Bioponic Cultivation Using Chicken Droppings to Produce Lettuce Plants (Lactuca sativa rz) Uncontaminated by Trace Metals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Biofilter Preparation
2.3. Production of Stock Solution from Chicken Droppings
2.4. Aerobic Digestion of Nutrient Solutions in Hydroponic Raft Systems before Crop Transplanting: Empty Circulation Phase
2.5. Lettuce Cultivation and Control of Parameters
2.6. Sample Characterization
2.6.1. Trace Metal Quantification in Chicken Droppings Raw Material
2.6.2. Physico-Chemical Characterization of Nutrient Solutions
2.6.3. Heavy Metals Characterization in Harvested Lettuce
2.6.4. Evaluation of Lettuce Crop Yields
2.7. Statistical Analysis
3. Results
3.1. Assessment of the Impact of Chicken Manure Dry Matter on Bioponics (Trial 1)
3.1.1. Physico-Chemical Parameters of the Nutrient Solutions in the Tanks from Trial 1
3.1.2. Evolution of Nutrient Solutions in the Rafts during the Cultivation of Bioponic Lettuces from Trial 1
3.1.3. Assessment of the Yield and Sanitary Quality of Bioponic Lettuces for Trace Metals (TME) in Trial 1
3.2. Assessment of the Impact of Total Ammonia Nitrogen (TAN) Concentration on Bioponics (Trial 2)
3.2.1. Evolution of Nutrient Solutions in the Rafts during the Cultivation of Bioponic Lettuces from Trial 2
3.2.2. Impact of Nutrient Solution TAN Content on Lettuce Yields and Health Considerations
4. Discussion
4.1. Dynamics of pH, EC, and NPK in Nutrient Solutions during Anaerobic and Aerobic Digestion of Chicken Droppings
4.2. Effects of Nutrient Solutions on Plant Growth in Bioponic Cultures
4.3. Yield and Health Quality of Lettuce Plants Grown in Bioponic Cultures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Essential Elements | Heavy Metals (mg/Kg) | |||||||
---|---|---|---|---|---|---|---|---|
Chicken droppings | Mg (%) | Ca (%) | Cu | Co | Cd | Pb | Zn | Fe |
0.11 | 7.48 | 80.5 | 5.6 | 0.04 | 0.3 | 321.3 | 654 |
Parameters | Stock Solutions (mg/kg) | Solution after Aerobic Digestion (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||||
T1 | T2 | T3 | 7 | 21 | 7 | 21 | 7 | 21 | |
pH | 6.9 | 6.9 | 6.7 | 7.4 | 7.2 | 7.4 | 7.4 | 7.3 | 7.3 |
EC | 726.5 | 795.3 | 747.3 | 546 | 591.4 | 654 | 696.8 | 944 | 959.4 |
TAN | 225.06 | 994.26 | 2112 | 25.4 | 3.72 | 30.83 | 19.17 | 89.13 | 37.12 |
NO2-N | 4.3 | 28 | 84.6 | 0 | 0 | 0 | 1.33 | 0 | 2.33 |
NO3-N | 3.4 | 61.6 | 472 | 3.53 | 7.07 | 0.83 | 2.83 | 4.13 | 4.2 |
TMN | 232.8 | 1083.8 | 2668.6 | 29 | 10.78 | 31.67 | 23.33 | 93.27 | 43.65 |
PO43− | 37.3 | 49 | 184 | 51.7 | 67 | 13 | 62.33 | 22 | 40.33 |
K | 81.6 | 333.3 | 1666.6 | 8.8 | 8.83 | 12 | 20.17 | 21.17 | 13.67 |
Parameters | Stock Solution | Solution after Aerobic Digestion (mg/L) | |||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||
7 | 21 | 7 | 21 | 7 | 21 | ||
pH | 6.4 | 7.7 | 7.5 | 8 | 7.5 | 7.9 | 7.9 |
EC | 3818.8 | 508 | 611 | 579.1 | 837.6 | 873 | 1125.3 |
TAN | 960.8 | 5.37 ± 1.52 | 1.60 ± 0.34 | 5.60 ± 0.34 | 48.20 ± 33.33 | 8.04 ± 1.78 | 124.67 ± 34.82 |
NO2-N | 114.4 | 30 ± 16.3 | 211.6 ± 20.95 | 10.00 ± 1.41 | 250 ± 96.26 | 25.00 ± 2.16 | 110 ± 57.15 |
NO3-N | 301.1 | 18.0 ± 4.81 | 36.67 ± 7.41 | 52.83 ± 20.09 | 40.67 ± 9.88 | 24.07 ± 4.65 | 40.50 ± 29.15 |
TMN | 1376.4 | 53.37 ± 19.84 | 249.93 ± 13.80 | 68.43 ± 19.50 | 338.86 ± 63.62 | 57.10 ± 5.52 | 275.17 ± 51.25 |
PO43− | 182.4 | 38.23 ± 12.5 | 77 ± 20.51 | 60.6 ± 18.95 | 43.33 ± 21.93 | 86.33 ± 19.07 | 48.00 ± 9.09 |
K | 240.4 | 7.23 ± 3.51 | 31.33 ± 5.56 | 13.03 ± 4.58 | 49.00 ± 5.35 | 11.20 ± 5.37 | 56.83 ± 17.46 |
References
- Mununga Katebe, F.; Raulier, P.; Colinet, G.; Ngoy Shutcha, M.; Mpundu Mubemba, M.; Jijakli, M.H. Assessment of Heavy Metal Pollution of Agricultural Soil, Irrigation Water, and Vegetables in and Nearby the Cupriferous City of Lubumbashi, (Democratic Republic of the Congo). Agronomy 2023, 13, 357. [Google Scholar] [CrossRef]
- Shutcha, M.N.; Faucon, M.P.; Kamengwa Kissi, C.; Colinet, G.; Mahy, G.; Ngongo Luhembwe, M.; Visser, M.; Meerts, P. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol. Eng. 2015, 82, 81–90. [Google Scholar] [CrossRef]
- Muimba-Kankolongo, A.; Banza Lubaba Nkulu, C.; Mwitwa, J.; Kampemba, F.M.; Mulele Nabuyanda, M.; Haufroid, V.; Smolders, E.; Nemery, B. Contamination of water and food crops by trace elements in the African Copperbelt: A collaborative cross-border study in Zambia and the Democratic Republic of Congo. Environ. Adv. 2021, 6, 100103. [Google Scholar] [CrossRef]
- Mubemba, M.M.; Sikuzani, Y.U.; Kimuni, L.N.; Colinet, G. Effets d’amendements carbonatés et organiques sur la culture de deux légumes sur sol contaminé à Lubumbashi (RD Congo). Biotechnol. Agron. Soc. Environ. 2014, 18, 367–375. [Google Scholar]
- Byrnes, B.H.; Bumb, B.L. Population growth, food production and nutrient requirements. In Nutrient Use in Crop Production; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–28. [Google Scholar] [CrossRef]
- Lin, D.; Wambersie, L.; Wackernagel, M. Estimating the Date of Earth Overshoot Day 2021. Outline Overview: Earth Overshoot Day Calculation. 2021, 1–8. Available online: https://www.klimareporter.de/images/dokumente/2021/07/Earth-Overshoot-Day-2021-Nowcast-Report.pdf (accessed on 6 June 2023).
- Marti, L.; Puertas, R. Analysis of the efficiency of African countries through their Ecological Footprint and Biocapacity. Sci. Total Environ. 2020, 722, 137504. [Google Scholar] [CrossRef]
- Treftz, C.; Omaye, S.T. Hydroponics: Potential for augmenting sustainable food production in non-arable regions. Nutr. Food Sci. 2016, 46, 672–684. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production. A Definitive Guidebook for the Advanced Home Gardener; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Majid, M.; Khan, J.N.; Ahmad Shah, Q.M.; Masoodi, K.Z.; Afroza, B.; Parvaze, S. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation. Agric. Water Manag. 2021, 245, 106572. [Google Scholar] [CrossRef]
- Chandra Barman, N.; Banu, N.A. A Review on Present Status and Future Prospective of Hydroponics Technique Antidiabetic Activity of Lippia alba l. (Motmotia/Bon Pudina) in Alloxan Induced Diabetic Swiss Albino Mice View Project. 2016. Available online: https://www.researchgate.net/publication/320299106 (accessed on 6 June 2023).
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Madeira, L.M.; Szeto, T.H.; Henquet, M.; Raven, N.; Runions, J.; Huddleston, J.; Garrard, I.; Drake, P.M.W.; Ma, J.K.C. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures. Plant Biotechnol. J. 2016, 14, 615–624. [Google Scholar] [CrossRef]
- Gonnella, M.; Renna, M. The evolution of soilless systems towards ecological sustainability in the perspective of a circular economy. Is it really the opposite of organic agriculture? Agronomy 2021, 11, 950. [Google Scholar] [CrossRef]
- Udume, O.A.; Abu, G.O.; Stanley, H.O.; Vincent-akpu, I.F.; Momoh, Y.; Eze, M.O. Biostimulation of Petroleum-Contaminated Soil Using Organic and Inorganic Amendments. Plants 2023, 12, 431. [Google Scholar] [CrossRef]
- Jia, J.; Xiao, B.; Yu, Y.; Zou, Y.; Yu, T.; Jin, S.; Ma, Y.; Gao, X.; Li, X. Heavy metal levels in the soil near typical coal-fired power plants: Partition source apportionment and associated health risks based on PMF and HHRA. Environ. Monit. Assess. 2023, 195, 207. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, E.; Singh, S.; Pandey, A.; Bhargava, P.C. Micro- and nano-plastics (MNPs) as emerging pollutant in ground water: Environmental impact, potential risks, limitations and way forward towards sustainable management. Chem. Eng. J. 2023, 459, 141568. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, S.; Song, Y.; Tang, M.; Li, H. Green Finance, Chemical Fertilizer Use and Carbon Emissions from Agricultural Production. Agriculture 2022, 12, 313. [Google Scholar] [CrossRef]
- Xie, S.; Yang, F.; Feng, H.; Yu, Z.; Wei, X.; Liu, C.; Wei, C. Potential to Reduce Chemical Fertilizer Application in Tea Plantations at Various Spatial Scales. Int. J. Environ. Res. Public Health 2022, 19, 5243. [Google Scholar] [CrossRef]
- Ersahin, M.E.; Cicekalan, B.; Cengiz, A.I.; Zhang, X.; Ozgun, H. Nutrient recovery from municipal solid waste leachate in the scope of circular economy: Recent developments and future perspectives. J. Environ. Manag. 2023, 335, 117518. [Google Scholar] [CrossRef]
- Walan, P.; Davidsson, S.; Johansson, S.; Höök, M. Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resour. Conserv. Recycl. 2014, 93, 178–187. [Google Scholar] [CrossRef]
- Sheldrick, W.F.; Syers, J.K.; Lingard, J. A conceptual model for conducting nutrient audits at national, regional, and global scales. Nutr. Cycl. Agroecosyst. 2002, 62, 61–72. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van Der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global phosphorus scarcity and full-scale P-recovery techniques: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Houssini, K.; Geng, Y.; Liu, J.Y.; Zeng, X.; Hohl, S.V. Measuring anthropogenic phosphorus cycles to promote resource recovery and circularity in Morocco. Resour. Policy 2023, 81, 103415. [Google Scholar] [CrossRef]
- Basak, B.B.; Maity, A.; Ray, P.; Biswas, D.R.; Roy, S. Potassium supply in agriculture through biological potassium fertilizer: A promising and sustainable option for developing countries. Arch. Agron. Soil Sci. 2022, 68, 101–114. [Google Scholar] [CrossRef]
- Abebe, T.G.; Tamtam, M.R.; Abebe, A.A.; Abtemariam, K.A.; Shigut, T.G.; Dejen, Y.A.; Haile, E.G. Growing Use and Impacts of Chemical Fertilizers and Assessing Alternative Organic Fertilizer Sources in Ethiopia. Appl. Environ. Soil Sci. 2022, 2022, 4738416. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Owens, J.D.; Converse, C. The effects of vermicompost tea on the growth and yield of lettuce and tomato in a non-circulating hydroponics system. J. Plant Nutr. 2019, 42, 2447–2458. [Google Scholar] [CrossRef]
- Bergstrand, K.J.; Asp, H.; Hultberg, M. Utilizing anaerobic digestates as nutrient solutions in hydroponic production systems. Sustainability 2020, 12, 10076. [Google Scholar] [CrossRef]
- Ezziddine, M.; Liltved, H. Quality and yield of lettuce in an open-air rooftop hydroponic system. Agronomy 2021, 11, 2586. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter, texture, and drying temperature effects on water content. Soil Sci. Soc. Am. J. 2022, 86, 1086–1095. [Google Scholar] [CrossRef]
- Feller, C.; Beare, M.H. Physical control of soil organic matter dynamics in the tropics. Geoderma 1997, 79, 69–116. [Google Scholar] [CrossRef]
- Gholamahmadi, B.; Jeffery, S.; Gonzalez-Pelayo, O.; Prats, S.A.; Bastos, A.C.; Keizer, J.J.; Verheijen, F.G.A. Biochar impacts on runoff and soil erosion by water: A systematic global scale meta-analysis. Sci. Total Environ. 2023, 871, 161860. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef]
- Kouhounde, S.; Adéoti, K.; Mounir, M.; Giusti, A.; Refinetti, P.; Otu, A.; Effa, E.; Ebenso, B.; Adetimirin, V.O.; Barceló, J.M.; et al. Applications of Probiotic-Based Multi-Components to Human, Animal and Ecosystem Health: Concepts, Methodologies, and Action Mechanisms. Microorganisms 2022, 10, 1700. [Google Scholar] [CrossRef]
- Parastesh, F.; Alikhani, H.A.; Etesami, H. Vermicompost enriched with phosphate–solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. J. Clean. Prod. 2019, 221, 27–37. [Google Scholar] [CrossRef]
- Liao, H.; Li, Y.; Yao, H. Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. J. Soils Sediments 2018, 18, 1076–1086. [Google Scholar] [CrossRef]
- Supriatna, J.; Setiawati, M.R.; Sudirja, R.; Suherman, C.; Bonneau, X. Composting for a More Sustainable Palm Oil Waste Management: A Systematic Literature Review. Sci. World J. 2022, 2022, 5073059. [Google Scholar] [CrossRef]
- Alaboz, P.; Işildar, A.A.; Müjdeci, M.; Şenol, H. Effects of different vermicompost and soil moisture levels on pepper (Capsicum annuum) grown and some soil properties. Yuz. Yil Univ. J. Agric. Sci. 2017, 27, 30–36. [Google Scholar] [CrossRef]
- Al Jaouni, S.; Selim, S.; Hassan, S.H.; Mohamad, H.S.H.; Wadaan, M.A.M.; Hozzein, W.N.; Asard, H.; AbdElgawad, H. Vermicompost supply modifies chemical composition and improves nutritive and medicinal properties of date palm fruits from Saudi Arabia. Front. Plant Sci. 2019, 10, 424. [Google Scholar] [CrossRef]
- Pant, A.P.; Radovich, T.J.K.; Hue, N.V.; Paull, R.E. Biochemical properties of compost tea associated with compost quality and effects on pak choi growth. Sci. Hortic. 2012, 148, 138–146. [Google Scholar] [CrossRef]
- Komagbe, G.S.; Sessou, P.; Dossa, F.; Sossa-Minou, P.; Taminiau, B.; Azokpota, P.; Korsak, N.; Daube, G.; Farougou, S. Assessment of the microbiological quality of beverages sold in collective cafes on the campuses of the University of Abomey-Calavi, Benin Republic. J. Food Saf. Hyg. 2020, 5, 1–8. [Google Scholar] [CrossRef]
- Scheuerell, S.; Mahaffee, W. Compost tea: Principles and prospects for plant disease control. Compost Sci. Util. 2002, 10, 313–338. [Google Scholar] [CrossRef]
- Zabaleta, R.; Sánchez, E.; Fabani, P.; Mazza, G.; Rodriguez, R. Almond shell biochar: Characterization and application in soilless cultivation of Eruca sativa. Biomass Convers. Biorefinery 2023, 1–18. [Google Scholar] [CrossRef]
- Curadelli, F.; Alberto, M.; Uliarte, E.M.; Combina, M.; Funes-Pinter, I. Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate. Sustainability 2023, 15, 1357. [Google Scholar] [CrossRef]
- Funes-Pinter, I.; Pisi, G.; Aroca, M.; Uliarte, E.M. Compost tea and bioslurry as plant biostimulants. Part 2: Biofertilizer test in ornamental flowers. J. Plant Nutr. 2023, 46, 3041–3052. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Chen, Y.; Li, Z.; Hedding, D.W.; Nel, W.; Ji, J.; Chen, J. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: A case study from Xuyi County, eastern China. Sci. Total Environ. 2020, 729, 139058. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Zhang, X.; Gu, Z.; Cao, H.; Yuan, Q. Effects of different fermentation synergistic chemical treatments on the performance of wheat straw as a nursery substrate. J. Environ. Manag. 2023, 334, 117486. [Google Scholar] [CrossRef]
- Waqas, M.; Hashim, S.; Humphries, U.W.; Ahmad, S.; Noor, R.; Shoaib, M.; Naseem, A.; Hlaing, P.T.; Lin, H.A. Composting Processes for Agricultural Waste Management: A Comprehensive Review. Processes 2023, 11, 731. [Google Scholar] [CrossRef]
- Dede, C.; Ozer, H.; Dede, O.H.; Celebi, A.; Ozdemir, S. Recycling Nutrient-Rich Municipal Wastes into Ready-to-Use Potting Soil: An Approach for the Sustainable Resource Circularity with Inorganic Porous Materials. Horticulturae 2023, 9, 203. [Google Scholar] [CrossRef]
- Apaeva, N.N.; Manishkin, S.G.; Kudryashova, L.V.; Yamalieva, A.M. An innovative approach to the use of the granulated organic fertilizers based on bird droppings on crops of spring wheat. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 022062. [Google Scholar] [CrossRef]
- Oyewole, O.A. Biogas Production from Chicken Droppings. Sci. World J. 2010, 5, 11–14. [Google Scholar]
- Alfa, M.I.; Adie, D.B.; Igboro, S.B.; Oranusi, U.S.; Dahunsi, S.O.; Akali, D.M. Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings. Renew. Energy 2014, 63, 681–686. [Google Scholar] [CrossRef]
- Mununga, K.F.; Colinet, G.; Kyalamakasa, J.M.; Mubemba, M.M.; Jijakli, M.H. Reducing the risks associated with the ingestion of vegetables grown on soils contaminated with trace metal elements through the application of soil amendments: Results of experiments in Lubumbashi/Democratic Republic of the Congo. Environ. Monit. Assess. 2024, 1–18. [Google Scholar] [CrossRef]
- Baboy Longanza, L.; Kidinda Kidinda, L.; Tshipama Tamina, D.; Tombo Jacob, A.; Tshijika Ikatalo, M. Valorisation agricole des déchets comme alternative à leur gestion dans les villes d’Afrique subsaharienne: Caractérisation des déchets urbains à Lubumbashi et évaluation de leurs effets sur la croissance des cultures vivrières. Afrique Sci. 2015, 11, 76–84. [Google Scholar]
- Houba, V.J.G.; Uittenbogaard, J.; Pellen, P. Wageningen Evaluating Programmes for Analytical Laboratories (WEPAL), organization and purpose. Commun. Soil Sci. Plant Anal. 1996, 27, 421–431. [Google Scholar] [CrossRef]
- Hseu, Z.Y. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour. Technol. 2004, 95, 53–59. [Google Scholar] [CrossRef]
- Sagagi, B.S.; Bello, A.M.; Danyaya, H.A. Assessment of accumulation of heavy metals in soil, irrigation water, and vegetative parts of lettuce and cabbage grown along Wawan Rafi, Jigawa State, Nigeria. Environ. Monit. Assess. 2022, 194, 699. [Google Scholar] [CrossRef]
- El-Shinawy, M.Z.; Abd-Elmoniem, E.M.; Abou-Hadid, A.F. The use of organic manure for lettuce plants grown under nft conditions. Acta Hortic. 1999, 491, 315–318. [Google Scholar] [CrossRef]
- Tikasz, P.; Macpherson, S.; Adamchuk, V.; Lefsrud, M. Aerated chicken, cow, and turkey manure extracts differentially affect lettuce and kale yield in hydroponics. Int. J. Recycl. Org. Waste Agric. 2019, 8, 241–252. [Google Scholar] [CrossRef]
- Szekely, I.; Jijakli, M.H. Bioponics as a Promising Approach to Sustainable Agriculture: A Review of the Main Methods for Producing Organic Nutrient Solution for Hydroponics. Water 2022, 14, 3975. [Google Scholar] [CrossRef]
- Liedl, B.E.; Cummins, M.; Young, A.; Williams, M.L.; Chatfield, J.M. Hydroponic Lettuce Production Using Liquid Effluent from Poultry Waste Bioremediation as a Nutrient Source. Acta Hortic. 2004, 659, 721–728. [Google Scholar] [CrossRef]
- Liu, W.; Du, L.; Yang, Q. Science Biogas slurry added amino acids decreased nitrate concentrations of lettuce in sand culture. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2009, 59, 260–264. [Google Scholar] [CrossRef]
- Prinčič, A.; Mahne, I.; Megušar, F.; Paul, E.A.; Tiedje, J.M. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 1998, 64, 3584–3590. [Google Scholar] [CrossRef]
- Rochmah, W.N.; Mangkoedihardjo, S. Toxicity Effects of Organic Substances on Nitrification Efficiency Toxicity Effects of Organic Substances on Nitrification Efficiency. IOP Conf. Ser. Earth Environ. Sci. 2020, 506, 012011. [Google Scholar] [CrossRef]
- Finger, B.W.; Strayer, R.F. Development of an intermediate-scale aerobic bioreactor to regenerate nutrients from inedible crop residues. SAE Tech. Pap. 1994, 103, 1365–1373. [Google Scholar] [CrossRef]
- Mackowiak, C.L.; Garland, J.L.; Strayer, R.F.; Finger, B.W.; Wheeler, R.M. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system. Adv. Space Res. 1996, 18, 281–287. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. Treatment Processes in VFCWs. In Vertical Flow Constructed Wetlands; Elsevier: Amsterdam, The Netherlands, 2014; pp. 57–84. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef]
- Delaide, B.; Monsees, H.; Gross, A.; Goddek, S. Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation. In Aquaponics Food Production Systems; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Dickson, R.W.; Fisher, P.R.; Argo, W.R.; Jacques, D.J.; Sartain, J.B.; Trenholm, L.E.; Yeager, T.H. Solution Ammonium: Nitrate ratio and cation/anion uptake affect acidity or basicity with floriculture species in hydroponics. Sci. Hortic. 2016, 200, 36–44. [Google Scholar] [CrossRef]
- Ávila, P.F.; Ferreira da Silva, E.; Candeias, C. Health risk assessment through consumption of vegetables rich in heavy metals: The case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ. Geochem. Health 2017, 39, 565–589. [Google Scholar] [CrossRef]
- Lea-Cox, J.D.; Berry, W.L.; Stutte, G.W.; Wheeler, R.M. Nutrient dynamics and pH / charge-balance relationships in hydroponic solutions. Acta Hortic. 1999, 481, 241–249. [Google Scholar] [CrossRef]
- Meharg, A. Marschner’s Mineral Nutrition of Higher Plants. 3rd edition. Edited by P. Marschner. Amsterdam, Netherlands: Elsevier/Academic Press (2011), pp. 684, US$124.95. ISBN 978-0-12-384905-2. Exp. Agric. 2012, 48, 305. [Google Scholar] [CrossRef]
- Savvas, D.; Karagianni, V.; Kotsiras, A.; Demopoulos, V.; Karkamisi, I.; Pakou, P. Interactions between ammonium and pH of the nutrient solution supplied to gerbera (Gerbera jamesonii) grown in pumice. Plant Soil 2003, 254, 393–402. [Google Scholar] [CrossRef]
- Landsberg, E.C. Organic Acid Synthesis and Release of Hydrogen Ions in Response to Fe Deficiency Stress of Mono- and Dicoty-Ledonous Plant Species. J. Plant Nutr. 1981, 3, 579–591. [Google Scholar] [CrossRef]
- Molinari, G. Is hydrogen ion (H+) the real second messenger in calcium signalling? Cell. Signal. 2015, 27, 1392–1397. [Google Scholar] [CrossRef]
- Cleland, R.E. Auxin-induced hydrogen ion excretion: Correlation with growth, and control by external pH and water stress. Planta 1975, 127, 233–242. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Likens, G.E. Hydrogen ion budget of an aggrading forested ecosystem. Tellus 1982, 34, 283–292. [Google Scholar] [CrossRef]
- Ou, Y.; Rousseau, A.N.; Wang, L.; Yan, B. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—A case study of the Black Soil Region of Northeastern China. Agric. Ecosyst. Environ. 2017, 245, 22–31. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Kim, P.G.; Lee, C.; Choi, K.; Choi, K. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna. Ecotoxicology 2010, 19, 662–669. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Wu, Z. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water-sediment interface of Erhai Lake, China. Estuar. Coast. Shelf Sci. 2014, 149, 178–186. [Google Scholar] [CrossRef]
- Pelayo Lind, O.; Hultberg, M.; Bergstrand, K.J.; Larsson-Jönsson, H.; Caspersen, S.; Asp, H. Biogas Digestate in Vegetable Hydroponic Production: pH Dynamics and pH Management by Controlled Nitrification. Waste Biomass Valorization 2021, 12, 123–133. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.P.L.; Joyce, A.; Wuertz, S.; Jijakli, M.H.; Gross, A.; Eding, E.H.; Bläser, I.; Reuter, M.; Keizer, L.C.P.; et al. Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquac. Eng. 2018, 83, 10–19. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Bernal, M.P. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- Kawamura-Aoyama, C.; Fujiwara, K.; Shinohara, M.; Takano, M. Hydroponic culture of letuce with microbially degraded solid food waste. Jarq 2014, 48, 71–76. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of sustainable and commercial aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Eck, M.; Szekely, I.; Massart, S.; Jijakli, M.H. Ecological study of aquaponics bacterial microbiota over the course of a lettuce growth cycle. Water 2021, 13, 2089. [Google Scholar] [CrossRef]
- Gerke, J. Carbon accumulation in arable soils: Mechanisms and the effect of cultivation practices and organic fertilizers. Agronomy 2021, 11, 1079. [Google Scholar] [CrossRef]
- Asao, T. Hydroponics—A Standard Methodology for Plant Biological Researches; InTech: Rijeka, Croatia, 2012; ISBN 9789535103868. [Google Scholar]
- Kwon, M.J.; Hwang, Y.; Lee, J.; Ham, B.; Rahman, A.; Azam, H.; Yang, J.S. Waste nutrient solutions from full-scale open hydroponic cultivation: Dynamics of effluent quality and removal of nitrogen and phosphorus using a pilot-scale sequencing batch reactor. J. Environ. Manag. 2021, 281, 111893. [Google Scholar] [CrossRef]
- Lee, J.Y.; Rahman, A.; Azam, H.; Kim, H.S.; Kwon, M.J. Characterizing nutrient uptake kinetics for efficient crop production during Solanum lycopersicum var. Cerasiforme Alef. Growth in a closed indoor hydroponic system. PLoS ONE 2017, 12, e0177041. [Google Scholar] [CrossRef]
- Lee, J.Y.; Rahman, A.; Behrens, J.; Brennan, C.; Ham, B.; Kim, H.S.; Nho, C.W.; Yun, S.T.; Azam, H.; Kwon, M.J. Nutrient removal from hydroponic wastewater by a microbial consortium and a culture of Paracercomonas saepenatans. New Biotechnol. 2018, 41, 15–24. [Google Scholar] [CrossRef]
- Cheyns, K.; Delcourt, D.; Smolders, E. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus de fi ciency. Environ. Pollut. 2012, 164, 242–247. [Google Scholar] [CrossRef]
- Verdoliva, S.G.; Gwyn-Jones, D.; Detheridge, A.; Robson, P. Controlled comparisons between soil and hydroponic systems reveal increased water use efficiency and higher lycopene and β-carotene contents in hydroponically grown tomatoes. Sci. Hortic. 2021, 279, 109896. [Google Scholar] [CrossRef]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; Elsohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid.-Based Complement. Altern. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef]
- Goh, Y.S.; Hum, Y.C.; Lee, Y.L.; Lai, K.W.; Yap, W.S.; Tee, Y.K. A meta-analysis: Food production and vegetable crop yields of hydroponics. Sci. Hortic. 2023, 321, 112339. [Google Scholar] [CrossRef]
- Casey, L.; Freeman, B.; Francis, K.; Brychkova, G.; McKeown, P.; Spillane, C.; Bezrukov, A.; Zaworotko, M.; Styles, D. Comparative environmental footprints of lettuce supplied by hydroponic controlled-environment agriculture and field-based supply chains. J. Clean. Prod. 2022, 369, 133214. [Google Scholar] [CrossRef]
- Jesse, S.D.; Zhang, Y.; Margenot, A.J.; Davidson, P.C. Hydroponic lettuce production using treated post-hydrothermal liquefaction wastewater (PHW). Sustainability 2019, 11, 3605. [Google Scholar] [CrossRef]
- Imsande, J. Inhibition of nodule development in soybean by nitrate or reduced nitrogen. J. Exp. Bot. 1986, 37, 348–355. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Magwaza, S.T.; Magwaza, L.S.; Odindo, A.O.; Mditshwa, A. Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Sci. Total Environ. 2020, 698, 134154. [Google Scholar] [CrossRef]
- Liu, B.; Mao, P.; Yang, Q.; Qin, H.; Xu, Y.; Zheng, Y.; Li, Q. Appropriate Nitrogen form Ratio and UV-A Supplementation Increased Quality and Production in Purple Lettuce (Lactuca sativa L.). Int. J. Mol. Sci. 2023, 24, 16791. [Google Scholar] [CrossRef]
- Li, J.; Yang, P.; Sohail, H.; Du, H.; Li, J. The impact of short-term nitrogen starvation and replenishment on the nitrate metabolism of hydroponically grown spinach. Sci. Hortic. 2023, 309, 111632. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef]
- Yoneyama, T.; Ito, O.; Engelaar, W.M.H.G. Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years. Phytochem. Rev. 2003, 2, 121–132. [Google Scholar] [CrossRef]
- Atkin, O.K. Reassessing the nitrogen relations of Arctic plants: A mini-review. Plant Cell Environ. 1996, 19, 695–704. [Google Scholar] [CrossRef]
- Ilic, S.; Moodispaw, M.R.; Madden, L.V.; Lewis Ivey, M.L. Lettuce Contamination and Survival of Salmonella Typhimurium and Listeria monocytogenes in Hydroponic Nutrient Film Technique Systems. Foods 2022, 11, 3508. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Junge, R.; Schmautz, Z.; Sambo, P.; Borin, M. Hydroponic systems and water management in aquaponics: A review. Ital. J. Agron. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Mai, C.; Mojiri, A.; Palanisami, S.; Altaee, A.; Huang, Y.; Zhou, J.L. Wastewater Hydroponics for Pollutant Removal and Food Production: Principles, Progress and Future Outlook. Water 2023, 15, 2614. [Google Scholar] [CrossRef]
- Barbosa, G.L.; Almeida Gadelha, F.D.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.M.; Halden, R.U. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. Conventional agricultural methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef]
- Balasha, M.; Kesonga, N. Evaluation de la performance économique des exploitations de chou de Chine (Brassica chinensis L.) en maraîchage à Lubumbashi en République Démocratique du Congo. Rev. Afr. d’Environ. d’Agric. 2019, 2, 76–83. [Google Scholar]
Types of Tests | Dry Matter (%) | TAN (mg/L) Target |
---|---|---|
Test 1 | 0.35 | 150 |
3.5 | 150 | |
7 | 150 | |
Test 2 | 2.5 | 60 |
90 | ||
120 |
Treatments | Yield Trial 1 (g) | Trace Metals (mg/kg) | |||||
---|---|---|---|---|---|---|---|
As | Cd | Co | Cu | Pb | Zn | ||
0.35% D.M. | 3074.16 ± 57.1 b | 0.05 | 1.54 | 0.821 | 8.51 | 3.028 | 18.8 |
3.5% D.M. | 1356.3 ± 581.7 b | 0.8 | 0.98 | 0.68 | 5.73 | 1.889 | 22.1 |
7% D.M. | 1702.8 ± 1268.9 b | 0.06 | 1.05 | 0.92 | 6.65 | 5.868 | 23.5 |
Control treatment | 8509.9 ± 1405.3 a | 0.9 | 0.88 | 0.56 | 5.89 | 3.145 | 15.9 |
Treatments | Yield Trial 2 (g) | Trace Metals (mg/kg) | |||||
---|---|---|---|---|---|---|---|
As | Cd | Co | Cu | Pb | Zn | ||
60 mg/L bioponic | 6105.7 ± 113.7 a | 0.14 ± 0.13 a | 0.01 ± 0.007 b | 0.46 ± 0.04 b | 6.7 ± 1.22 b | 1.32 ± 1.37 a | 39.77 ± 7.02 a |
90 mg/L bioponic | 5088 ± 58.32 a | 0.019 ± 0.02 a | 0.01 ± 0.00 b | 1.7 ± 0.76 a | 6.44 ± 2.89 a | 1.10 ± 0.21 a | 34.22 ± 7.63 a |
120 mg/L bioponic | 4605 ± 228.40 a | 0.18 ± 0.18 a | 0.00 ± 0.00 b | 0.53 ± 0.02 b | 13.78 ± 10.54 a | 1.36 ± 0.35 a | 22.42 ± 3.20 a |
Control treatment/120 mg/L | 11,221.6 ± 3051.5 b | 0.054 ± 0.07 a | 0.07 ± 0.01 a | 0.32 ± 0.08 b | 4.71 ± 0.79 b | 3.27 ± 1.93 a | 37.1 ± 4.84 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mununga Katebe, F.; Szekely, I.; Mpundu Mubemba, M.; Burgeon, C.; Jijakli, M.H. Bioponic Cultivation Using Chicken Droppings to Produce Lettuce Plants (Lactuca sativa rz) Uncontaminated by Trace Metals. Horticulturae 2024, 10, 605. https://doi.org/10.3390/horticulturae10060605
Mununga Katebe F, Szekely I, Mpundu Mubemba M, Burgeon C, Jijakli MH. Bioponic Cultivation Using Chicken Droppings to Produce Lettuce Plants (Lactuca sativa rz) Uncontaminated by Trace Metals. Horticulturae. 2024; 10(6):605. https://doi.org/10.3390/horticulturae10060605
Chicago/Turabian StyleMununga Katebe, Félicien, Iris Szekely, Michel Mpundu Mubemba, Clément Burgeon, and M. Haïssam Jijakli. 2024. "Bioponic Cultivation Using Chicken Droppings to Produce Lettuce Plants (Lactuca sativa rz) Uncontaminated by Trace Metals" Horticulturae 10, no. 6: 605. https://doi.org/10.3390/horticulturae10060605
APA StyleMununga Katebe, F., Szekely, I., Mpundu Mubemba, M., Burgeon, C., & Jijakli, M. H. (2024). Bioponic Cultivation Using Chicken Droppings to Produce Lettuce Plants (Lactuca sativa rz) Uncontaminated by Trace Metals. Horticulturae, 10(6), 605. https://doi.org/10.3390/horticulturae10060605