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Abstract: Landraces are considered a crucial component of biodiversity conservation, serving as a
reservoir of genetic diversity. Consequently, the collection, cultivation, and detailed characteriza-
tion of such landraces constitute an inherent aspect of the world’s natural resource heritage. This
effort holds promise for the development of elite varieties capable of thriving amidst continuous
global climate fluctuations. In this context, we conducted a comprehensive assessment of the main
agronomic attributes, physico-chemical properties, and functional quality traits of the major hot
pepper landraces adapted to diverse climatic conditions in Tunisia. These landraces include ‘Dhirat’,
‘Semmane’, ‘Beldi’, ‘Nabeul’, ‘Jerid’, ‘Mahdia’, ‘Cayenne’, ‘Kairouan’, and ‘Baklouti’. Most of the
pepper landraces exhibited satisfactory yields, ranging from 1163.25 to 1841.67 g plant−1 in ‘Jerid’
and ‘Kairouan’, respectively, indicating robust productivity, especially under prevailing climatic
changes and high temperatures during both growing cycles. The levels of antioxidants comprising
capsaicinoids, carotenoids, phenolics, and tocopherols, as well as radical scavenging activity, emerged
as key discriminating factors among pungent pepper landraces. Irrespective of genotype, capsaicin
and dihydrocapsaicin constituted the major capsaicinoids, accounting for 44–91% of the total capsai-
cinoids content. Total capsaicinoids ranged from 1.81 µg g−1 fw to 193.71 µg g−1 fw, with ‘Baklouti’
and ‘Jerid’ identified as the most pungent landraces. Total carotenoids ranged from 45.94 µg g−1 fw
to 174.52 µg g−1 fw, with ‘Semmane’ and ‘Jerid’ exhibiting the highest levels. Considerable variation
was observed in β-carotene content, spanning from 3% to 24% of the total carotenoids. α-Tocopherol
content ranged from 19.03 µg g−1 fw in ‘Kairouan’ to 30.93 µg g−1 fw in ‘Beldi’, exerting a notable
influence on the overall tocopherol content. Conversely, the β- and γ-tocopherol isomers were
detected at very low concentrations. The total vitamin C content ranged from 132 mg 100g−1 fw in
‘Mahdia’ to 200 mg 100 g−1 fw in ‘Nabeul’, indicating relatively low genetic variability. However,
large variability was detected in total phenolics content, ranging from 168.58 mg GAE kg−1 fw in
‘Beldi’ to 302.98 mg GAE kg−1 fw in ‘Cayenne’. Landraces such as ‘Dhirat’, ‘Nabeul’, ‘Semmane’,
‘Kairouan’, ‘Cayenne’, and ‘Mahdia’ appear suitable for both fresh consumption and processing,
owing to their favorable average fruit weight, soluble solids content, and bioactive content. Among
the pepper landraces tested, ‘Cayenne’ achieved the highest value of radical scavenging activity in
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both hydrophilic and lipophilic fractions (RSAHF and RSALF), with variations ranging from 59% to
120% for RSAHF and from 4% to 63% for RSALF. This study aims to preserve and enhance the value
of local genetic resources and contribute to identify desirable traits for incorporation into breeding
programs to develop high-quality, high-yielding landraces and elite lines.

Keywords: carotenoids; Capsicum annuum L.; capsaicinoids; tocopherols; antioxidant activity; vitamin
C; phenolics

1. Introduction

Pepper (Capsicum annuum L.) is not only economically important but also ranks among
the world’s primary agricultural crops due to its nutritional value and versatile applications.
The fruits are renowned for their rich content of secondary metabolites, which exhibit
impressive bioactivities. In 2022, global pepper production totaled approximately 31 million
tons, according to FAOSAT. In Tunisia, pepper cultivation covered around 16,000 hectares
in 2023, yielding 420,000 tons, including 77,000 tons designated for processing [1]. The
processed pepper sector in Tunisia produced 33,000 units in 2023, primarily exported to
Europe and the United States [2]. Notably, Tunisia’s renowned pepper paste, ‘Harissa’, was
inscribed as UNESCO world heritage in 2022.

Hot or spicy peppers are savory food additives widely utilized and highly valued for
their combination of color, taste, and pungency, attributable to capsaicinoids. Pepper fruits
are consumed in various forms: either fresh, as immature green or mature red fruits, or
processed into a range of products, including pastes, jams, paprika powders, and oleoresins.
The characteristic vivid red color of Capsicum fruits is principally due to the pigments
capsanthin and capsorubin. Recently, pepper fruits have gained recognition as natural
sources of various bioactive compounds associated with reducing the risk of developing
several chronic diseases due to their radical scavenging and antioxidant properties [3–5].

In recent decades, genetic erosion in pepper has increased dramatically, exacerbated
by the widespread adoption of commercial cultivars and hybrids vulnerable to biotic and
abiotic stresses, which require intensive inputs [6,7]. As a result, climate change, global
warming, and rising food demands underscore the urgent need to recover, characterize,
and valorize local pepper landraces for the benefit of plant breeders [7,8]. Pepper landraces
are local genotypes selected by farmers and adapted over time to the specific agro-climatic
conditions under which they have been long cultivated and maintained [9]. Landraces
represent a critical repository and safety valve of genetic diversity, owing to their confirmed
distinctive traits, including tolerance/resistance to abiotic stress and superior flavor and
fruit quality compared to widely grown genotypes in different parts of the world [10–12].
Therefore, desirable traits can be introgressed into suitable and resilient new cultivars to
cope with a constantly and rapidly changing climate [11]. Traditional pepper landraces have
also proven to be well suited for various emerging farming systems, including dry-farming,
low-input practices, organic cultivation, and urban agriculture [10].

Previously, significant variability has been reported and documented among pepper
landraces and ancient genotypes from different geographical locations in terms of yields,
physico-chemical traits [13,14], disease resistance [15], and fruit functional quality. This
includes carotenoids, capsaicinoids, phenols, vitamins, and antioxidant activity assessed
using different analytical methods [16–26]. Besides, increasing reports comparing pepper
landraces have noted that certain landraces exhibit favorable horticultural traits, high
functional quality, and yields comparable to currently available commercial hybrids, par-
ticularly under the ongoing climatic changes [6–9,15–17]. Using such genotypes for fresh
consumption or processing, especially in rural areas where they are cultivated, has the
potential to create new markets. These markets would cater to consumers willing to pay
higher prices for fresh produce that meets high nutritional standards and offers improved
taste, thereby increasing income for small farmers [7,9,27].
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In Tunisia, as well as in other parts of the world, the large variability in agro-climatic
regions has traditionally promoted the cultivation and preservation of numerous pepper
landraces. Each landrace is typically named after the locality where it has been preferred
and cultivated for many years, such as ‘Kairouan’, ‘Nabeul’, ‘Mahdia’, ‘Jerid’, and ‘Baklouti’.
However, some landraces are more widely distributed, such as ‘Baklouti’ and ‘Beldi’. We
hypothesize that most of these landraces exhibit desirable traits in terms of horticultural
performance and functional quality, particularly when grown during hot seasons. De-
spite this, there is currently a lack of information about the horticultural performances,
physico-chemical characteristics, and functional quality traits of these pepper landraces.
Therefore, this study aimed to assess the primary agronomic traits and functional quality
attributes of the main pungent pepper landraces grown under open field conditions over
two consecutive growing seasons in 2022 and 2023.

2. Materials and Methods

The field experiments were conducted over two consecutive growing seasons in 2022
and 2023 at the Research and Experimental Station of Teboulba, Monastir, Tunisia (35.637178,
10.957276). The study utilized nine hot pepper landraces: ‘Dhirat’, ‘Semmane’, ‘Jerid’,
‘Mahdia’, ‘Cayenne’, ‘Baklouti’, ‘Nabeul’, ‘Kairouan’, and ‘Beldi’, which were selected and
maintained by the Laboratory of Horticultural Crops at the National Agricultural Research
Institute of Tunisia (Figure 1).
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Figure 1. External appearance of different hot pepper landraces cultivated within the experimental
field of Teboulba, Monastir, Tunisia.

For each growing year, sowing took place in plug-seedling trays during May, and
seedlings were treated against Pythium spp. using 150 mL hL−1 Previcur Energy 840 SL
(Bayer, Leverkusen, Germany). Pepper seedlings were hand transplanted at the beginning
of June into a clay-loamy open field suitable for pepper cultivation. The soil was charac-
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terized by 22% clay, 17% loam, 16% sand, 14% calcareous substance, and 4.77% organic
matter, with a pH of 7.92 and an EC of 1.10 mmho cm−1. The spacing was approximately
0.4 m within the row and 0.7 m between rows, resulting in a density of about 3.5 plants per
m2. Irrigation was implemented using drippers with a flow rate of 4 L h−1, positioned at
0.4 m intervals along the irrigation line. Drip irrigation was applied for 1–3 h at various
day intervals, adjusted according to local evapotranspiration potential, prevailing climatic
conditions, and crop coefficient. The cultivation schedule adhered to the practices em-
ployed by the research station and neighboring high-yield farmers. This method included
the application of synthetic chemical fertilizers (99 kg N ha−1, 30 kg P2O5 ha−1, 147 kg
K2O ha−1, 22 kg Cao ha−1, 15 kg MgO ha−1) added to the irrigation water through pump
injection twice a week. Additionally, production methods involved manual weeding and
controlling plant pathogens such as powdery mildew using 40 mL hL−1 Score 250 EC
(Syngenta, Basel, Switzerland) and aphids using 75 mL hL−1 Decis EC 25 (Bayer Group,
Leverkusen, Germany), applied once per cycle.

The experimental design employed a randomized complete block with three replicates
(blocks) each year. Throughout the growing seasons of 2022 and 2023, the average tem-
perature ranged between 25–33 ◦C and 20–34 ◦C, respectively. Relative humidity varied
between 55–88% in 2022 and 56–90% in 2023, while rainfall ranged from 0–5 mm and
0–15 mm during the respective years (Figure 2).
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Figure 2. Temperature (◦C) and relative humidity (%) data recorded by the Teboulba, Monastir
weather station, the closest to the field trials. The reported values cover the entire pepper landrace
growing seasons of 2022 and 2023.

2.1. Fruit Sampling

Pepper fruits were harvested from each plant in the rows and the middle of each plant
at the red-ripe stage, which occurs approximately at the end of August and the beginning
of September. Healthy, fresh pepper fruits were handpicked from each block and promptly
transported to the laboratory. Triplicate sampling was conducted each year upon reaching
the red-ripe stage. For each growing season, yield performance was estimated based on
data from 20 plants per replicate. Quality trait analyses were conducted at least three times,
starting from sub-samples of four independent harvests. The selected pepper fruits were
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thoroughly washed with deionized water and then cut into small pieces. These pieces
were homogenized using a laboratory blender (Waring Laboratory Science, Torrington,
CT, USA), and the resulting homogenates were stored at −20 ◦C. The homogenates were
used within a few days to assess capsaicinoids, tocopherols, carotenoids, vitamin C, total
phenolics content, and antioxidant activity, minimizing potential nutrient degradation.

2.2. Evaluation of the Main Agronomic Characteristics

Yield was assessed by determining the weight of fruits per plant, expressed as grams of
fresh weight (fw)·plant−1. The average fruit weight was calculated by dividing the weight
of a random sample of pepper fruits by the number of fruits within the sample, and it was
expressed in grams of fresh weight. Fruit length was measured using a Vernier caliper.
Soluble solids concentration was determined by placing a small sample of blended pepper
juice on the prism of an Atago PR-100 digital refractometer equipped with automatic
temperature adjustment. Titratable acidity was measured as a percentage of citric acid after
titrating the diluted pepper juice with a 0.1 M sodium hydroxide solution until a pH of
8.1 was reached. Redness (a*) and yellowness (b*) were estimated using a Minolta chroma
mether CR-400 (Konica Minolta, Tokyo, Japan), and the ratio (a*/b*) was subsequently
calculated [28].

2.3. Determination of Capsaicinoid Content

Capsaicinoid content was determined following the methods of Daood et al. [29] and
Duah et al. [3]. Briefly, three grams of pepper homogenate were crushed with quartz sand
in a crucible mortar. Then, 50 mL of analytical-grade methanol was added, and the mixture
was transferred into a 100 mL Erlenmeyer flask fitted with a stopper. After three minutes
of ultrasonication, the mixture was filtered through Whatman No. 1 paper. The filtrate
was further filtered using a 0.20 µm PTFE syringe filter (Chromfil Xtra, Macherey-Nagel,
Düren, Germany) into vials after being diluted ten times (9:1 by vol.). Using an Eppendorf
pipette, 1 mL of methanol and 1 mL of the filtrate (from the syringe filter) were further
diluted into vials. HPLC separation of capsaicinoids was performed on a Purospher C18,
2.7 µm, 150 × 4.6 mm column with isocratic elution using 48:52 water-acetonitrile at a
flow rate of 0.8 mL min−1. The compounds were detected fluorometrically, with exitation
at 285 nm and emission at 320 nm. Capsaicinoids were identified and quantified based
on the retention times (Figure 3) and calibration curves of external standards (capsaicin,
dihydrocapsaicin, and nordihydocapsaicin), with their content expressed as mg kg−1 fw.
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nornorcapsaicin, 2: norcapsaicin, 3: nordihydocapsaicin, 4: capsaicin, 5: dihydrocapsaicin, 6: dihy-
drocapsaicin isomer, 7: homodihydrocapsaicin-1, 8: homodihydrocapsaicin-2.

2.4. Determination of Carotenoid and Tocopherol Content

Carotenoids and tocopherols were simultaneously extracted and quantified following
the protocols of Nagy et al. [30] and Duah et al. [3]. Approximately 2.5 g of homogenized
pepper samples from different landraces were ground in a crucible mortar with quartz
sand and 20 mL of analytical-grade methanol. The homogenate was then transferred into
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a separation funnel and diluted with 60 mL of a methanol mixture (1:5 v/v), followed by
vigorous shaking. After the addition of 1 mL of distilled water, the mixture was shaken
again to ensure thorough mixing. The pigmented phase was collected and passed through
filter paper containing anhydrous sodium sulfate. The filter was subsequently washed
with 5 mL of dichloroethane. The solvent was then evaporated at 70 ◦C under vacuum.
The resulting residue was diluted with 5 mL of methanol, sonicated, and filtered through a
0.22 µm PTFE membrane syringe. Finally, the prepared sample was injected into the HPLC
column for analysis.

An HPLC system (Hitachi Chromaster, Tokyo, Japan) equipped with a 5110 Pump,
a 5210 Auto Sampler, a 5430 Diode Array Detector, and a 5440 Fluorescence Detector
was used for compound analysis. Carotenoids and tocopherols were separated using a
Nucleodur C18, 3 µm, 240 × 4.6 mm column (Machery Nagel, Dürer, Germany) with a
gradient elution starting from 7% water in methanol, transitioning to methanol/2-propanol-
acetonitrile (10:90, v/v) at a constant flow rate of 0.6 mL min−1. Carotenoids were detected
within the wavelength range of 190 to 700 nm, and their concentrations were expressed as
mg kg−1 fw. Individual carotenoid peaks were identified based on the retention times of
external standards (Figure 4). All chemicals, including carotenoid standards, analytical and
HPLC-grade solvents, were purchased from VWR (Budapest, Hungary, and Darmstadt,
Germany). Tocopherols were detected using a fluorescent detector with excitation and
emission wavelengths set at 295 nm and 325 nm, respectively. Isomers of α-, β-, and γ-
tocopherols were identified using external standards (Sigma-Aldrich, Budapest, Hungary)
(Figure 5), and their contents were expressed as mg kg−1 fw.
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Figure 4. HPLC profile of carotenoids from pungent red pepper fruit. Peak identification:
1: capsorubin, 2: 2,5-dihydroxykarpaxanthin, 3: violaxanthin, 4: capsanthin epoxide, 5: capsanthin,
6: cucurbitaxanth, 7: cis-capsanthin, 8: zeaxanthin, 9: β-cryptocapsin, 10: β-cryptocapsin ME,
11: cucurbitaxanthin ME, 12: β-cryptoxanthin, 13: capsanthin epoxide ME, 14: capsanthin ME,
15: antheraxanthin ME, 16: cis-capsanthin ME, 17: capsanthin ME, 18: antheraxanthin ME, 19: cis-
capsanthin ME, 20: capsanthin ME, 21: antheraxanthin ME, 22: β-cryptocapsin ME, 23: ζ-carotene,
24: β-carotene, 25: capsorubin DE, 26: cis-β-carotene, 27: capsorubin DE, 28: cis-capsorubin DE,
29: capsanthin DE, 30: β-cryptoxanthin ME, 31: cis-capsanthin DE, 32: capsanthin DE, 33: cap-
santhin DE, 34: cis-capsanthin DE, 35: capsanthin DE, 36: zeaxanthin DE, 37: cis-capsanthin DE,
38: cis-capsanthin DE, 39: capsanthin DE, 40: zeaxanthin DE, 41: cis-capsanthin DE, 42: cis-capsanthin
DE, 43: zeaxanthin DE, 44: cis-zeaxanthin DE. (ME = monoester; DE = diester).
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of β- and γ-tocopherol, 2: α-tocopherol hydroquinone, 3: α-tocopherol, 4: α-tocopherol acetate,
5: α-tocopherol ester.

2.5. Determination of Total Vitamin C Content

Total vitamin C (AsA + DHA) was extracted and quantified from 0.2 g samples of
homogeneous pepper juice, according to Kampfenkel et al. [31]. Absorbance was measured
using a Cecil BioQuest CE 2501 spectrophotometer (Cecil Instruments Ltd., Cambridge,
UK) at 525 nm and expressed in mg 100 g−1 fw. The standard curve for AsA was linear
between 0 and 750 µmol.

2.6. Determination of Total Phenolic Content

The extraction and measurement of total phenolic content followed the method out-
lined by Martínez-Valverde et al. [32]. Briefly, 0.1 g of pepper homogenate was combined
with 5 mL of 80% methanol and 50 µL of 37% HCl, then extracted for 2 h at 4 ◦C and
300 rpm. After extraction, the mixture was centrifuged for 20 min at 10,000× g. A 125 µL
sample of the supernatant was transferred to a test tube and mixed with 500 µL distilled
water, followed by the addition of 125 µL Folin–Ciocalteu reagent. After 3 min, 1250 µL of
7% sodium carbonate solution was added, and the final volume was adjusted to 3 mL with
distilled water. Each sample was allowed to stand for 90 min at ambient conditions, and
the absorbance was measured at 760 nm against a blank using a Cecil BioQuest CE 2501
spectrophotometer (Ceil Instruments Ltd., Cambridge, UK). Total phenolic content was
expressed as mg of gallic acid equivalent (GAE) kg−1 fw.

2.7. Measurement of the Radical Scavenging Activity

The radical scavenging activity of the hydrophilic and lipophilic fractions (RSAHF
and RSALF, respectively) was assessed using the Trolox Equivalent Antioxidant Capacity
(TEAC) method, following Miller and Rice-Evans [33]. To extract hydrophilic and lipophilic
antioxidants, 0.1 g of pepper homogenate was mixed with methanol (50%) or acetone (50%),
respectively, at 4 ◦C under continuous shaking at 300 rpm for 12 h. The samples were then
centrifuged at 10,000× g for 7 min. The collected supernatants were used to determine
antioxidant activity at 734 nm using a Cecil BioQuest CE 2501 spectrophotometer (Cecil
Instruments Ltd., Cambridge, UK). Antioxidant activity was calculated and expressed as
µM of Trolox 100 g−1 of fw.

2.8. Statistical Analysis

Since no significant differences were observed between growing years, the results
were presented as the mean value ± standard error of six independent replicates (n = 6).
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Each landrace was represented by six different batches of fruits, with each batch consisting
of at least 3 kg from the same harvesting lot, analyzed separately.

Variation affecting the agronomic and functional quality of different pepper landraces
was assessed by analysis of variance (ANOVA). Significant differences between means
were determined using the Least Significant Difference (LSD) test (p < 0.05). Statistical
analyses were performed using IBM SPSS Statistics software for Windows, Version 21.0.
(IBM Corp., Armonk, NY, USA). Correlations among variables were determined using
Pearson’s correlation coefficient (r) to assess the strength and direction of the relationships
between different agronomic and functional quality traits. This helps in understanding
how different variables influence each other, which can be crucial for breeding programs
and agricultural practices. Additionally, Principal Component Analysis (PCA) for the main
bioactive classes of molecules (total contents) identified in the various hot pepper landraces
was performed using the Past software, Version 4.17 (University of Oslo, Oslo, Norway).

3. Results
3.1. Agronomic and Physico-Chemical Traits

The main agronomic attributes and physicochemical traits of different hot pepper
landraces are reported in Tables 1 and 2, respectively. The studied agronomic attributes and
physicochemical traits exhibited significant variations among the tested genotypes (p < 0.05).
Under open field conditions, the pepper genotypes displayed determinate growth habits,
showing vigorous growth with excellent foliage coverage. Earliness varied from early for
‘Dhirat’, ‘Beldi’, and ‘Jerid’ to very late for ‘Cayenne’. The fruit shape was triangular for
‘Jerid’ and ‘Baklouti’ and elongate for the remaining landraces (Figure 1). All genotypes
exhibited satisfying yields, ranging from 1163.25 g plant−1 in ‘Jerid’ to 1841.67 g plant−1

in ‘Kairouan’, indicating good productivity despite ongoing climatic changes and high
temperatures recorded during the growth period. The average fruit weight ranged from
6.5 g in ‘Jerid’ to 37.75 g in ‘Kairouan’, with ‘Semmane’, ‘Beldi’, ‘Nabeul’, ‘Mahdia’, and
‘Baklouti’ showing similar weights appreciated by fresh market consumers.

Table 1. Agronomic attributes of pungent pepper landraces grown under open field conditions
during two growing seasons and harvested at the red-ripe stage. Different superscript letters indicate
significant differences among landraces at the 0.05 significance level, according to the LSD test. Data
are expressed as the mean ± S.E. of six replicates (2022 and 2023 sampling data).

Landraces Earliness Fruit Shape Intended Use Yeald per Plant
(g Plant−1)

Average Fruit
Length (cm)

Average Fruit
Weight (g)

Dhirat Early Elongate Fresh market 1480.58 ± 36.11 d 11.67 ± 1.11 de 22.25 ± 0.83 d

Semmane Late Elongate Fresh market 1687.25 ± 40.00 c 17.33 ± 1.78 abc 34.33 ± 1.11 bc

Beldi Early Elongate Fresh market/Processing 1755.08 ± 56.22 c 18.00 ± 2.00 abc 34.33 ± 1.11 bc

Nabeul Late Elongate Fresh market 1720.83 ± 56.22 c 18.67 ± 2.44 ab 35.58 ± 0.89 bc

Jerid Early Triangular Pickling 1163.25 ± 47.17 e 5.33 ± 1.56 f 6.5 ± 0.5 f

Mahdia Late Elongate Fresh market 1634.92 ± 22.55 c 13.67 ± 1.11 cde 33.83 ± 0.39 c

Cayenne Very late Elongate Pickling 1997.33 ± 11.61 a 9.33 ± 1.56 ef 14.25 ± 0.5 e

Kairouan Late Elongate Fresh market/processing 1841.67 ± 17.94 b 20.33 ± 2.22 a 37.75 ± 0.17 a

Baklouti Late Triangular Fresh market/processing 1644.08 ± 29.61 c 14.67 ± 1.78 bcd 35.75 ± 0.17 b

Soluble solids content (Table 2) ranged from 9.1◦ Brix in ‘Semmane’ to 12.2◦ Brix in
‘Beldi’, with the high content in ‘Beldi’ making it suitable for processing. pH values spanned
from 4.72 in ‘Baklouti’ to 5.6 in ‘Cayenne’, while titratable acidity ranged from 0.16% in
‘Semmane’ to 0.31% in ‘Nabeul’, with ‘Mahdia’ showing similar acidity to ‘Semmane’. The
color index (a*), indicating the intensity of red color, ranged from 33.94 in ‘Nabeul’ to
41.35 in’ Kairouan’, while the color index (b*), indicating yellowness, ranged from 39.32 in
‘Nabeul’ to 44.81 in ‘Semmane’. Consequently, the (a*/b*) ratio, useful for characterizing the
quality and maturity of pepper pods, spanned from 0.87 in ‘Nabeul’ to 0.97 in ‘Cayenne’.
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Table 2. Physicochemical properties of pungent pepper landraes grown under open field conditions
during two growing seasons and harvested at red-ripe stage. Different superscript letters indicate
significant differences among landraces at the 0.05 significance level, according to the LSD test. Data
are expressed as the mean ± S.E. of six replicates (2022 and 2023 sampling data).

Landraces Soluble Solids
(◦Brix) pH Titratable

Acidity (%) a* b* a*/b*

Dhirat 10.6 ± 0.3 bc 4.95 ± 0.01 c 0.21 ± 0.01 bcd 36.68 ± 0.76 bc 40.47 ± 0.04 bc 0.91 ± 0.02 bcd

Semmane 9.1 ± 0.1 e 4.93 ± 0.05 cd 0.16 ± 0.04 f 40.33 ± 1.27 a 44.81 ± 1.52 a 0.90 ± 0.01 bcd

Beldi 12.2 ± 0.36 a 4.97 ± 0.02 c 0.19 ± 0.01 def 40.9 ± 1.38 a 43.59 ± 0.76 a 0.94 ± 0.01 abc

Nabeul 10.9 ± 0.9 bc 4.85 ± 0.02 cd 0.31 ± 0.03 a 33.94 ± 1.23 c 39.32 ± 0.94 c 0.87 ± 0.03 d

Jerid 10.63 ± 0.06 bc 5.02 ± 0.01 c 0.22 ± 0.02 bcd 40.57 ± 0.98 a 42.9 ± 1.20 ab 0.95 ± 0.00 ab

Mahdia 10.6 ± 0.53 bc 5.35 ± 0.00 b 0.16 ± 0.00 ef 34.82 ± 1.43 c 38.36 ± 1.87 c 0.91 ± 0.01 bcd

Cayenne 9.6 ± 0.1 de 5.60 ± 0.35 a 0.20 ± 0.30 cde 38.81 ± 1.2 ab 39.82 ± 1.16 c 0.97 ± 0.00 a

Kairouan 10.1 ± 0.7 cd 5.02 ± 0.00 c 0.24 ± 0.03 bc 41.35 ± 0.59 a 44.48 ± 1.68 a 0.93 ± 0.02 abc

Baklouti 11.4 ± 0.2 ab 4.72 ± 0.01 e 0.25 ± 0.01 b 35.43 ± 0.77 c 39.58 ± 0.53 c 0.89 ± 0.03 cd

3.2. Functional Quality Traits
3.2.1. Capsaicinoid Content

The content of individual capsaicinoids and their total level in different hot pepper
landraces harvested at the red-ripe stage is presented in Table 3. The content of individ-
ual capsaicinoids and their total content exhibited significant variation among pepper
landraces (p < 0.05). Irrespective of genotype, capsaicin and dihydrocapsaicin were the
main capsaicinoids detected in the hot pepper landraces under investigation, accounting
for between 44% and 91% of the total capsaicinoids. Nordihydrocapsaicin comprised up
to 15.4% of total capsaicinoids, ranging from 0.02 µg g−1 fw in ‘Nabeul’ to 23.12 µg g−1

fw in ‘Baklouti’, demonstrating substantial variability among the investigated landraces.
Similarly, homodihydrocapsaicin ranged from 0.92 µg g−1 fw in ‘Kairouan’ to 3.9 µg g−1

fw in ‘Jerid’. Homocapsaicin was detected in ‘Dhirat’, ‘Semmane’, ‘Nabeul’, and ‘Cayenne’
only, with values ranging from 0.007 µg g−1 fw in ‘Nabeul’ to 1.26 µg g−1 fw in ‘Dhirat’.
Capsaicin content ranged from 0.54 µg g−1 fw in ‘Kairouan’ to 108.6 µg g−1 fw in ’Jerid’,
while dihydrocapsaicin ranged from 0.49 µg g−1 fw in ‘Mahdia’ to 68.36 µg g−1 fw in
‘Baklouti’. Overall, total capsaicinoids exhibited considerable variability among the tested
pepper landraces, ranging from 1.81 µg g−1 fw in ‘Kairouan’ to 194.02 µg g−1 fw in ‘Jerid’.

Table 3. Individual capsaicinoids comprising of nordihydrocapsaicin, homocapsaicin, homodihy-
drocapsaicin, capsaicin, dihydrocapsaicin, and total capsaicinoids (µg g−1 fw) from pungent red
pepper fruits. Different superscript letters indicate significant differences among landraces at the
0.05 significance level, according to the LSD test. Values represent the mean ± standard error of six
replicates (2022 and 2023 sampling data).

Landraces Capsaicin
(µg g−1 fw)

Dihydrocapsaicin
(µg g−1 fw)

Nordihydrocapsaicin
(µg g−1 fw)

Homocapsaicin
(µg g−1 fw)

Homodihydrocapsaicin
(µg g−1 fw)

Total
Capsaicinoids

(µg g−1 fw)

Dhirat 67.36 ± 6.46 c 67.60 ± 7.65 a 12.62 ± 1.28 b 1.26 ± 0.12 a 3.09 ± 0.15 b 151.94 ± 15.66 b

Semmane 19.84 ± 0.18 d 12.48 ± 0.16 b 1.60 ± 0.01 d 1.15 ± 0.01 b 1.58 ± 0.04 e f 36.65 ± 0.32 c

Beldi 0.72 ± 0.26 e 2.37 ± 1.06 c 0.07 ± 0.01 e n.d. 2.52 ± 0.08 c 5.68 ± 1.41 d

Nabeul 0.78 ± 0.06 e 0.83 ± 0.09 c 0.02 ± 0.02 e 0.01 ± 0.00 c 2.12 ± 0.07 c d 3.76 ± 0.03 d

Jerid 108.6 ± 0.67 a 68.21 ± 0.47 a 12.99 ± 0.13 b n.d. 3.90 ± 0.05 a 193.71 ± 1.32 a

Mahdia 1.07 ± 0.01 e 0.49 ± 0.01 d 0.12 ± 0.00 e n.d. 1.32 ± 0.08 fg 3.01 ± 0.09 d

Cayenne 19.97 ± 0.46 d 12.40 ± 0.78 c 6.48 ± 0.81 c 0.16 ± 0.00 c 3.11 ± 0.47 b 42.12 ± 2.52 c

Kairouan 0.54 ± 0.14 e 0.29 ± 0.03 d 0.06 ± 0.01 e n.d. 0.92 ± 0.01 g 1.81 ± 0.19 d

Baklouti 93.25 ± 1.79 b 68.36 ± 1.92 d 23.12 ± 0.46 a n.d. 1.94 ± 0.03 de 186.67 ± 4.13 a

n.d.: not detected.
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3.2.2. Carotenoid Content

Individual carotenoid content, including capsorubin, violaxanthin, lutein, zeaxanthin,
β-cryptoxanthin, and β-carotene, as well as total carotenoid content in different hot pepper
landraces harvested at the red-ripe stage are presented in Table 4. Significant variations
(p < 0.05) were observed in the contents of capsorubin, violaxanthin, lutein, zeaxanthin, β-
cryptoxanthin, and β-carotene among the investigated hot pepper landraces. Based on their
content, zeaxanthin, β-cryptoxanthin, and β-carotene were the main carotenoids detected
in red hot pepper landraces, accounting for between 74% and 93% of the total content of
carotenoids. The content of β-cryptoxanthin ranged from 7.32 µg g−1 fw in ‘Nabeul’ to
27.11 µg g−1 fw in ‘Semmane’, while zeaxanthin content ranged from 7.24 µg g−1 fw in
‘Beldi’ to 27.8 µg g−1 fw in ‘Semmane’. β-Carotene, the predominant carotenoid, ranged
from 14.32 µg g−1 fw in ‘Kairouan’ to 113.68 µg g−1 fw in ‘Semmane’, reflecting significant
variability. The contribution of β-carotene to the total carotenoid content ranged from
26.1% in ‘Kairouan’ to almost 70% in ‘Semmane’, suggesting a significant contribution to
the recommended daily intake of vitamin A content.

Table 4. Individual carotenoids comprising capsorubin, violaxanthin and lutein, zeaxanthin, β-
cryptoxanthin, β-carotene, and total carotenoids (µg g−1 fw) from pungent red pepper fruits. Different
superscript letters indicate significant differences among landraces at the 0.05 significance level,
according to the LSD test. Values represent the mean ± standard error of six replicates (2022 and 2023
sampling data).

Landraces Capsorubin
(µg g−1 fw)

Violaxanthin
(µg g−1 fw)

Lutein
(µg g−1 fw)

Zeaxanthin
(µg g−1 fw)

β-
Cryptoxanthin

(µg g−1 fw)

β-Carotene
(µg g−1 fw)

Total
Carotenoids
(µg g−1 fw)

Dhirat 2.27 ± 0.12 c 1.58 ± 0.07 cd 4.55 ± 2.90 b 10.41 ± 1.01 bc 8.86 ± 0.41 cd 25.44 ± 16.80 de 53.12 ± 18.10 d

Semmane 2.95 ± 0.32 bc 2.36 ± 0.14 b 0.62 ± 0.04 c 27.80 ± 3.16 a 27.11 ± 3.17 a 113.68 ± 14.27 a 174.52 ± 21.09 a

Beldi 3.91 ± 0.09 ab 2.10 ± 0.08 bc 1.54 ± 0.11 c 7.24 ± 3.69 c 12.72 ± 0.27 bc 43.44 ± 2.07 cd 70.94 ± 1.26 cd

Nabeul 2.60 ± 0.14 c 1.51 ± 0.03 cd 0.96 ± 0.04 c 9.39 ± 0.09 bc 7.32 ± 0.12 d 32.97 ± 1.15 cde 54.75 ± 1.28 d

Jerid 4.89 ± 0.30 a 5.14 ± 0.28 a 0.88 ± 0.06 c 16.04 ± 1.87 b 26.76 ± 2.50 a 93.69 ± 7.69 a 147.40 ± 12.70 a

Mahdia 4.43 ± 0.43 a 1.48 ± 0.16 cd 7.19 ± 4.23 a 11.83 ± 1.14 bc 9.10 ± 0.81 cd 30.30 ± 3.39 de 64.33 ± 10.16 d

Cayenne 2.10 ± 0.01 c 1.65 ± 0.16 bcd 7.63 ± 4.86 a 14.98 ± 0.04 b 14.55 ± 0.06 b 55.68 ± 0.29 bc 96.60 ± 4.64 bc

Kairouan 5.01 ± 0.08 a 1.38 ± 0.01 cd 5.63 ± 3.18 b 10.77 ± 0.24 bc 8.83 ± 0.02 cd 14.32 ± 8.98 e 45.94 ± 5.97 d

Baklouti 1.85 ± 1.23 c 1.06 ± 0.71 cd 8.25 ± 5.32 a 7.35 ± 0.35 c 12.77 ± 1.32 bc 70.97 ± 2.69 b 102.25 ± 5.53 b

Capsorubin, violaxanthin, and lutein were detected at lower levels compared to zeax-
anthin, β-cryptoxanthin, and β-carotene. Capsorubin content ranged from 1.85 µg g−1 fw
in ‘Baklouti’ to 5.01 µg g−1 fw in ‘Kairouan’, while violaxanthin ranged from 1.06 µg g−1 fw
in ‘Baklouti’ to 5.14 µg g−1 fw in ‘Jerid’. Lutein content varied from 0.62 µg g−1 fw in ‘Sem-
mane’ to 8.25 µg g−1 fw in ‘Baklouti’. Regarding total carotenoids, the landrace ‘Semmane’
exhibited the highest content with 113.68 µg g−1 fw, mainly influenced by β-carotene level.

3.2.3. Tocopherol Content

The content of α-, β-, and γ-tocopherol isomers and their total content in different
hot pepper landraces harvested at the red-ripe stage are presented in Table 5. The content
of different tocopherol isomers and their total varied significantly (p < 0.05) between the
studied hot pepper landraces harvested at the red-ripe stage. α-Tocopherol content ranged
from 19.03 µg g−1 fw in ‘Kairouan’ to 30.93 µg g−1 fw in ‘Beldi’. The content of β-tocopherol
showed lower variability, ranging from 0.11 µg g−1 fw in ‘Mahdia’ to 0.66 µg g−1 fw in
‘Jerid’. The γ-tocopherol isomer was detected in ‘Dhirat’, ‘Semmane’, ‘Beldi’, ‘Nabeul’,
‘Jerid’, and ‘Mahdia’, albeit in very low amounts ranging from 0.021 µg g−1 fw in ‘Dhirat’
to 0.18 µg g−1 fw in ‘Beldi’. The total tocopherol content was highest in ‘Beldi’ and ‘Jerid’,
ranging from 19.38 µg g−1 fw in ‘Kairouan’ to 31.36 µg g−1 fw in ‘Beldi’. Consequently,
the total tocopherol content was predominantly composed of α-Tocopherol, with the other
isomers present in trace amounts across all analyzed pepper landraces.
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Table 5. Tocopherol isomers and their total content (µg g−1 fw) from pungent red pepper fruits.
Different superscript letters indicate significant differences among landraces at the 0.05 significance
level, according to the LSD test. Values represent the mean ± standard error of six replicates (2022
and 2023 sampling data).

Landraces α-Tocopherol
(µg g−1 fw)

β-Tocopherol
(µg g−1 fw)

γ-Tocopherol
(µg g−1 fw)

Total Tocopherols
(µg g−1 fw)

Dhirat 19.96 ± 2.11 c 1.15 ± 0.08 a 0.02 ± 0.01 d 21.13 ± 2.20 c

Semmane 22.84 ± 1.87 bc 0.33 ± 0.03 de 0.15 ± 0.02 b 23.32 ± 1.92 bc

Beldi 30.93 ± 1.23 a 0.25 ± 0.02 ef 0.18 ± 0.02 a 31.36 ± 1.26 a

Nabeul 26.92 ± 1.03 ab 0.59 ± 0.03 bc 0.14 ± 0.01 b 27.65 ± 1.07 ab

Jerid 30.55 ± 5.09 a 0.66 ± 0.11 b 0.03 ± 0.02 d 31.24 ± 5.21 a

Mahdia 19.67 ± 0.84 e 0.11 ± 0.02 f 0.07 ± 0.01 c 19.85 ± 0.86 c

Cayenne 22.34 ± 0.62 bc 0.42 ± 0.03 de n.d. 22.77 ± 0.62 bc

Kairouan 19.03 ± 0.29 c 0.36 ± 0.01 de n.d. 19.38 ± 0.30 c

Baklouti 19.50 ± 2.04 c 0.46 ± 0.10 cd n.d. 19.96 ± 2.14 c

n.d.: not detected.

3.2.4. Total Vitamin C Content

Total vitamin C content in different hot pepper landraces harvested at the red-ripe
stage is presented in Figure 6. The total vitamin C content varied significantly (p < 0.05)
among pepper landraces. Across the study, total vitamin C ranged from 132 mg 100 g−1 fw
in ‘Mahdia’ to 200 mg 100 g−1 fw in ‘Nabeul’, with variations ranging from 4% to 51%
compared to ‘Mahdia’, indicating relatively low variability among the analyzed pepper lan-
draces. Landraces ‘Jerid’, ‘Dhirat’, and ‘Cayenne’ showed statistically similar intermediate
total vitamin C levels.
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Figure 6. Total vitamin C content (mg 100 g−1 fw) from pungent red pepper fruits. Values represent
the mean ± standard error of six replicates (2022 and 2023 sampling data). Bars marked with the
same letters are not significantly different (LSD Test, p < 0.05).

3.2.5. Total Phenols

Total phenolics in different hot pepper landraces harvested at the red-ripe stage are pre-
sented in Figure 7. The content of total phenols varied significantly (p < 0.05) among the an-
alyzed hot pepper landraces. Total phenolics content ranged from 168.58 mg GAE kg−1 fw
in ‘Beldi’ to 302.98 mg GAE kg−1 fw in ‘Cayenne’, with variations ranging from 22% to
80% compared to ‘Beldi’, indicating substantial variability among the analyzed pepper
landraces. ‘Dhirat’, ‘Semmane’, ‘Nabeul’, ‘Jerid’, and ‘Mahdia’ demonstrated statistically
similar intermediate total phenolic values.
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Figure 7. Total phenolics (mg GAE kg−1 fw) from pungent red pepper fruits. Values represent the
mean ± standard error of six replicates (2022 and 2023 sampling data). Bars marked with the same
letters are not significantly different (LSD Test, p < 0.05).

3.2.6. Radical Scavenging Activity

The RSAHF and RSALF measured in different hot pepper landraces are presented in
Figure 8. The RSAHF and RSALF values varied significantly (p < 0.05) among the studied
pepper landraces. RSAHF values ranged from 763.31 µM Trolox 100 g−1 fw in ‘Baklouti’
to 1680.27 µM Trolox 100 g−1 fw in ‘Cayenne’, with variations spanning from 59% to
120% compared to ‘Baklouti’. Conversely, RSALF values ranged from 1043.85 µM Trolox
100 g−1 fw in ‘Beldi’ to 1707.28 µM Trolox 100 g−1 fw in ‘Cayenne’, exhibiting variations
ranging from 4% to 63% compared to ‘Beldi’. While the landrace ‘Cayenne’ displayed the
highest values for both RSAHF and RSALF, ‘Baklouti’ statistically ranked the last for both
traits.
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Figure 8. RSAHF and RSALF (µmol Trolox Equivalent 100 g−1 fw) from pungent red pepper fruits.
Values represent the mean ± standard error of six replicates (2022 and 2023 sampling data). Bars with
the same color marked with the same letters are not significantly different (LSD Test, p < 0.05).

3.3. Correlation Analysis

The Pearson correlation matrix between agronomic, physico-chemical, and functional
quality attributes of the hot pepper landraces under investigation is presented in Figure 9.
The relationships between the studied traits were examined using Pearson correlation
analysis at p < 0.01. A significant positive correlation was observed between RSAHF and
total phenolics (r = 0.603). Furthermore, the color indexes a* and the ratio (a*/b*) exhibited
significant correlations with the content of various pungent pepper quality traits, including
homodihydrocapsaicin (r = 0.476), total carotenoids (r = 0.320), β-cryptoxanthin (r = 0.286),
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violaxanthin (r = 0.415), α-tocopherol (r = 0.245), as well as RSAHF (r = 0.331) and RSALF
(r = 0.360). These findings suggest the potential utility of color indexes in predicting
key quality traits among the investigated parameters, particularly during breeding and
selection, including large samples.
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Figure 9. Pearson correlation matrix between agronomic, physico-chemical, and functional quality
attributes of the hot pepper landraces under investigation. Reddish tones express higher positive
correlations, whereas blueish tones indicate negative correlations. Larger circle diameters denote
higher modules of the correlation coefficient (r). White intersections exhibit non-significant correla-
tions (significance was set at p correlation). Abbreviations: YLD, yield per plant; AFW, average fruit
weight; AFL, average fruit length; TA, titratable acidity; a*, redness; b*, yellowness; (a*/b*), a*/b*
ratio; CAP, capsaicin; DHC, dihydrocapsaicin; NDHC, nor-dihydrocapsaicin; HC, homocapsaicin;
HDHC, homodihydrocapsaicin; TOT, total capsaicinoids; α-T, α-tocopherol; β-T, β-tocopherol; γ-T,
γ-tocopherol; TOC, total tocopherols; CASR, capsorubin; VIO, violaxanthin; LUT, lutein; ZEA, zeax-
anthin; β-CRP, β-cryptoxanthin; β-CAR, β-carotene; CAR, total carotenoids; Vit C, Vitamin C; TP,
total phenols; RSAHF, radical scavenging activity of the hydrophilic fraction antioxidant activity;
RSALF, radical scavenging activity of the lipophilic fraction.

3.4. Principal Component Analysis (PCA)

The principal component analysis (PCA) biplot PC1 vs. PC2 and PC1 vs. PC3 of
the main bioactive classes of molecules (total contents) identified in the different pepper
genotypes under investigation is presented in Figure 10. To gain a deeper understanding of
the relationships between hot pepper landraces, we conducted PCA using the biochemical
data as input variables. The first three principal components explained 69.558% of the
observed variation, with PC1 contributing 25.826%, PC2 contributing 23.482%, and PC3
contributing 20.076%. PC1 showed positive correlations with total phenols, vitamin C, total
carotenoids, and total tocopherols, as well as RSAHF and RSALF, but it exhibited negative
correlations with total capsaicinoids. Conversely, PC2 displayed positive correlations with
total carotenoids, total phenols, total capsaicinoids, and RSAHF, but it showed negative
correlations with total tocopherols, total vitamin C, and RSALF. PC3 positively correlated
with total tocopherols, total carotenoids, total capsaicinoids, total phenols, and vitamin C,
had no correlation with RSAHF, and showed a negative correlation with RSALF. Regardless
of the growing year, ‘Semmane’ and ‘Nabeul’ consistently scored positively along PC1,
while ‘Mahdia’ and ‘Kairouan’ consistently scored negatively along PC3. ‘Baklouti’ and
‘Jerid’ exhibited strong correlations with total capsaicinoid contents.
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Figure 10. Principal component analysis (PCA) biplots PC1 vs. PC2 (a) and PC1 vs. PC2 (b) of
the main bioactive classes of molecules (total contents) identified in the different pepper genotypes
under investigation. The variance (%) explained by each PCA axis is given in brackets. The length of
the vectors is correlated to their significance within each population. Between vectors and between
a vector and an axis, there is a positive correlation if the angle is <90◦, whereas the correlation is
negative if the angle is >90◦. There is no linear dependence if the angle is 90◦. Ellipses enclose the 75%
confidence interval. Abbreviations: TCP, total capsaicinoids; TP, total phenols; TT, total tocopherols;
TC, total carotenoids; Vit C, total Vitamin C; RSALF, radical scavenging activity of the lipophilic
fraction; RSAHF, radical scavenging activity of the hydrophilic fraction.

4. Discussion

The assessed pepper landraces demonstrated desirable agronomic traits, though sig-
nificant variations in yield were observed due to genetic factors. For instance, Ilić et al. [13]
noted significant variations in fruit weight among traditional Serbian pepper landraces
(Nizača, Lokošnička, and Turšijara), highlighting the impact of both environmental and
genetic factors on yield. Based on the qualitative chemical traits, we underscore the possible
use of most of the investigated landraces for various purposes, such as fresh consumption,
processing, and picking, as well as mixed uses, confirming their traditional multi-use and
aligning with various studies. Brilhante et al. [14] reported similar ranges in soluble solids
(5.0 to 24.3 ◦Brix), pH values (4.69 to 5.94), and total acidity (0.25 to 1.60 mEq% fw) while
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assessing a Brazilian Capsicum germplasm collection. Similarly, Ilić et al. [13] found soluble
solids ranging from 8.81 to 14.42 in traditional Serbian pepper landraces.

Color is a critical attribute of vegetable food, and the a*, b*, and a*/b* ratio indices are
invaluable in characterizing the quality and maturity of pepper berries. Our b* readings
were consistent with those reported by Ilić et al. [13] for Serbian pepper landraces (13.78 to
22.72), although a* readings were slightly higher (30.41 to 37.05) than ours, possibly due
to differences in maturity, climate, or agronomic practices enhancing the accumulation of
carotenoids and other metabolites responsible for the red color of the ripe fruits.

Regarding functional quality, our study highlighted the prevalence of capsaicin and
dihydrocapsaicin as the primary capsaicinoids, comprising 44% and 91%, respectively, of
the total capsaicinoid content. This aligns closely with Barbero et al. [34], who reported
an even higher dominance of the two compounds, accounting for 79% to 90% of total cap-
saicinoids during the ripening of Cayenne pepper grown in Spain. Nordihydrocapsaicin
emerged as the third major capsaicinoid in the studied landraces, constituting 0.5% to
15.4% of the total content, while homodihydrocapsaicin and homocapsaicin collectively
accounted for 1% to 56%, in agreement with Barbero et al. [34]. Indeed, the authors ob-
served nordihydrocapsaicin levels ranging between 6% and 14% of total capsaicinoids in
Cayenne pepper, with homodihydrocapsaicin and homocapsaicin present at lower lev-
els (2% to 4%), depending on the fruit’s ripening stage. Notably, ‘Baklouti’ and ‘Jerid’
exhibited the highest accumulation of total capsaicinoids, solidifying their reputation as
among the spiciest and most pungent genotypes in Tunisia. Conversely, ‘Mahdia’ and
‘Kairouan’ accumulated the lowest levels, making them preferred choices for consumers
seeking milder options. Genotype significantly influences the content of pepper capsaici-
noids, as previously reported by Jeeatid et al. [16]. Substantial variation in capsaicin (0 to
9948 µg g−1 dw), dihydrocapsaicin (0 to 4114.3 µg g−1 dw), and total capsaicinoids (0 to
14,062.3 µg g−1 dw) has been reported by Castillo-Aguilar et al. [35] in nine chili pepper
landraces from Yucatan peninsula, Mexico, with the extreme values registered in ‘Dulce’
and ‘Rosita’, respectively. Alam et al. [18] found higher capsaicin and dihydrocapsaicin
content in hot pepper landraces from Malaysia compared to sweet ones. Moon et al. [22]
reported wide-ranging capsaicinoid content (0.00 to 1219.90 mg 100 g−1 fw) in a collection
of Capsicum annuum and Capsicum frutescens pepper accessions. Díaz-Sánchez et al. [19]
found variability in capsaicinoid content in 31 piquin pepper landraces, ranging from 135
to 1379 µg mL−1 and 301 to 3719 µg mL−1 for total capsaicinoids grown under field and
greenhouse conditions, respectively.

Our findings on carotenoid content revealed that fresh red peppers from all ana-
lyzed landraces accumulated high levels of provitamin A carotenoids (β-carotene and
β-cryptoxanthin), as well as zeaxanthin, collectively accounting for between 74% and 93%
of the total carotenoids. β-carotene was the most abundant, comprising 26% to 70% of all
carotenoids, consistent with Rodríguez-Rodríguez et al. [20] and Maiani et al. [21]. The ob-
tained results also align with those reported by Martínez-Ispizua et al. [36] in an 18-pepper
landrace collection from Valencia, Spain, with total carotenoids levels ranging from 12.17
to 103.88 µg g−1 fw at the red maturity stage. The authors also observed variability rang-
ing from 2.64 to 13.11 µg g−1 fw in the level of total carotenoids in the same landraces
harvested at the green stage. Additionally, Moon et al. [22] revealed an even larger vari-
ation in total carotenoids and β-carotene contents, ranging from 52.5 to 3496 µg g−1 fw
and 5.97 to 392.74 µg g−1 fw, respectively, in 380 pepper accessions of Capsicum annuum
grown in Korea. This was confirmed by Da Silveira et al. [23], who reported significant
variability among pepper landraces regarding total carotenoids content, emphasizing the
high influence of genotype on this trait.

Regarding total tocopherols, a strong correlation with α-tocopherol content was ob-
served, highlighting that, unlike β- and γ-tocopherols, α-isomer is the main component of
the total content [26,37]. Karaman et al. [38] detected α-tocopherol content of 1078.4 µg g−1

dw in fruits of recombinant inbred pepper lines from interspecies crosses (Capsicum annuum
× Capsicum frutescens). Duah et al. [7] reported a low extent of variability in α-tocopherol
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content (392 to 448 µg g−1 dw) while assessing bioactive compounds in new hybrid hot
chili peppers from Hungary.

Ascorbic acid plays a pivotal role in maintaining plant redox homeostasis by acting
as an antioxidant that scavenges reactive oxygen species [39] and is crucial in defend-
ing against oxidative stress [38]. The obtained values for total vitamin C were consis-
tent with those of Moon et al. [22], who found vitamin C content ranging from 0.10 to
18.5 mg 100 g−1 fw, and Martínez et al. [40], who detected vitamin C levels from 0.62
to 2.5 mg g−1 fw at the green stage and from 1.05 to 3.94 mg g−1 fw at the red stage in
18 sweet pepper landraces harvested at different ripening stages. It has been reported that
variety, maturity, and pre-harvest and post-harvest practices are key factors influencing
ascorbic acid content [38].

Our results on total soluble phenolics were in the range of those found by Lee et al. [41]
(178 to 384.9 mg chlorogenic acid equivalent 100 g−1 fw) in fresh peppers. The results
are also consistent with those of Kumar et al. [42], who recorded total phenolics content
reaching 266 mg GAE kg −1 in red peppers. Numerous authors have argued that phenolic
accumulation varies depending on the variety, maturity stages, agronomic practices, climate
conditions, and determination methodologies [42,43] with total phenolic levels ranging
between 33 and 250 mg GAE 100 g−1 fw for different Capsicum annuum genotypes [44,45].
Alam et al. [18] found higher total phenolic content in hot versus sweet pepper landraces,
ranging from 0.5 to 1.0 mg GAE g−1 dw in the Malaysian ‘cili ungu’ and ‘cili burung’
landraces, respectively, suggesting a positive correlation between phenolic content and
pungency. Martínez-Ispizua et al. [36] observed large variability in phenolic content from
1.83 to 7.24 mg g−1 fw at the green stage and from 5.66 to 15.87 mg g−1 fw at the red ripe
stages. Based on their phenolic content, the studied pepper landraces can be considered a
good source of phenolics.

Regarding RSALF and RSAHF, the results align with those of García-Vásquez et al. [24],
who assessed the antioxidant activity of ten pepper populations from Mexico using two
analytical methods, finding variations using DPPH (13.8 to 28.4 µmol TE g−1) and FRAP
(36.6 to 63.4 µmol TE g−1). Similarly, Constantino et al. [46] assessed antioxidant activity in
22 pepper accessions from four Brazilian states, with DPPH values ranging from 0.13 to
1.12 TEAC g−1 and FRAP values from 0.21 to 2.27 µmol TEAC g−1, suggesting different
sensitivities of the techniques and a variability related to genotype and cultivation place.
Ramírez-Aragón et al. [25] reported differences ranging from 65 to 348 µmol Trolox g−1 dw
in 14 chili pepper cultivars grown in Mexico. Martínez-Ispizua et al. [36] found antioxidant
activity ranging from 49.68 to 96.31 mg TE g−1 fw, noting variability from 6.12 to 77.84 mg
TE g−1 fw at the green stage and from 49.68 to 96.31 mg TE g−1 fw at the red stage.

Finally, the highly significant correlations recorded between color readings and various
attributes suggest the potential utility of color indexes in predicting key quality traits among
the investigated parameters. The RSAHF can be predicted based on the content of total
phenolics and total vitamin C. Similarly, RSALF might be predicted using the content of
several lipophilic antioxidants, such as homodihydrocapsaicin, β-tocopherol, lutein, and
zeaxanthin.

5. Conclusions

The study provides comprehensive insights into both the agricultural traits and func-
tional quality of various pungent pepper landraces and traditional genotypes. It demon-
strates that many traditional genotypes possess valuable agronomic, physicochemical,
and functional quality traits, making them suitable candidates for breeding programs
aimed at developing high-yielding genotypes with minimal input and water requirements,
particularly under the challenging conditions posed by global climate change.

The findings suggest that several quality traits of pepper landraces can be effectively
estimated based on color readings. However, further analysis of other bioactive compounds
and the use of additional analytical methodologies would enhance the development of
genotypes with specific bioactive profiles. This approach could lead to the creation of
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pepper varieties tailored to meet specific nutritional and functional demands, thereby
supporting sustainable agriculture and improving food security.
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