
- Mabhaudhi, T. Drought Tolerance and Water-Use of Selected South African Landraces of Taro (Colocasia esculenta L. Schott) and Bambara groundnut (Vigna subterranea L. Verdc). Ph.D. Dissertation, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2012. [Google Scholar]
- Bendou, O.; Gutiérrez-Fernández, I.; Marcos-Barbero, E.L.; Bueno-Ramos, N.; Miranda-Apodaca, J.; González-Hernández, A.I.; Morcuende, R.; Arellano, J.B. Physiological and Antioxidant Response to Different Water Deficit Regimes of Flag Leaves and Ears of Wheat Grown under Combined Elevated CO2 and High Temperature. Plants 2022, 11, 2384. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Stamatakis, A.; Moustakas, K.; Prasad, M.; Tzortzakis, N. Evaluation of Municipal Solid Waste Compost and/or Fertigation as Peat Substituent for Pepper Seedlings Production. Waste Biomass Valorization 2018, 9, 2285–2294. [Google Scholar] [CrossRef]
- Mudau, F.N.; Soundy, P.; Du Toit, E.S. Nitrogen, Phosphorus, and Potassium Nutrition Increases Growth and Total Polyphenol Concentrations of Bush Tea in a Shaded Nursery Environment. HortTechnol 2007, 17, 107–110. [Google Scholar] [CrossRef]
- Mohale, K.C.; Hintsa, A.T.; Emanuel, M.A.; Mudau, F.N. Metabolic Profiling of Cultivated Bush Tea (Athrixia phylicoides DC.) in Response to Different Pruning Types. HortScience 2018, 53, 993–998. [Google Scholar] [CrossRef]
- Mphangwe, N.I.K. Lung Pruning: A Review of the Practice. Trfca News 2007, 147, 18–23. [Google Scholar]
- Hlahla, L.N. Effect of Fermentation Temperature and Duration on Chemical Composition of Bush Tea (Athrixia phylicoides DC.). Ph.D. Dissertation, University of Limpopo, Polokwane, South Africa, 2010. [Google Scholar]
- Ramphinwa, M.L.; Madala, N.E.; Mchau, G.R.A.; Ramabulana, A.T.; Mudau, F.N. Effect of UV-Induced Geometrical Isomerization of Hydroxyl-Cinnamic Acid-Containing Molecules of Bush Tea (Athrixia phylicoides DC.) Using UHPLC-QTOF-MS. Sci. Hortic. 2022, 301, 111124. [Google Scholar] [CrossRef]
- Hassan, F.A.S.; Ali, E.F. Impact of Different Water Regimes Based on Class-A Pan on Growth, Yield and Oil Content of Coriandrum Sativum L. Plant. J. Saudi Soc. Agric. Sci. 2014, 13, 155–161. [Google Scholar] [CrossRef]
- Carr, M.K.V. The Role of Water in the Growth of the Tea (Camellia sinensis) Crop: A Synthesis of Research in Eastern Africa. 1. Water Relations. Exp. Agric. 2010, 46, 327–349. [Google Scholar] [CrossRef]
- Dasila, B.; Singh, V.; Kushwaha, H.S.; Srivastava, A.; Ram, S. Water Use Efficiency and Yield of Cowpea and Nutrient Loss in Lysimeter Experiment under Varying Water Table Depth, Irrigation Schedules and Irrigation Method. SAARC J. Agric. 2016, 14, 46–55. [Google Scholar] [CrossRef]
- Maedza, K.V. Effects of Micronutrients on Growth and Quality of Bush Tea (Athrixia phylicoides DC.). Master’s Thesis, University of South Africa, Pretoria, South Africa, 2015. [Google Scholar]
- Mabhaudhi, T.; Chibarabada, T.P.; Modi, A.T. Nutritional Water Productivity of Selected Sweet Potato Cultivars (Ipomoea batatas L.). Acta Hortic. 2018, 1253, 295–302. [Google Scholar] [CrossRef]
- Singh, K.K. Water Management in Tea. In Science of Tea Technology; Scientific Publishers: Jodhpur, India, 2013. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Evans, J.R. Potential Errors in Electron Transport Rates Calculated from Chlorophyll Fluorescence as Revealed by a Multilayer Leaf Model. Plant Cell Physiol. 2009, 50, 698–706. [Google Scholar] [CrossRef]
- Ossom, E.M.; Pace, P.F.; Rhykerd, R.L.; Rhykerd, C.L. Influence of Mulch on Soil Temperature, Nutrient Content, Growth and Yield of Sweetpotato [Ipomoea batatas (L.) Lam.]. UNISWA Res. J. Agric. Sci. Technol. 2004, 6, 137–146. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chen, W.-C.; Wang, C.-C. Comparison of Taiwan Paddy-and Upland-Cultivated Taro (Colocasia esculenta L.) Cultivars for Nutritive Values. Food Chem. 2007, 102, 250–256. [Google Scholar] [CrossRef]
- Mandizvo, T.; Odindo, A.O. Seed Mineral Reserves and Vigour of Bambara Groundnut (Vigna subterranea L.) Landraces Differing in Seed Coat Colour. Heliyon 2019, 5, e01635. [Google Scholar] [CrossRef]
- Renault, D.; Wallender, W.W. Nutritional Water Productivity and Diets. Agric. Water Manag. 2000, 45, 275–296. [Google Scholar] [CrossRef]
- Makita, C.; Chimuka, L.; Steenkamp, P.; Cukrowska, E.; Madala, E. Comparative Analyses of Flavonoid Content in Moringa Oleifera and Moringa Ovalifolia with the Aid of UHPLC-QTOF-MS Fingerprinting. S. Afr. J. Bot. 2016, 105, 116–122. [Google Scholar] [CrossRef]
- Ramabulana, A.-T.; Petras, D.; Madala, N.E.; Tugizimana, F. Metabolomics and Molecular Networking to Characterize the Chemical Space of Four Momordica Plant Species. Metabolites 2021, 11, 763. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.-F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F. Reproducible Molecular Networking of Untargeted Mass Spectrometry Data Using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef]
- Alderfasi, A.A.; Alghamdi, S.S. Integrated Water Supply with Nutrient Requirements on Growth, Photosynthesis Productivity, Chemical Status and Seed Yield of Faba Bean. Am.-Eurasian J. Agron. 2010, 3, 8–17. [Google Scholar]
- Levesque-Tremblay, G.; Havaux, M.; Ouellet, F. The Chloroplastic Lipocalin AtCHL Prevents Lipid Peroxidation and Protects Arabidopsis against Oxidative Stress. Plant J. 2009, 60, 691–702. [Google Scholar] [CrossRef]
- Fereres, E.; Goldhamer, D.A.; Parsons, L.R. Irrigation Water Management of Horticultural Crops. HortScience 2003, 38, 1036–1042. [Google Scholar] [CrossRef]
- Osman, H.E. Gated Pipes Techniques for Improved Surface Irrigation. Ann. Agric. Sci. 2000, 1, 145–155. [Google Scholar]
- Ali, M.H.; Talukder, M.S.U. Increasing Water Productivity in Crop Production—A Synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Motsa, N.M.; Modi, A.T.; Mabhaudhi, T. Sweet Potato (Ipomoea batatas L.) as a Drought Tolerant and Food Security Crop. S. Afr. J. Sci. 2015, 111, 8. [Google Scholar] [CrossRef]
- Mills, I.W.; Greenland, J.E.; Mcmurray, G.; Mccoy, R.; Ho, K.M.T.; Noble, J.G.; Brading, A.F. Studies of the Pathophysiology of Idiopathic Detrusor Instability: The Physiological Properties of the Detrusor Smooth Muscle and Its Pattern of Innervation. J. Urol. 2000, 163, 646–651. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M. Muscle Cramping during Exercise: Causes, Solutions, and Questions Remaining. Sports Med. 2019, 49, 115–124. [Google Scholar] [CrossRef]
- Sibiya, S.G. Planting Density Effect on Growth and Yield of Taro (Colocasia esculenta) Landraces. Ph.D. Dissertation, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2015. [Google Scholar]
- Ramabulana, A.T.; Steenkamp, P.; Madala, N.; Dubery, I.A. Profiling of Chlorogenic Acids from Bidens Pilosa and Differentiation of Closely Related Positional Isomers with the Aid of UHPLC-QTOF-MS/MS-Based in-Source Collision-Induced Dissociation. Metabolites 2020, 10, 178. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, Y.; Su, H.; Wu, L.; Huang, Y.; Zhao, L.; Han, B.; Shu, G.; Xiang, M.; Yang, J.-M. Chlorogenic Acid Methyl Ester Exerts Strong Anti-Inflammatory Effects via Inhibiting the COX-2/NLRP3/NF-ΚB Pathway. Food Funct. 2018, 9, 6155–6164. [Google Scholar] [CrossRef]
- Meinhart, A.D.; Caldeirão, L.; Damin, F.M.; Filho, J.T.; Godoy, H.T. Analysis of Chlorogenic Acids Isomers and Caffeic Acid in 89 Herbal Infusions (Tea). J. Food Compos. Anal. 2018, 73, 76–82. [Google Scholar] [CrossRef]
- Frank, A.M.; Monroe, M.E.; Shah, A.R.; Carver, J.J.; Bandeira, N.; Moore, R.J.; Anderson, G.A.; Smith, R.D.; Pevzner, P.A. Spectral Archives: Extending Spectral Libraries to Analyze Both Identified and Unidentified Spectra. Nat. Methods 2011, 8, 587–594. [Google Scholar] [CrossRef]
- McIntyre, R.L.; Liu, Y.J.; Hu, M.; Morris, B.J.; Willcox, B.J.; Donlon, T.A.; Houtkooper, R.H.; Janssens, G.E. Pharmaceutical and Nutraceutical Activation of FOXO3 for Healthy Longevity. Ageing Res. Rev. 2022, 78, 101621. [Google Scholar] [CrossRef]
- Mathatha, K.; Khwathisi, A.; Ramabulana, A.T.; Mwaba, I.; Mathomu, L.M.; Madala, N.E. Identification of Putative Acyltransferase Genes Responsible for the Biosynthesis of Homogenous and Heterogenous Hydroxycinnamoyl-Tartaric Acid Esters from Bidens Pilosa. S. Afr. J. Bot. 2022, 149, 389–396. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. P-Coumaric Acid and Its Conjugates: Dietary Sources, Pharmacokinetic Properties and Biological Activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Ramphinwa, M.L.; McHau, G.R.A.; Madala, N.E.; Nengovhela, N.; Ogola, J.B.O.; Mudau, F.N. Response of Plant Growth and Development, and Accumulation of Hydroxyl-Cinnamoyl Acid Derivatives to Selected Shade Nets and Seasonality of Field-Grown Bush Tea (Athrixia phylicoides DC). HortScience 2022, 57, 87–96. [Google Scholar] [CrossRef]
- Alcázar Magaña, A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic Acids: Chemistry, Biosynthesis, Occurrence, Analytical Challenges, and Bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chong, K.L.; Tan, J.B.L.; Wong, S.K. Antioxidant Properties of Tropical and Temperate Herbal Teas. J. Food Compos. Anal. 2010, 23, 185–189. [Google Scholar] [CrossRef]
- Kinki, A.; Mezgebe, A.; Lema, T. Antioxidant and Sensory Properties of Herbal Teas Formulated from Dried Moringa (Moringa stenopetala) and Stevia (Stevia rebaudiana Bertoni) Leaves. Food Sci. Qual. Manag. 2020, 23, 185–189. [Google Scholar] [CrossRef]
- Szymborska, K.; Frański, R.; Beszterda-Buszczak, M. Extraction with Acidified Methanol—An Easy and Effective Method of Methyl Chlorogenate Formation, as Studied by ESI-MS. Molecules 2022, 27, 7543. [Google Scholar] [CrossRef]
- Salem, M.A.; Michel, H.E.; Ezzat, M.I.; Okba, M.M.; EL-Desoky, A.M.; Mohamed, S.O.; Ezzat, S.M. Optimization of an Extraction Solvent for Angiotensin-Converting Enzyme Inhibitors from Hibiscus Sabdariffa L. Based on Its UPLC-MS/MS Metabolic Profiling. Molecules 2020, 25, 2307. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, C.; Idehen, E.; Shi, L.; Lv, L.; Sang, S. Novel Theaflavin-Type Chlorogenic Acid Derivatives Identified in Black Tea. J. Agric. Food Chem. 2018, 66, 3402–3407. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Picos-Salas, M.A.; Leyva-López, N.; Criollo-Mendoza, M.S.; Vazquez-Olivo, G.; Heredia, J.B. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits. Plants 2018, 7, 2. [Google Scholar] [CrossRef]
- Téné, D.G.; Tih, A.E.; Kamdem, M.H.K.; Talla, R.M.; Diboue, P.H.B.; Melongo, Y.K.D.; Dzukoug, C.R.; Mmutlane, E.M.; Ndinteh, D.T.; Bodo, B.; et al. Antibacterial and Antioxidant Activities of Compounds Isolated from the Leaves of Symphonia Globulifera (Clusiaceae) and Their Chemophenetic Significance. Biochem. Syst. Ecol. 2021, 99, 104345. [Google Scholar] [CrossRef]
- Nunes, A.R.; Gonçalves, A.C.; Falcão, A.; Alves, G.; Silva, L.R. Prunus Avium l. (Sweet Cherry) by-Products: A Source of Phenolic Compounds with Antioxidant and Anti-Hyperglycemic Properties—A Review. Appl. Sci. 2021, 11, 8516. [Google Scholar] [CrossRef]
- Jnior, H.; de Melo, N.I.; Miller Crotti, A.E. Electrospray Ionization Tandem Mass Spectrometry as a Tool for the Structural Elucidation and Dereplication of Natural Products: An Overview. In Tandem Mass Spectrometry—Applications and Principles; InTech: Houston, TX, USA, 2012. [Google Scholar]
- Uleberg, E.; Rohloff, J.; Jaakola, L.; Trôst, K.; Junttila, O.; Häggman, H.; Martinussen, I. Effects of Temperature and Photoperiod on Yield and Chemical Composition of Northern and Southern Clones of Bilberry (Vaccinium myrtillus L.). J. Agric. Food Chem. 2012, 60, 10406–10414. [Google Scholar] [CrossRef]
- Ştefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic Compounds from Five Ericaceae Species Leaves and Their Related Bioavailability and Health Benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef]
Clay (%) | Organic C (%) | pH (KCl) | P (cmol/kg) | Ca (cmol/kg) | K (cmol/kg) | Mg (cmol/kg) | Na (cmol/kg) | N (%) |
---|---|---|---|---|---|---|---|---|
38.5 | 2.70 | 5.19 | 539.62 | 1059 | 0.36 | 1.11 | 0.23 | 0.19 |
Kc | ETo | ETa | Duration | Total Water Applied | |
---|---|---|---|---|---|
mm | mm | Days | Mm | ||
Initial | 0.95 | 4.8 | 4.56 | 40 | 408 |
Mid-season | 1.00 | 6.57 | 6.57 | 51 | 525.21 |
Late season | 1.00 | 7.89 | 7.89 | 25 | 341.60 |
Water applied (ETa) | |||||
• 100% | 714.72 | ||||
• 30% | 241.416 | ||||
• 0% | 0 |
Source of Variance | d.f | gs | T | A | Ci | A/Ci | Ci/Ca | WUEi | WUEinst |
Water treatment | 2 | 0.1401667 ** | 10.5797 ** | 3.47367 ** | 61477.6 ** | 6.63433 ** | 376.711 ** | 97.933 ** | 175.599 ** |
Time | 1 | 0.14062678 ** | 865.2420 * | 1509.6744 ** | 535,691.9 ** | 1.82133 ** | 2332.305 ** | 2055.305 ** | 18,203.825 ** |
Water treatment × time | 2 | 0.00019671 * | 1.9300 * | 0.3664 ** | 12523.9 ** | 43.27496 ** | 339.606 ** | 2.060 ** | 3.707 ** |
Residual | 12 | 0.0003317 | 0.1835 | 0.05408 | 255.2 | 0.06533 | 1.119 | 1.536 | 2.355 |
Source of variance | d.f | Fo | Fm | Fv/Fm | ΦPSII | qP | qN | ETR | |
Water treatment | 2 | 197,228 ** | 390,037 ** | 0.1698479 ** | 352.197 ** | 71.56132 ** | 78.52056 ** | 1,853,447 ** | |
Time | 1 | 232,382 ** | 570,074 * | 0.1557303 * | 843.243 ** | 119.91842 ** | 81.06889 ** | 6,754,541 ** | |
Water treatment × time | 2 | 5079 * | 7197 * | 0.0007281 * | 76.338 ** | 19.88921 ** | 10.57056 ** | 831,555 ** | |
Residual | 12 | 1514 | 3333 | 0.0003534 | 2.808 | 0.04054 | 0.07444 | 1342 |
Leaf Gas Exchange Measurements | ||||||||||||||||
Week 1 | ETa | gs | T | A | Ci | A/Ci | Ci/Ca | WUEi | WUEinst | Fo | Fm | Fv/Fm | ΦPSII | qP | qN | ETR |
Control (no irrigation) | 0.18a | 32.48a | 26.27a | 318.0a | 3.40a | 0.85a | 20.83a | 52.30a | 2676.4a | 2437a | 0.1219a | 20.10a | 0.137a | 1.13a | 663.5a | |
100% | 0.37b | 35.01b | 28.30b | 330.5b | 3.56b | 0.94b | 26.51b | 60.23b | 2803.0b | 2657b | 0.250b | 24.52b | 2.10b | 3.30b | 943.6b | |
30% | 0.3487c | 36.18c | 29.74c | 423.9c | 6.83c | 1.59c | 34.10c | 64.22c | 2983.6c | 2951c | 0.440c | 28.96c | 3.41c | 6.133c | 1036.6c | |
Leaf Gas Exchange Measurements | ||||||||||||||||
Week 2 | ETa | gs | T | A | Ci | A/Ci | Ci/Ca | WUEi | WUEinst | Fo | Fm | Fv/Fm | ΦPSII | qP | qN | ETR |
Control (no irrigation) | 0.35a | 47.63a | 29.63a | 570.9a | 5.53a | 11.99a | 38.94a | 117.68a | 2837.8a | 2848a | 0.30a | 25.56a | 1.20a | 2.367a | 1205.7a | |
100% | 0.56b | 48.45b | 30.45b | 677.2b | 8.67b | 18.34b | 40.86b | 122.63b | 3051.5b | 2935b | 0.42b | 42.76b | 8.50b | 9.267b | 2058.0b | |
30% | 0.65c | 49.19c | 31.19c | 877.2c | 1.5c | 41.35c | 42.75c | 127.25c | 3255.4c | 3330c | 0.65c | 46.32c | 11.43c | 11.667c | 3055.5c |
Water Treatments (ETa) | Yield (kg ha−1) | Number of Roots | Marketable Roots (%) | WP (kg m−3) |
---|---|---|---|---|
Control | 12.12a | 15.33a | 13.33a | 0a |
30% | 60.61b | 32.67b | 29b | 95.62b |
100% | 95.62c | 45.67c | 41.67c | 202.03c |
LSD (p < 5%) | 0.02 | 0.04 | 0.02 | 0.01 |
Water Treatments (ETa) | Ca (mg L−1) | Cu (mg L−1) | Fe (mg L−1) | K (mg L−1) | Mg (mg L−1) | Mn (mg L−1) | Zn (mg L−1) |
---|---|---|---|---|---|---|---|
Control (no irrigation) | 155a | 0.52a | 8.96a | 134a | 42a | 1.19a | 1.14a |
100% | 359a | 0.59a | 10.41a | 669a | 215a | 2.4b | 1.88b |
30% | 731a | 0.72a | 16.97b | 1512b | 608b | 3.61c | 2.6c |
LSD (p = 0.05) | 0.20 | 0.31 | 0.01 | 0.01 | 0.003 | 0.005 | 0.05 |
Water Treatments | NWP_Ca (mg L−1) | NWP_Cu (mg L−1) | NWP_Fe (mg L−1) | NWP_K (mg L−1) | NWP_Mg (mg L−1) | NWP_Mn (mg L−1) | NWP_Zn (mg L−1) |
---|---|---|---|---|---|---|---|
Control (no irrigation) | 155a | 0.52a | 8.96a | 134a | 42a | 1.19a | 1.14a |
100% | 359a | 0.59a | 10.41a | 669a | 215a | 2.4b | 1.88b |
30% | 731a | 0.72a | 16.97b | 1512b | 608b | 3.61c | 2.6c |
LSD (p = 0.05) | 0.20 | 0.31 | 0.01 | 0.01 | 0.003 | 0.005 | 0.05 |
No. | Mass to Charge (m/z) | Retention Time (mn) | Fragmentation Ion | Molecular Formular | Compound Name | Water Treatments (ETa) | ||
---|---|---|---|---|---|---|---|---|
30% | 100% | Control (No Irrigation) | ||||||
1 | 301.2226 | 21.494 | 164, 225 | C20H30O2 | Communic acid | • | ||
2 | 311.039 | 16.745 | 179, 135 | C13H12O9 | Caftaric acid | • | ||
3 | 311.039 | 10.54 | 187, 231, 267 | C13H12O9 | Cis-caftaric acid | • | ||
4 | 311.035 | 10.318 | 132, 135 | C13H12O9 | Caftaric acid | • | ||
5 | 311.039 | 10.491 | 129, 191, 209 | C13H12O9 | (-)-3,5-dicaffeoyl quinic acid | • | • | • |
6 | 311.038 | 16.348 | 163 | C13H12O9 | Caftaric acid | • | • | • |
7 | 337.0988 | 13.311 | 143,191, 209 | C16H18O8 | 4-p-coumaroylquinic acid | • | ||
8 | 337.0991 | 5.42 | 191 | C16H18O8 | 5-coumaroylquinic acid | • | ||
9 | 337.0992 | 2.188 | 153, 191 | C16H18O8 | 5-p-trans-coumaroylquinic acid | • | ||
10 | 337.0992 | 8.103 | 138, 153, 191 | C16H18O8 | 5-p-coumaroylquinic acid | • | ||
11 | 353.0942 | 7.02 | 191 | C16H18O9 | Caffeoylquinic acid | • | ||
12 | 353.0942 | 5.515 | 191, 175, 173, 135 | C16H18O9 | 3-O-caffeoylquinic acid | • | ||
13 | 353.0945 | 7.049 | 353, 191, 179 | C16H18O9 | 4-caffeoylquinic acid | • | ||
14 | 353.0946 | 5.144 | 191,129, 209 | C16H18O9 | 3-O-caffeoyl-muco-quinic acid | • | ||
15 | 353.0945 | 4.945 | 191 | C16H18O9 | trans-4-caffeoylquinic acid | • | • | • |
16 | 353.0946 | 4.747 | 191 | C16H18O9 | (+)-5-caffeoyl quinic acid | • | • | • |
17 | 367.08 | 3.694 | 119, 191, 135 | C17H20O9 | Chlorogenic acid methyl ester | • | • | • |
18 | 419.1063 | 13.419 | 149, 317 | C20H20O10 | 5,4’,5’-trihydroxy-3,6,7,8,2’-pentamethoxyflavone | • | ||
19 | 433.1222 | 14.441 | 133, 161, 241 | C25H22O7 | 5’-hydroxycudraflavone A | • | ||
20 | 491.3500 | 24.423 | 116, 299, 433 | C33H48O3 | 3beta-hydroxy-5-glutinen-28-oic acid | • | ||
21 | 491.3508 | 24.336 | 152, 279 | C33H48O3 | 3beta-hydroxy-5-glutinen-28-oic acid | • | • | • |
22 | 499.1346 | 10.2 | 353, 337, 191, 357 | C25H24O11 | 3-coumaroyl-4-caffeoylquinic acid | • | ||
23 | 515.1295 | 20.345 | 191, 355, 533 | C25H24O12 | Dicaffeoylquinic acid | • | ||
24 | 515.1290 | 9.781 | 353, 191 | C25H24O12 | Dicaffeoylquinic acid 1 | • | ||
25 | 515.1302 | 9.732 | 353, 191 | C25H24O12 | Dicaffeoylquinic acid 1 | • | ||
26 | 515.1296 | 9.723 | 133, 161, 191, 353 | C25H24O12 | Dicaffeoylquinic acid 1 | • | ||
27 | 515.1299 | 9.269 | 191, 353, 417 | C25H24O12 | Dicaffeoylquinic acid | • | • | • |
28 | 515.1295 | 9.381 | 129, 191, 357 | C25H24O12 | Dicaffeoylquinic acid 1 | • | • | • |
29 | 529.13 | 17.39 | 179,173 | C26H26O12 | Dicaffeoylquinic acid 1 | • | ||
30 | 533.1042 | 5.033 | 108, 167, 191 | C24H22O14 | Dicaffeoylquinic acid 1 | • | ||
31 | 533.1042 | 8.329 | 191 | C24H22O14 | Dicaffeoylquinic acid 1 | • | ||
32 | 533.1045 | 7.051 | 371, 209, 173, 135 | C24H22O14 | Dicaffeoylquinic acid 1 | • | ||
33 | 533.1045 | 9.091 | 191, 375 | C24H22O14 | Di-caffeoyl glucarate (VII) | • | • | • |
34 | 677.16 | 10.44 | 191, 353 | C34H30O15 | Tricaffeoylquinic acid 1 | • | ||
35 | 677.12 | 23.199 | 255, 329 | C34H30O15 | Tricaffeoylquinic acid 1 | • |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumani, M.; Mabhaudhi, T.; Ramphinwa, M.L.; Ramabulana, A.-T.; Madala, N.E.; Magwaza, L.S.; Mudau, F.N. Response to Various Water Regimes of the Physiological Aspects, Nutritional Water Productivity, and Phytochemical Composition of Bush Tea (Athrixia phylicoides DC.) Grown under a Protected Environment. Horticulturae 2024, 10, 590. https://doi.org/10.3390/horticulturae10060590
Rumani M, Mabhaudhi T, Ramphinwa ML, Ramabulana A-T, Madala NE, Magwaza LS, Mudau FN. Response to Various Water Regimes of the Physiological Aspects, Nutritional Water Productivity, and Phytochemical Composition of Bush Tea (Athrixia phylicoides DC.) Grown under a Protected Environment. Horticulturae. 2024; 10(6):590. https://doi.org/10.3390/horticulturae10060590
Chicago/Turabian StyleRumani, Muneiwa, Tafadzwanashe Mabhaudhi, Maanea Lonia Ramphinwa, Anza-Tshilidzi Ramabulana, Ntakadzeni Edwin Madala, Lembe Samukelo Magwaza, and Fhatuwani Nixwell Mudau. 2024. "Response to Various Water Regimes of the Physiological Aspects, Nutritional Water Productivity, and Phytochemical Composition of Bush Tea (Athrixia phylicoides DC.) Grown under a Protected Environment" Horticulturae 10, no. 6: 590. https://doi.org/10.3390/horticulturae10060590
APA StyleRumani, M., Mabhaudhi, T., Ramphinwa, M. L., Ramabulana, A. -T., Madala, N. E., Magwaza, L. S., & Mudau, F. N. (2024). Response to Various Water Regimes of the Physiological Aspects, Nutritional Water Productivity, and Phytochemical Composition of Bush Tea (Athrixia phylicoides DC.) Grown under a Protected Environment. Horticulturae, 10(6), 590. https://doi.org/10.3390/horticulturae10060590