Nitrogen Fixation and Growth of Potted Olive Plants through Foliar Application of a Nitrogen-Fixing Microorganism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of Pot Experiment and Experimental Design
2.2. Planting and Crop Management
2.3. Crop Harvest and Laboratory Analysis
2.4. Data Analysis
3. Results
3.1. Dry Matter Yield
3.2. Nitrogen in Plant Tissues
3.3. Nutrient Concentration in Plant Tissues
3.4. Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cabrera-Bañegil, M.; Schaide, T.; Manzano, R.; Delgado-Adámez, J.; Durán-Merás, I.; Martín-Vertedor, D. Optimization and validation of a rapid liquid chromatography method for determination of the main polyphenolic compounds in table olives and in olive paste. Food Chem. 2017, 233, 164–173. [Google Scholar] [CrossRef]
- Rallo, L.; Díez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Therios, I. Olives: Crop Production Science in Horticulture 18; CABI International: Oxfordshire, UK, 2009. [Google Scholar]
- FAOSTAT. Production: Crops and Livestock Products. 2024. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 4 April 2024).
- Sibbett, G.S.; Osgood, J. Site selection and preparation, tree spacing and design, planting, and initial training. In Olive Production Manual, 2nd ed.; Sibbett, G.S., Ferguson, L., Eds.; University of California, Agriculture and Natural Resources: Oakalnd, CA, USA, 2005; pp. 27–33. [Google Scholar]
- Navarro, C.; Hidalgo, J.; Campo, M.G. Sistemas de plantación. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernandez-Escobar, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2017; pp. 289–334. [Google Scholar]
- Barranco, D. Variedades e patrones. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernandez-Escobar, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2017; pp. 65–95. [Google Scholar]
- Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides, M. An electrochemical haber-bosch process. Joule 2020, 4, 142–158. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils, 15th ed.; Pearson Education Limited: Edinburg, UK, 2017. [Google Scholar]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 8th ed.; Pearson, Inc.: Chennai, India, 2017. [Google Scholar]
- Arrobas, M.; de Almeida, S.F.; Raimundo, S.; da Silva Domingues, L.; Rodrigues, M.Â. Leonardites rich in humic and fulvic acids had little effect on tissue elemental composition and dry matter yield in pot-grown olive cuttings. Soil Syst. 2022, 6, 7. [Google Scholar] [CrossRef]
- Russelle, M.P. Biological dinitrogen fixation in agriculture. In Nitrogen in Agricultural Systems; Schepers, J.S., Raun, W.R., Eds.; Agronomy Monograph n◦ 49; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2008; pp. 281–359. [Google Scholar]
- Cooper, J.; Scherer, H. Nitrogen fixation. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: London, UK, 2012; pp. 389–408. [Google Scholar]
- Ohyama, T. The role of legume-rhizobium symbiosis in sustainable agriculture. In Legume Nitrogen Fixation in Soils with Low Phosphorus Availability Adaptation and Regulatory Implication; Sulieman, S., Tran, L.-S.P., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–20. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Correia, C.M.; Claro, A.M.; Ferreira, I.Q.; Barbosa, J.C.; Moutinho-Pereira, J.M.; Bacelar, E.A.; Fernandes-Silva, A.A.; Arrobas, M. Soil nitrogen availability in olive orchards after mulching legume cover crop residues. Sci. Hortic. 2013, 156, 45–51. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.-A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Torres, M.A.R.-R.; Ordóñez-Fernández, R.; Giráldez, J.V.; Márquez-García, J.; Laguna, A.; Carbonell-Bojollo, R. Efficiency of four different seeded plants and native vegetation as cover crops in the control of soil and carbon losses by water erosion in olive orchards. Land Degrad. Dev. 2018, 29, 2278–2290. [Google Scholar] [CrossRef]
- Afonso, S.; Arrobas, M.; Sá Morais, J.; Rodrigues, M.A. Hop dry matter yield and cone quality responses to amino acid and potassium-rich foliar spray applications. J. Plant Nutr. 2021, 44, 2042–2056. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Ouledali, S.; Ennajeh, M.; Zrig, A.; Gianinazzi, S.; Khemira, H. Estimating the contribution of arbuscular mycorrhizal fungi to drought tolerance of potted olive trees (Olea europaea). Acta Physiol. Plant. 2018, 40, 80–93. [Google Scholar] [CrossRef]
- Aeron, A.; Kharel, E.; Jha, C.K.; Meena, V.S.; Aziz, S.M.A.; Islam, M.T.; Kim, K.; Meena, S.K.; Pattanayak, A.; Rajashekara, H.; et al. Revisiting the plant growth-promoting rhizobacteria: Lessons from the past and objectives for the future. Arch. Microbiol. 2020, 202, 665–676. [Google Scholar] [CrossRef]
- Barrera, S.E.; Sarango-Flóres, S.-W.; Montenegro-Gómez, S.-P. The phyllosphere microbiome and its potential application in horticultural crops. A review. Rev. Colomb. Cienc. Hortíc. 2019, 13, 384–396. [Google Scholar] [CrossRef]
- Pedraza, R.O.; Filippone, M.P.; Fontana, C.; Salazar, S.M.; Ramírez-Mata, A.; Sierra-Cacho, D.; Baca, B.E. Azospirillum. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi; Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Academic Press: New York, NY, USA; Elsevier: London, UK, 2020; pp. 73–105. [Google Scholar]
- Razmjooei, Z.; Etemadi, M.; Eshghi, S.; Ramezanian, A.; Mirazimi Abarghuei, F.; Alizargar, J. Potential role of foliar application of azotobacter on growth, nutritional value and quality of lettuce under different nitrogen levels. Plants 2022, 11, 406. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ros, M.; Martínez, J.; Carmona, F.; Bernabé, A.; Torres, R.; Lucena, T.; Aznar, R.; Arahal, D.R.; Fernández, F. Methylobacterium symbioticum sp. nov., a new species isolated from spores of Glomus iranicum var. tenuihypharum. Curr. Microb. 2020, 77, 2031–2041. [Google Scholar] [CrossRef]
- IPMA (Instituto Português do Mar e da Atmosfera). Normais Climatológicas. Instituto Português do Mar e da Atmosfera. 2024. Available online: https://www.ipma.pt/pt/oclima/normais.clima/ (accessed on 15 April 2024).
- WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Temminghoff, E.E.; Houba, V.J. Plant Analysis Procedures, 2nd ed.; Temminghoff, E.E., Houba, V.J., Eds.; Kluwer Academic Publishers: London, UK, 2004. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; Technical Paper 9; ISRIC: Wageningen, The Netherlands; FAO of the United Nations: Rome, Italy, 2002. [Google Scholar]
- FAO. Standard Operating Procedure for Soil Available Micronutrients (Cu, Fe, Mn, Zn) and Heavy Metals (Ni, Pb, Cd), DTPA Extraction Method. Rome. 2022. Available online: https://www.fao.org/3/cc0048en/cc0048en.pdf (accessed on 15 April 2024).
- Ferreira, I.Q.; Arrobas, M.; Moutinho-Pereira, J.M.; Correia, C.M.; Rodrigues, M.A. The effect of nitrogen applications on the growth of young olive trees and nitrogen use efficiency. Turk. J. Agric. For. 2020, 44, 278–289. [Google Scholar] [CrossRef]
- Bryson, G.M.; Mills, H.A.; Sasseville, D.N.; Jones, J.J., Jr.; Barker, A.V. Plant Analysis Handbook II: A Guide to Sampling, Preparation, Analysis, Interpretation and Use of Results of Agronomic and Horticultural Crop Plant Tissue; Micro-Macro Publishing, Inc.: Athens, GA, USA, 2014. [Google Scholar]
- Corteva. BlueN–Bioestimulante. Corteva Biologicals, Agriscience. 2024. Available online: https://www.corteva.pt/content/dam/dpagco/corteva/eu/pt/pt/files/folletos/DOC-BlueN-Folheto-Corteva_EU_PT.pdf (accessed on 12 March 2024).
- Vera, R.T.; García, A.J.B.; Álvarez, F.J.C.; Ruiz, J.M.; Martín, F.F. Application and effectiveness of Methylobacterium symbioticum as a biological inoculant in maize and strawberry crops. Folia Microbiol. 2024, 69, 121–131. [Google Scholar] [CrossRef]
- Bouchet, A.-S.; Laperch, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed: A review. Agron. Sustain. Dev. 2016, 36, 38. [Google Scholar] [CrossRef]
- Abanda-Nkpwatt, D.; Müsch, M.; Tschiersch, J.; Boettner, M.; Schwab, W. Molecular interaction between Methylobacterium extorquens and seedlings: Growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 2006, 57, 4025–4032. [Google Scholar] [CrossRef]
- Jinal, H.N.; Amaresan, N.; Sankaranarayanan, A. Methylobacterium. In Beneficial Microbes in Agro-Ecology: Bacteria and Fungi; Amaresan, N., Kumar, M.S., Annapurna, K., Kumar, K., Sankaranarayanan, A., Eds.; Elsevier: London, UK, 2020; pp. 509–519. [Google Scholar]
- Srivastava, A.; Dixit, R.; Chand, N.; Kumar, P. Overview of methylotrophic microorganisms in agriculture. Bio Sci. Res. Bull. 2022, 38, 65–71. [Google Scholar] [CrossRef]
- Fürnkranz, M.; Wanek, W.; Richter, A.; Abell, G.; Rasche, F.; Sessitsch, A. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J. 2008, 2, 561–570. [Google Scholar] [CrossRef]
- Moreira, J.C.M.; Brum, M.; Almeida, L.C.; Barrera-Berdugo, S.; de Souza, A.A.; de Camargo, P.B.; Oliveira, R.S.; Alves, L.F.; Rosado, B.H.P.; Lambais, M.R. Asymbiotic nitrogen fixation in the phyllosphere of the Amazon Forest: Changing nitrogen cycle paradigms. Sci. Total Environ. 2021, 773, 145066. [Google Scholar] [CrossRef]
- Padgurschi, M.C.G.; Vieira, S.A.; Stefani, E.J.F.; Nardoto, G.B.; Joly, C.A. Nitrogen input by bamboos in neotropical forest: A new perspective. PeerJ 2018, 6, e6024. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Beverly, R.B. The dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar]
- Römheld, V. Diagnosis of deficiency and toxicity of nutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Elsevier: London, UK, 2012; pp. 299–312. [Google Scholar]
- Lopes, J.I.; Correia, C.M.; Gonçalves, A.; Silva, E.; Martins, S.; Arrobas, M.; Rodrigues, M.A. Arbuscular Mycorrhizal Fungi Inoculation Reduced the Growth of Pre-Rooted Olive Cuttings in a Greenhouse. Soil Syst. 2021, 5, 30. [Google Scholar] [CrossRef]
- Godbold, D.L.; Hoosbeek, M.R.; Lukac, M.; Cotrufo, M.F.; Janssens, I.A.; Ceulemans, R.; Polle, A.; Velthorst, E.J.; Scarascia- Mugnozza, G.; Angelis, P.; et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 2006, 281, 15–24. [Google Scholar] [CrossRef]
- Leifheit, E.F.; Verbruggen, E.; Rillig, M.C. Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol. Biochem. 2015, 81, 323–328. [Google Scholar] [CrossRef]
- Majumdar, K.; Sanyal, S.K.; Dutta, S.K.; Satyanarayana, T.; Singh, V.K. Nutrient mining: Addressing the challenges to soil resources and food security. In Biofortification of Food Crops; Singh, U., Praharaj, C., Singh, S., Singh, N., Eds.; Springer: New Delhi, India, 2016. [Google Scholar]
N Concentration (g kg−1) | N Recovery (g plant−1) | |||||||
---|---|---|---|---|---|---|---|---|
Roots | Stems | Leaves | Roots | Stems | Leaves | Total | ||
Micro | No | 9.7 a | 5.1 a | 13.2 a | 0.27 a | 0.35 a | 0.76 b | 1.38 b |
Yes | 10.3 a | 5.3 a | 13.2 a | 0.27 a | 0.38 a | 0.82 a | 1.47 a | |
N rate | N0 | 8.2 d | 4.3 c | 9.9 d | 0.18 c | 0.24 c | 0.45 d | 0.87 d |
N25 | 9.4 c | 4.9 b | 11.9 c | 0.25 b | 0.30 c | 0.60 c | 1.15 c | |
N50 | 10.3 b | 5.2 b | 13.3 b | 0.28 b | 0.38 b | 0.84 b | 1.50 b | |
N100 | 12.2 a | 6.3 a | 17.7 a | 0.37 a | 0.54 a | 1.26 a | 2.17 a | |
Prob. | Pm | 0.1040 | 0.1527 | 0.9020 | 0.6895 | 0.1373 | 0.0467 | 0.0017 |
Pn | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Pi | 0.0004 | 0.0535 | 0.5106 | 0.8937 | 0.0336 | 0.3465 | 0.0533 |
N Rate | 1 ANR (%) | 2 ANR (%) | 3 ANF (%) |
---|---|---|---|
N0 | --- | --- | −7.7 ± 5.43 |
N25 | 51.4 ± 7.72 | 81.7 ± 13.57 | 5.2 ± 5.01 |
N50 | 60.2 ± 5.54 | 91.2 ± 2.28 | 12.4 ± 2.04 |
N100 | 71.9 ± 6.91 | 83.3 ± 2.79 | 5.8 ± 3.78 |
Macronutrients (g kg−1) | Micronutrients (mg kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
P | K | Ca | Mg | B | Fe | Mn | Zn | Cu | ||
Micro | No | 2.0 a | 10.9 a | 5.1 a | 1.0 a | 23.8 a | 199.7 a | 19.2 a | 16.0 a | 5.5 a |
Yes | 2.1 a | 11.0 a | 5.0 a | 1.0 a | 24.2 a | 157.9 a | 22.1 a | 16.8 a | 5.7 a | |
N rate | N0 | 2.2 a | 11.1 ab | 5.4 a | 0.9 a | 26.0 a | 141.4 a | 18.8 a | 15.4 a | 4.8 a |
N25 | 2.2 a | 11.4 a | 5.1 a | 1.0 a | 24.8 ab | 197.9 a | 19.2 a | 16.4 a | 5.6 a | |
N50 | 2.0 ab | 10.9 ab | 5.1 a | 1.0 a | 23.1 ab | 235.9 a | 24.4 a | 16.8 a | 5.9 a | |
N100 | 1.9 b | 10.4 b | 4.7 b | 1.0 a | 22.1 b | 139.9 a | 20.1 a | 16.8 a | 6.1 a | |
Prob. | Pm | 0.2399 | 0.9663 | 0.1319 | 0.8301 | 0.6670 | 0.2707 | 0.0616 | 0.1402 | 0.7291 |
Pn | 0.0124 | 0.0410 | 0.0003 | 0.2240 | 0.0229 | 0.2183 | 0.0507 | 0.2306 | 0.2582 | |
Pi | 0.9979 | 0.1731 | 0.0185 | 0.7472 | 0.1656 | 0.1277 | 0.1126 | 0.1137 | 0.7054 |
Macronutrients (g kg−1) | Micronutrients (mg kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
P | K | Ca | Mg | B | Fe | Mn | Zn | Cu | ||
Micro | No | 1.3 a | 9.4 a | 5.1 a | 0.8 a | 19.6 a | 215.9 a | 24.4 a | 25.7 a | 5.6 a |
Yes | 1.4 a | 9.6 a | 5.0 a | 0.8 a | 19.6 a | 276.9 a | 25.5 a | 26.9 a | 6.1 a | |
N rate | N0 | 1.4 a | 9.9 a | 5.5 a | 0.8 a | 20.5 a | 223.8 a | 25.6 a | 28.3 a | 4.9 a |
N25 | 1.4 a | 9.6 ab | 5.2 ab | 0.9 a | 19.7 ab | 297.5 a | 26.5 a | 28.3 a | 6.2 a | |
N50 | 1.3 a | 9.3 ab | 4.8 bc | 0.8 a | 18.9 b | 263.3 a | 25.1 a | 25.7 ab | 5.9 a | |
N100 | 1.3 a | 9.1 b | 4.7 c | 0.8 a | 19.3 b | 200.9 a | 22.5 a | 23.1 b | 6.2 a | |
Prob. | Pm | 0.2950 | 0.5084 | 0.0752 | 0.6662 | 0.9783 | 0.0514 | 0.3099 | 0.1147 | 0.1653 |
Pn | 0.1682 | 0.0075 | <0.0001 | 0.3032 | 0.0024 | 0.1318 | 0.0975 | <0.0001 | 0.0577 | |
Pi | 0.0038 | 0.3970 | 0.0550 | 0.4745 | 0.4497 | 0.5372 | 0.4869 | 0.0023 | 0.6764 |
Macronutrients (g kg−1) | Micronutrients (mg kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
P | K | Ca | Mg | B | Fe | Mn | Zn | Cu | ||
Micro | No | 2.7 a | 14.6 a | 7.3 a | 3.1 a | 26.1 a | 7803.7 a | 156.6 a | 41.5 a | 98.7 b |
Yes | 2.8 a | 14.3 a | 7.7 a | 3.5 a | 26.8 a | 8465.5 a | 201.1 a | 43.7 a | 142.5 a | |
N rate | N0 | 3.0 ab | 14.3 a | 7.4 a | 3.5 a | 26.2 a | 8367.4 a | 151.6 a | 45.0 a | 107.2 b |
N25 | 3.2 a | 14.1 a | 8.2 a | 3.4 a | 25.8 a | 8881.8 a | 226.6 a | 47.0 a | 151.5 a | |
N50 | 2.6 ab | 14.0 a | 7.2 a | 3.1 a | 27.0 a | 7598.8 a | 199.0 a | 40.4 a | 121.5 ab | |
N100 | 2.2 b | 15.3 a | 7.3 a | 3.3 a | 26.7 a | 7690.3 a | 138.2 a | 38.1 a | 102.1 b | |
Prob. | Pm | 0.4142 | 0.5587 | 0.4953 | 0.0590 | 0.5267 | 0.0812 | 0.1568 | 0.3112 | 0.0004 |
Pn | 0.0177 | 0.3041 | 0.6063 | 0.3955 | 0.8558 | 0.0776 | 0.1798 | 0.0575 | 0.0052 | |
Pi | 0.1430 | 0.0942 | 0.5325 | 0.1410 | 0.9739 | 0.7654 | 0.1983 | 0.0690 | 0.0396 |
Organic C | pH | P (P2O5) | K | Ca | Mg | CEC | B | ||
---|---|---|---|---|---|---|---|---|---|
g kg−1 | H2O | mg kg−1 | cmol+ kg−1 | mg kg−1 | |||||
Micro | No | 23.06 a | 7.11 a | 327.2 a | 1.31 a | 16.12 a | 5.29 a | 23.6 a | 1.69 a |
Yes | 22.91 a | 7.14 a | 317.8 a | 1.30 a | 16.04 a | 5.27 a | 23.5 a | 1.74 a | |
N rate | N0 | 22.33 b | 7.09 a | 317.2 a | 1.33 a | 16.93 a | 5.49 ab | 24.7 a | 1.84 a |
N25 | 22.69 b | 7.12 a | 329.6 a | 1.34 a | 16.92 a | 5.70 a | 24.9 a | 1.86 a | |
N50 | 23.23 a | 7.16 a | 320.4 a | 1.31 a | 15.13 b | 4.91 b | 22.2 b | 1.60 b | |
N100 | 23.68 a | 7.14 a | 322.7 a | 1.24 a | 15.33 b | 5.00 b | 22.5 b | 1.55 b | |
Prob | Pm | 0.2169 | 0.2117 | 0.2012 | 0.7109 | 0.8799 | 0.8973 | 0.8762 | 0.3822 |
Pn | <0.0001 | 0.2201 | 0.6664 | 0.1041 | 0.0292 | 0.0068 | 0.0073 | 0.0012 | |
Pi | 0.0550 | 0.0102 | 0.5804 | 0.0009 | 0.8682 | 0.5795 | 0.8571 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, M.Â.; Raimundo, S.; Correia, C.M.; Arrobas, M. Nitrogen Fixation and Growth of Potted Olive Plants through Foliar Application of a Nitrogen-Fixing Microorganism. Horticulturae 2024, 10, 604. https://doi.org/10.3390/horticulturae10060604
Rodrigues MÂ, Raimundo S, Correia CM, Arrobas M. Nitrogen Fixation and Growth of Potted Olive Plants through Foliar Application of a Nitrogen-Fixing Microorganism. Horticulturae. 2024; 10(6):604. https://doi.org/10.3390/horticulturae10060604
Chicago/Turabian StyleRodrigues, Manuel Ângelo, Soraia Raimundo, Carlos M. Correia, and Margarida Arrobas. 2024. "Nitrogen Fixation and Growth of Potted Olive Plants through Foliar Application of a Nitrogen-Fixing Microorganism" Horticulturae 10, no. 6: 604. https://doi.org/10.3390/horticulturae10060604
APA StyleRodrigues, M. Â., Raimundo, S., Correia, C. M., & Arrobas, M. (2024). Nitrogen Fixation and Growth of Potted Olive Plants through Foliar Application of a Nitrogen-Fixing Microorganism. Horticulturae, 10(6), 604. https://doi.org/10.3390/horticulturae10060604