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Abstract: The objective of this research was to assess the feasibility of remote sensing (RS) technology,
specifically an unmanned aerial system (UAS), to estimate Bambara groundnut canopy state variables
including leaf area index (LAI), canopy chlorophyll content (CCC), aboveground biomass (AGB), and
fractional vegetation cover (FVC). RS and ground data were acquired during Malaysia’s 2018/2019
Bambara groundnut growing season at six phenological stages; vegetative, flowering, podding,
podfilling, maturity, and senescence. Five vegetation indices (VIs) were determined from the RS
data, resulting in single-stage VIs and cumulative VIs (∑VIs). Pearson’s correlation was used to
investigate the relationship between canopy state variables and single stage VIs and ∑VIs over
several stages. Linear parametric and non-linear non-parametric machine learning (ML) regressions
including CatBoost Regressor (CBR), Random Forest Regressor (RFR), AdaBoost Regressor (ABR),
Huber Regressor (HR), Multiple Linear Regressor (MLR), Theil-Sen Regressor (TSR), Partial Least
Squares Regressor (PLSR), and Ridge Regressor (RR) were used to estimate canopy state variables
using VIs/∑VIs as input. The best single-stage correlations between canopy state variables and VIs
were observed at flowering (r > 0.50 in most cases). Moreover, ∑VIs acquired from vegetative to
senescence stage had the strongest correlation with all measured canopy state variables (r > 0.70 in
most cases). In estimating AGB, MLR achieved the best testing performance (R2 = 0.77, RMSE =
0.30). For CCC, RFR excelled with R2 of 0.85 and RMSE of 2.88. Most models performed well in FVC
estimation with testing R2 of 0.98–0.99 and low RMSE. For LAI, MLR stood out in testing with R2 of
0.74, and RMSE of 0.63. Results demonstrate the UAS-based RS technology potential for estimating
Bambara groundnut canopy variables.

Keywords: unmanned aerial vehicle; digital camera; modelling; canopy state variables; machine
learning algorithms

1. Introduction

A key strategy for adapting to changing climatic conditions and meeting the increasing
global food demand is the development and promotion of underutilised crops [1,2]. These
crops possess significant potential to enhance food security, diversify agrifood systems,
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and reduce environmental impacts [3,4]. Underutilised crops, such as Bambara groundnut
(Vigna subterranea) have evolved specific traits and physiological responses to tolerate harsh
environments, including water scarcity and heat stress [5,6]. In many regions of Africa,
Bambara groundnut is the third most important legume after peanut and cowpea, with
an annual production of 300,000 tones [7,8]. Despite its economic value, it remains under-
utilised due to the lack of information on its phenotypic development and performance in
different growing environments. Constraints in field phenotyping capability limit plant
breeders’ ability to dissect the genetics of quantitative crop traits, especially the traits
related to yield and stress tolerance.

It is thus essential to monitor at each phenological stage canopy state variables es-
pecially those related to yield, such as leaf area index (LAI), canopy chlorophyll content
(CCC), aboveground biomass (AGB), and fractional vegetation cover (FVC). LAI is used to
assess leaf cover, monitor growth and photosynthesis and provides information on crop
health and nutrient status [9]. CCC is the main indicator of photosynthesis, senescence,
nutritional status, disease, and stress. Real-time monitoring of CCC serves as a guideline
for fertilisation [10]. AGB is a key parameter that reflects the growth status and is linked to
yield and solar energy utilisation [11]. FVC is defined as the ratio of the vertically projected
area of vegetation to the total surface extent. It is an important biophysical parameter to
observe vegetation cover trends and describe canopy vigour. Moreover, FVC is a control-
ling factor in photosynthesis and transpiration [12]. Traditional methods of phenotypic
assessments to estimate LAI, CCC, AGB, and FVC are based on manual measurements or
visual scoring, both of which are time-consuming, destructive, expensive, and restricted to
point estimates which fail to capture the spatial dynamics of the crop growth [13–15].

Remote sensing (RS) technology allows fast, non-destructive, and efficient monitoring
of crop growth and development [16,17]. Moreover, RS technology enables recurrent and
systematic information to be obtained from the local to the global scale, thus allowing
characterisation of the spatiotemporal variability [18]. Unmanned aerial vehicles (UAV)
represent effective and low-cost high throughput phenotyping platforms (HTPPs). Their
great flexibility and low operational cost make UAV-based HTPPs a promising tool for
precision agriculture. Vegetation indices (VIs) extracted from UAV imagery have been used
to estimate several biophysical parameters, including LAI [19], AGB [20], FVC [21], and
yield [8]. In applied agricultural research, the use of consumer grade red, green, and blue
channel (RGB) digital cameras is preferred for their simplicity, affordability, and practicality.
However, the RGB-based applications are considered inferior especially due to the lack
of the near infrared (NIR) band which is highly effective for crop monitoring. Examples
of widely used VIs, that incorporate NIR bands, are the normalised difference vegetation
index (NDVI) [22,23], simple ratio (SR) [24], green normalised difference vegetation index
(GNDVI) [25], enhanced vegetation index 2 (EVI2) [26], and green chlorophyll index
(CIgreen) [27].

Recent research demonstrated the potential of utilising VIs derived from UAV-based
RGB cameras together with machine learning (ML) algorithms to estimate soybean leaf
chlorophyll content (LCC), FVC, and maturity [28]. Specifically, the reported accuracy metrics
for LCC estimation were R2 = 0.84 and RMSE = 3.99, for FVC estimation were R2 = 0.96 and
RMSE = 0.08, and for maturity monitoring, R2 was 0.984. Dos Santos et al. [29] utilised a Red–
Green-Near-Infrared (R-G-NIR) camera mounted on a UAV to estimate evapotranspiration
and AGB of maize crops. They found that the soil-adjusted vegetation index (SAVI) exhibited
a stronger correlation with AGB (R2 = 0.74, RMSE = 0.092 kg m−2) compared to NDVI
(R2 of 0.69, RMSE = 0.104 kg m−2). Similarly, Ma et al. [30] employed deep learning (DL)
techniques with VIs and colour indices (CIs) derived from UAV RGB and colour infrared
(CIR) images to estimate rice LAI. The coefficient of determination (R2) for CIs ranged from
0.802 to 0.947, with RMSE ranging from 0.401 to 1.13, while for VIs, R2 ranged from 0.917
to 0.976, with RMSE ranging from 0.332 to 0.644.

To date, most studies have focused on using RS technology to monitor broad acre
crops such as cereals, due to their economic importance and the ease of monitoring their



Horticulturae 2024, 10, 748 3 of 19

aboveground canopy state variables and yield components [31–33]. However, leguminous
subterranean oilseed crops like groundnuts have been underrepresented in the literature.
Groundnuts present unique challenges for yield prediction because their yield components
are underground. Current methods rely on destructive sampling and manual inspections,
which are labour-intensive and impractical for large-scale applications [34]. Assessing
factors like pod health, yield components (such as number of pods per plant, seeds per
pod, seed size), and quality for groundnuts through surface observations requires complex
modelling of canopy state variables, including LAI, canopy chlorophyll content (CCC),
AGB, and FVC. While UAV-based RS and ML algorithms have shown effectiveness in
monitoring these variables in cereals, their application to subterranean crops remains
limited. Thus, this study investigated the use of a UAV-mounted digital camera and
ML algorithms to monitor Bambara groundnut canopy state variables at various growth
stages. The UAV allows for non-destructive, efficient, and frequent data collection over
large areas. Moreover, ML algorithms are essential for processing and analysing large
datasets, identifying patterns, and making accurate predictions, crucial for optimising
agricultural practices [35]. The continuous monitoring of these canopy state variables can
help farmers make informed decisions on irrigation, fertilisation, pest management, and
other agricultural practices, ultimately enhancing groundnut yield and quality. Finally, this
research addresses a critical need in the agricultural sector by providing practical solutions
for farmers.

2. Materials and Methodology
2.1. Study Site

The research was conducted at the Field Research Centre of Crops for the Future,
located in Semenyih, Selangor, Malaysia. (2◦55′56.96′′ N, 101◦52′33.59′′ E), at 560 m above
mean sea level from April to September 2018 (Figure 1).
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Figure 1. Location of the study area at Field Research Centre of Crops for the Future. The experimental
layout of plots was digitised on an image acquired with the integrated DJI Phantom 4 Pro camera at
a height of 10 m on flowering stage. B1G1R1 means plot is in block 1; genotype is genotype 1, and
replicate is the first replicate.
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The region exhibits a tropical climate, with an average annual temperature of 32.0 ◦C,
an average annual precipitation of 1493 mm, and a typical photoperiod of 12 h day−1. The
environmental conditions recorded by the local weather station at the experimental site
and the irrigation rates are shown in Figure 2.
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Figure 2. This depicts the environmental parameters and irrigation levels throughout the 2018
cultivation period spanning from May to September. The arrows indicate distinct growth phases in
the life cycle of Bambara groundnut. These stages include SOW (sowing), VEG (vegetative), FLO
(flowering), POD (podding), PF (pod filling), MAT (maturity), SEN (senescence), and HAR (harvest).
The asterisk (*) denotes data collection time points.

2.2. Experimental Design

The field area covered approximately 0.2 ha with sandy clay loam soil with a pH value
of 5.23. Three Bambara groundnut genotypes—NAV4 (genotype 1), IITA-686 (genotype
2), and CIVB (genotype 3)—were grown in a randomised complete block design across
four blocks. Each block was subdivided into nine plots, with each genotype replicated
three times within each block (Figure 1), resulting in 12 replications for each genotype (four
blocks × three replicates per block). The gross plot size was 8 m by 7 m (56 m2), while
the net plot area was 30 m2 (6 m by 5 m). Row-to-row (inter-row) spacing between rows
was set at 40 cm, and plant-to-plant (intra-row) spacing was 30 cm. The seeding rate for
each genotype was 300,000 seeds ha−1. Prior to sowing, a starter fertiliser was applied at
a rate of 20:60:40 kg of nitrogen, phosphorus, and potassium, respectively. Sowing was
conducted using a precision planter on 25 April 2018. Fungicides and insecticides were
applied at regular intervals to manage pathogens, and weeding was performed manually
using hand hoes. Throughout the trial, soil moisture content was monitored weekly using
a soil moisture PR2 probe (Delta-T Devices Ltd., Cambridge, UK), and irrigation was
initiated when soil water content decreased to 50% of the plant-available water capacity in
the root zone.

2.3. Agronomic Measurements

Measurements of LAI, FVC, and CCC were conducted at various growth
stages—days after sowing (DAS)—namely: vegetative (41 DAS), flowering (58 DAS),
podding (84 DAS), pod-filling (97 DAS), maturity (105 DAS), and senescence (114 DAS)
from May to September 2018. AGB assessments were made during the vegetative, flower-
ing, podding, and senescence stages. Leaf area was determined using the LI-3100C Area
Meter from LICOR (Lincoln, NE, USA), and LAI calculated by dividing the green leaf area
by the sampled area. AGB was determined by harvesting all crops within a 1 m2 area in the
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central rows at ground level and then drying the clippings for 120 h at 70 ◦C until a constant
weight was achieved. Chlorophyll concentration (Chl) was measured using a SPAD-502
Plus device (Konica Minolta Sensing Inc., Tokyo, Japan) with SPAD units calibrated using
the same methodology as described in [36]. CCC was estimated by multiplying the Chl
per area values by the LAI. For FVC determination, digital images were captured and
cropped to the area of interest (AOI) in ImageJ, with cropped images processed using the
maximum likelihood supervised classification tool within ArcMap (ArcGIS® by ESRI Inc.,
Redlands, AB, Canada). The zonal statistics tool was subsequently utilised to evaluate the
number of “vegetated” pixels within each plot, and FVC was calculated by dividing the
number of “vegetated” pixels by the total number of pixels in the AOI (refer to Table 1 for
summary statistics).

Table 1. Summary statistics for Bambara groundnut canopy state variables. Min denotes the minimum
value; Mean is the average value; Max indicates the maximum value; SD represents the standard
deviation in the data; and CV (%) signifies the percent coefficient of variation. The sample size (N)
for LAI, CCC, and FVC was 216 while N for AGB was 144.

Canopy State Variables Min Mean Max SD CV (%)

LAI (m2 m−2) 1.39 2.79 4.19 1.40 50
AGB (ton ha−1) 0.59 1.46 2.33 0.87 60
CCC (mg m−2) 35.95 43.42 50.89 7.47 17

FVC (%) 14 32 50 18 57

2.4. UAV, Sensor and Remote Sensing Data Acquisition Missions

To enhance the reproducibility of our method, we utilised an affordable and readily
available commercial UAV, the DJI Phantom 4 Pro (DJI Company, Shenzhen, China; website:
https://www.dji.com/, accessed on 10 June 2020). This vertical take-off and landing (VTOL)
quadcopter has a maximum payload capacity of 477 g and can sustain flight for 20–30 min,
covering distances of up to 7 km. A Canon S100 camera (Canon, Tokyo, Japan), modified
by MaxMax (LDP LLC, Carlstadt, NJ 07072, USA; website: www.maxmax.com, accessed on
10 June 2020), was mounted on the UAV using a two-axis aluminium–carbon–fibre gimbal
set at nadir view (90◦ downward angle). This modification enabled the capture of colour
infrared (CIR) digital imagery spanning the Green–Red–NIR spectrum (520–880 nm).

Six flight missions were conducted to obtain high-resolution images during crucial
crop growth stages, including vegetative, flowering, podding, pod filling, maturity, and
senescence. These flights were carried out under stable weather conditions from 10:00
to 14:00 local time to minimise variations in illumination. The flight paths and settings
were predetermined using the DJI Ground Station Pro software 2.0 v.2.0.16, employing a
moving-box flight path planning approach. To facilitate future image georectification, four
ground control points (GCPs) were permanently positioned at each corner of the field. The
accurate GPS coordinates of the GCPs were surveyed using a real-time kinematic (RTK)-
enabled dual-frequency Leica 1200 Global Navigation Satellite System (GNSS) system with
RTK precision (Leica Geosystems, Heerbrugg, Switzerland). Four 2 × 2 m calibration
targets with nominal reflectance values of 10%, 20%, 50%, and 80% were utilised for
radiometric calibration of the sensor. The spectral reflectance of these targets was measured
using a handheld ASD spectroradiometer (FieldSpec, ASD, Boulder, CO, USA). Ultra high-
resolution images were captured at a pre-scheduled flight altitude of 10 m, in nadir view,
with a low flight speed of 0.5 m s−1, and with an intended overlap of 75% in both in-track
and cross-track directions to ensure sufficient overlapping coverage.

A Dell® Inspiron 7000 laptop (Dell Technologies, Round Rock, TX, USA) was utilised
with the Ground Controlling Station software 2.0 v.2.0.16 to manage the autonomous UAV
flight via wireless network. The Canon S100 camera, set to TV mode for consistent shutter
speed and aperture settings, was autonomously controlled to maintain optimal exposure
levels. To automate camera functionality, the Canon CHDK free development software

https://www.dji.com/
www.maxmax.com
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kit version 1.6.1, available at www.chdk.wiki.com, accessed 12 June 2020 was employed.
The CHDK script enabled the UAV autopilot system to transmit electronic control signals,
automating camera shutter triggering for precise data recording. During the data collection
flight, auto-triggering occurred every 3 s (at a frequency of 0.33 Hz), facilitating the capture
of approximately 400 images covering all plots within a 20 min flight duration, with a
ground resolution of approximately 4 mm per pixel. The captured images were stored in
16-bit local digital memory cards as raw Geographic Tagged Image File Format files for
subsequent image processing.

2.5. Image Processing

Following the flights, the raw images underwent pre-processing to eliminate elec-
tromagnetic interference in the visible bands from the NIR band, using Remote Sensing
Explorer Software version 1.0 (MaxMax LDP LLC, Carlstadt, NJ, USA; www.maxmax.com,
accessed 10 June 2020). Further pre-processing involved correcting lens distortion, chro-
matic aberration, and gamma correction using the Digital Photo Professional image pro-
cessing software version 4.17.20 (Canon Inc., Tokyo, Japan; http://www.canon.co.uk/
support/camera_software/, accessed 10 June 2020). The images were then imported
into Agisoft Photoscan Pro Version 1.4.3 (Agisoft LLC, St. Petersburg, Russia) and mo-
saicked to create a single orthophotomosaic image for the entire study area for each flight
date. The pixel size of the orthophotomosaics was approximately 4 mm per pixel to
ensure high spatial resolution. Additionally, to minimise band-to-band misalignment,
geometric correction was conducted on the orthophotomosaic using GCPs with sur-
veyed GPS coordinates (Section 2.4). The georeferenced orthophotomosaic was subse-
quently brought into ArcMap Version 10.2.2 (ArcGIS®, ESRI Inc., Redlands, AB, Canada;
https://www.esri.com/en-us/arcgis/about-arcgis/overview, accessed 10 June 2020) for
the co-registration of multi-temporal orthophotoimages. Radiometric correction was then
applied to each orthophotomosaic for each flight date, band-by-band, to convert raw digital
number (DN) values to reflectance values by employing a radiometric calibration equation
developed between the known reflectance of the calibration targets and calibration target
DN values in the empirical line correction method. Post-processing tasks included subset-
ting the area of interest (AOI) and digitising the quadrats using the ArcMap Editor tool.
Geoprocessing steps also included resampling the images to a consistent pixel grid and
correcting for any spatial misalignments between different flight dates. Finally, masks were
applied to isolate the central portions of the canopy, excluding borders, and pure canopy
pixels were utilised to compute average reflectance.

2.6. Vegetation Indices and Cumulative Vegetation Indices Calculation

After preprocessing, a set of five VIs was computed from the remotely sensed data
(Table 2). These VIs were calculated for each orthophotomosaic using the ArcMap Raster
Calculator tool, ArcMap Version 10.2.2 (ArcGIS®, ESRI Inc., Redlands, AB, Canada; https://
www.esri.com/en-us/arcgis/about-arcgis/overview, accessed 10 June 2020). Subsequently,
the VIs were extracted on a quadrat-by-quadrat basis, and the mean, standard deviation
and other statistics were generated using the ArcMap Zonal Statistics tool.

Table 2. Vegetation indices (VIs) used in this study.

Index Name Formula References

NDVI Normalized difference vegetation index (NIR − R)/(NIR + R) [22]
GNDVI Green normalized difference vegetation index (NIR − G)/(NIR + G) [25]

SR Simple ratio NIR/R [24]
EVI2 Enhanced vegetation index 2 2.5 × (NIR − R)/(1 + NIR + 2.4 × R) [26]

CIgreen Green chlorophyll index (NIR/G) − 1 [27]

Note: NIR, R, and G are the reflectance values of the near infrared, red, and green bands, respectively.

www.chdk.wiki.com
www.maxmax.com
http://www.canon.co.uk/support/camera_software/
http://www.canon.co.uk/support/camera_software/
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
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We evaluated three integration periods: from flowering to maturity, from flowering
to senescence, and from vegetative to senescence. We calculated the ∑VIs over these
integration periods using the same formula as in [8].

2.7. Model Selection and Modelling Strategy

We carefully selected the models to be used for estimating canopy state variables
from VIs/ΣVIs. First, we assessed the dimensionality and multicollinearity of the dataset
using principal component analysis (PCA) and variance inflation factor (VIF) analysis.
Preliminary PCA results showed that a few principal components (PCs) captured most
of the variance, suggesting the need for dimensionality reduction. This supported the
decision to select models capable of handling high-dimensional data. High VIF values indi-
cated the need for implementing models, which can deal effectively with multicollinearity.
Furthermore, we examined residual plots and conducted tests to identify outliers and het-
eroscedasticity to inform our decision to select models, which are robust to outliers. Based
on these assessments, we selected a diverse set of regression models that can effectively
handle high dimensionality, multicollinearity, outliers, and overfitting.

We conducted Pearson’s correlation analysis between VIs/∑VIs and canopy state
variables. The VIs from the optimal integration interval, based on the correlation analysis,
were then utilised as input for both linear parametric and non-linear non-parametric
regression models, including Huber Regressor (HR), Theil-Sen Regressor (TSR), AdaBoost
Regressor (ABR), CatBoost Regressor (CBR), Multiple Linear Regression (MLR), Random
Forest Regression (RFR), Partial Least Squares Regression (PLSR), and Ridge Regression
(RR). HR is known for its robustness to outliers, which can indirectly help in datasets where
outliers might exacerbate multicollinearity issues [37]. TSR, being a non-parametric method
based on median calculations, is less sensitive to multicollinearity and offers robustness
against certain types of data anomalies [38]. ABR, an ensemble method, can enhance
model accuracy by combining multiple weak learners, providing a safeguard against
overfitting, especially when the base estimator is appropriately chosen [39]. CBR, on the
other hand, is designed to handle categorical features and high-dimensional data efficiently,
with built-in mechanisms to prevent overfitting and address multicollinearity [40]. MLR
uses regularisation (e.g., Ridge or Lasso) for overfitting, VIF for multicollinearity, and
feature selection for high dimensionality [41]. RFR minimises overfitting with tree control,
handles multicollinearity by subsampling, and addresses high dimensionality by feature
selection [42]. PLSR reduces overfitting and multicollinearity through latent variables
and manages high dimensionality by capturing essential information [43]. RR minimises
overfitting using L2 regularisation, handles multicollinearity by redistributing variable
influence, and reduces dimensionality effectively [44].

Prior to model implementation, the data were preprocessed for missing values, out-
liers capped, encoded, and normalised using Yeo–Johnson transformation. The dataset was
split randomly into 80% training and 20% testing and scaled using StandardScaler from
sklearn.preprocessing in a Python 3.9 environment (Python software version 3.9.0, Python
Software Foundation, Wilmington, DE, USA). This was determined by experimenting with
various splits: 50–50%, 60–40%, 70–30%, 80–20%, and 90–10%. The scikit-learn library was
used for models such as HR, TSR, ABR, MLR, RFR, PLSR, and RR, utilising classes like
HuberRegressor, TheilSenRegressor, AdaBoostRegressor, LinearRegression, RandomFore-
stRegressor, PLSRegression, and RidgeRegression. For CBR, the CatBoostRegressor class
from the catboost library was used. Hyperparameters were optimised using GridSearchCV
from scikit-learn, which performs an exhaustive search over specified parameter values us-
ing cross-validation. Specifically, for each model, a range of hyperparameters was defined
based on literature and preliminary results. The grid search involved training and validat-
ing models for each combination of hyperparameters in a five-fold cross-validation setup,
ensuring robustness and preventing overfitting. The best hyperparameters were selected
based on the highest average cross-validated score, ensuring optimal model performance
(Table 3).
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Table 3. Hyperparameters evaluated for optimising the ML models.

Model Hyperparameter Description Values Evaluated Selected
Hyperparameter

HR epsilon Tolerance to outliers 0.01, 0.1, 0.5, 1.0, 2.0 0.1

max_iter Maximum iterations
for optimisation 100, 200, 500, 1000 500

alpha Regularisation strength 0.0001, 0.001, 0.01, 0.1, 1.0 0.01

warm_start Reuse previous solution True, False False

TSR n_subsamples Number of subsets for
robust estimation 100, 200, 500, 1000 500

max_iter Maximum iterations
for optimisation 100, 200, 500, 1000 1000

ABR n_estimators Number of weak learners (trees) 50, 100, 200, 500 200

learning_rate Scaling factor for weak learners 0.01, 0.1, 0.5, 1.0 0.1

CBR iterations Number of boosting
iterations (trees) 100, 200, 500, 1000 500

learning_rate Step size for adaptation
during training 0.01, 0.05, 0.1, 0.2 0.1

depth Maximum depth of trees in
the ensemble 4, 6, 8, 10 6

l2_leaf_reg L2 regularisation for leaf values 1.0, 5.0, 10.0 5.0

MLR n/a n/a n/a n/a

RFR n_estimators Number of trees in the forest 10, 50, 100, 200 100

max_depth Maximum depth of each tree None, 10, 20, 30 20

min_samples_split Minimum number of samples to
split a node 2, 5, 10 2

min_samples_leaf Minimum number of samples in a
leaf node 1, 2, 4 1

PLSR n_components Number of components to keep 1, 2, 3, 4 3

scale Whether to scale the data True, False True

RR alpha Regularisation strength 0.1, 1.0, 10.0 1.0

solver Algorithm to use in the optimisation ‘auto’, ‘svd’, ‘cholesky’,
‘lsqr’, ‘saga’ auto

The models were trained on the training data, and their performances were evaluated
on the testing data using metrics such as the coefficient of determination (R2), Root Mean
Squared Error (RMSE), Root Mean Squared Error Percentage (RMSE%), Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE).
The predicted versus observed values and predictor importance plots were generated using
the best model on the testing dataset. To identify the predictors that most significantly
contribute to prediction models, we conducted a variable importance analysis. The impor-
tance of each predictor was determined by calculating its R2 and ranking the indices from
highest to lowest R2 values. A workflow showing the main steps in modelling Bambara
groundnut canopy state variables is shown in Figure 3.
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3. Results and Discussion
3.1. Correlation of Canopy State Variables with Vegetation Indices and Cumulative
Vegetation Indices

Figure 4 shows strong correlations between LAI, CCC, AGB, and VIs at each growth
stage, except during the vegetative and senescence stages. FVC exhibited strong correlations
with VIs at all stages except senescence stage.

The low correlation observed during the vegetative stage can be attributed to low LAI
and high background reflectance. LAI is crucial in linking VIs to agronomic measurements,
particularly in the red and NIR spectral bands, which are sensitive to changes in above-
ground biomass [45]. The overall trend shows correlation increasing from the vegetative to
the flowering stage, then declining from flowering to senescence, with peak values in LAI,
CCC, FVC, and AGB observed at flowering. This trend is consistent with the findings of
Tan et al. [46] who reported that VIs effectively estimate maize LAI, with the best results
observed from the bell stage to the silking stage, when LAI experiences significant changes.
Similarly, another study also highlighted the effectiveness of hyperspectral VIs in moni-
toring LAI across different growth stages of cotton [47]. Similar variation in correlation
between VIs and maize leaf chlorophyll content (LCC) throughout the growing season was
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reported by Yang et al. [48]. Moreover, they reported that correlation between VIs and LCC
varied significantly vertically in the upper and lower leaf layers during the early vegetative
and maturity stages.
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Our results show that FVC exhibited strong correlations with all VIs across most
growth stages, confirming the effectiveness of VIs as indicators of vegetation cover. This
finding aligns with a study on soybean growth dynamics, which also highlighted the po-
tential of VIs in analysing vegetation cover and vigour [49]. However, several complexities
and confounding factors explain the weaker correlations between AGB and VIs compared
to LAI, FVC, and CCC. Factors such as canopy structure, water content, and aboveground
biomass distribution heterogeneity contribute to this weaker correlation. A recent study
emphasised the importance in combining various VIs and canopy texture parameters for
more accurate estimation of rice AGB. When both VIs and canopy structure parameters
were combined, there was an improvement in the estimation accuracy [50].

The correlation declines as the canopy undergoes leaf withering and shedding from
flowering to senescence. This results in reduced LAI, FVC, AGB, and CCC, alongside an
increase in carotenoid content, thus decreasing correlation. Similar patterns were observed
in wheat [51] and maize [52]. Our study reveals that ∑VIs, from vegetative to senescence
stages, exhibit stronger correlations with canopy state variables compared to single-stage VIs.
Integrating VIs over time better captures canopy photosynthetic capacity, indicative of potential
dry matter production. Models predicting maize yield based on ∑VIs (VI-SUMs) and VIs by area
under the curve (VI-AUCs) demonstrated better stability and accuracy (R2 = 60–65%) [53]. This
is comparable to Su et al. [54], who estimated rice yield using ∑VIs and leaf panicle abundance
(R2 = 0.73, RRMSE = 0.22 and R2 = 0.75, RRMSE = 0.15, respectively).
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Additionally, our findings indicate that VIs composed of red and NIR bands exhibit
stronger correlations with canopy state variables than VIs composed of NIR and green
bands. This aligns with the well-known phenomenon of vegetation absorbing red bands
more effectively and reflects NIR bands strongly. This observation is also supported by
studies on other crops, such as wheat and soybean, which reported higher accuracy in
biomass estimation using red and NIR bands [55–57].

3.2. Modeling the Relationship between Canopy State Variables and Cumulative Vegetation Indices
Using Machine-Learning Algorithms

Table 4 and Figure 5 show performance results of predictive models in both training
and testing.

Table 4. Evaluation metrics for estimating canopy state variables using various models: CBR (CatBoostRe-
gressor), TSR (TheilSen Regressor), ABR (AdaBoost Regressor), HR (Huber Regressor), MLR (Multiple
Linear Regressor), RFR (Random Forest Regressor), PLSR (Partial Least Squares Regressor), and RR (Ridge
Regressor). The best-performing models in testing are indicated using bold font.

Model CBR TSR MLR RR PLSR RFR ABR HR

Data Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

AGB

R2 0.99 0.55 0.47 0.66 0.65 0.77 0.27 0.49 0.04 0.21 0.91 0.57 0.90 0.47 0.50 0.66
RMSE 0.04 0.39 0.39 0.31 0.37 0.30 0.46 0.38 0.51 0.46 0.19 0.40 0.21 0.42 0.39 0.33
RMSE% 3 27 26 21 25 20 31 26 34 31 13 27 14 28 26 22
MAE 0.03 0.25 0.23 0.22 0.24 0.23 0.29 0.27 0.33 0.31 0.10 0.27 0.16 0.28 0.22 0.22
MSE 0.00 0.16 0.15 0.10 0.14 0.09 0.21 0.15 0.26 0.21 0.04 0.16 0.04 0.18 0.15 0.11
MAPE 2 17 16 15 16 18 22 21 23 22 5 16 11 19 15 17

CCC

R2 0.99 0.83 0.84 0.83 0.84 0.83 0.83 0.81 0.81 0.78 0.98 0.85 0.93 0.82 0.84 0.82
RMSE 0.25 2.91 3.06 3.10 2.87 2.97 2.94 3.11 3.09 3.30 1.01 2.88 1.98 2.91 2.88 3.06
RMSE% 1 6 7 7 6 6 6 7 7 7 2 6 4 6 6 7
MAE 0.21 2.29 2.42 2.43 2.27 2.35 2.33 2.52 2.45 2.69 0.74 2.29 1.70 2.28 2.26 2.40
MSE 0.07 8.46 9.34 9.58 8.23 8.84 8.65 9.66 9.53 10.89 1.03 8.31 3.93 8.48 8.31 9.34
MAPE 1 5 5 5 5 5 5 6 5 6 2 5 4 5 5 5

FVC

R2 0.99 0.97 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.99 0.98 0.99 0.97 0.98 0.98
RMSE 0.00 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.01 0.02 0.02 0.03 0.02 0.03
RMSE% 1 7 6 8 6 7 6 8 7 8 3 6 5 7 6 7
MAE 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02
MSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MAPE 1 11 31 24 16 25 18 17 42 13 3 10 9 11 24 24

LAI

R2 0.99 0.70 0.79 0.73 0.80 0.74 0.79 0.74 0.72 0.71 0.97 0.55 0.91 0.69 0.79 0.74
RMSE 0.08 0.64 0.58 0.65 0.56 0.63 0.57 0.62 0.64 0.66 0.21 0.74 0.39 0.65 0.56 0.63
RMSE% 2 19 18 20 17 19 17 19 19 20 6 22 12 20 17 19
MAE 0.06 0.52 0.45 0.50 0.43 0.48 0.44 0.48 0.51 0.53 0.16 0.60 0.33 0.52 0.43 0.49
MSE 0.01 0.42 0.34 0.42 0.31 0.40 0.32 0.39 0.41 0.43 0.04 0.54 0.15 0.42 0.32 0.40
MAPE 3 18 16 17 15 16 16 16 18 21 6 21 11 18 15 17

For AGB, the gradient boosting CBR displayed an impressive training accuracy, but
its performance in testing was moderate, suggesting potential overfitting. While our study
employed CBR, other studies have also highlighted the efficacy of other gradient boosting
algorithms such as the grasshopper optimisation algorithm-driven XGBoost (GOA-XGB) model
which accurately predicted wheat AGB using multispectral bands and VIs. GOA-XGB out-
performed other models, with RMSE of 0.226 kg m−2 and R2 of 0.855 [58]. MLR and TSR, on
the other hand, showed a more consistent performance between training and testing, making
them better performing models in terms of errors. Linear regression models, in general, have
been foundational in many agronomy studies due to their interpretability. RFR and ABR
both exhibited high training accuracies, but their testing performances were lower. Similarly,
Wai et al. [59] employed Sentinel-2 Multispectral Instrument (MSI) derivatives and Shuttle Radar
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Topographic Mission (SRTM) Digital Elevation Model (DEM) together with field data and ML
techniques to estimate AGB of evergreen and deciduous forest in Myanmar. They found that
RFR and the gradient boosting algorithm provided moderate results (validation R2 = 0.47,
RMSE = 24.91 t/ha and R2 = 0.52, RMSE = 34.72 t/ha). Their findings suggested that these mod-
els hold significant potential in estimating AGB. In a comparative study on AGB in plantation
forests, Stochastic Gradient Boosting (SGB) outperformed RFR, especially when applied to a
combined species dataset. This highlights the importance of appropriate model selection based
on the specific dataset and ecological context [60]. In our study, simpler models like PLSR, RR,
and HR had varied performances, indicating they might not be the best fit for this particular
dataset. RR performance can be influenced by its regularisation parameter, potentially leading
to overfitting or underfitting. PLSR performance can be influenced by the number of latent
variables used and the nature of relationships between predictors and the response variable. A
study by Ohsowski et al. [61] highlighted these issues with RR and PLSR in estimating forest
AGB. HR for instance is influenced by its epsilon parameter which determines its sensitivity to
outliers in the dataset [37]. These results indicate the importance of careful model tuning prior
to modelling.
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For CCC, in training the ensemble models CBR and RFR, exhibited similar strong
performance, however, in testing RFR achieved a higher R2 than CBR. This was followed
by ABR with a slightly lower performance in testing. Zhang et al. [62] employed several
ensemble learning algorithms including RFR, gradient boosting decision tree (GBDT),
extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and
CBR to estimate chlorophyll-a content in water bodies using hyperspectral data. They
reported that XGBoost outperformed the other models in estimating chlorophyll-a content
(R2 = 0.8351, RMSE = 6.6477 µg/L). The enhanced performances of ensemble models are
due to their capacity to capture complex non-linear relationships, they are robust to noise,
can handle multicollinearity, and maintain balance between bias and variance. Moreover,
ensemble models combine predictions from multiple base models, hence providing better
generalisation of unseen data [62]. In our study, MLR, RR, TSR PLSR, and HR, had similar
performance in predicting CCC. It is worth noting that these models displayed more
stable performance when comparing training and testing. Ensemble models are often
considered as “black-box” models as their decision-making processes are less interpretable
than simpler models which provide a coefficient-based equation [63]. Thus, it might be
simpler to implement linear models to estimate groundnut canopy state variables.

In prediction of FVC, all models had similar performance (similar R2 and error eval-
uation metrics) with RFR performing slightly better in testing. This is consistent with
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findings from a study that employed a combination of VIs derived from Sentinel-2 and
UAV images together with ML algorithms for wheat and sugarcane FVC estimation in
India. They reported that RFR and k-nearest neighbor (KNN) outperform support vector
regression (SVR) and linear regressor. The RFR model achieved highest R2 values ranging
from 0.862 to 0.873 when different VIs are used as input features. Another study employed
UAV imagery and three models including RFR, artificial neural network (ANN), and MLR
to estimate maize FVC under varying irrigation levels [64]. Results indicate that RFR was
the most accurate, especially for different growth stages and water stress conditions, while
MLR performed poorly for high FVC levels. However, the authors pointed to the need to
test the developed models on the same crop and other crops in different locations across
several growing seasons.

For LAI, the ensemble models CBR, RFR, and ABR had impressive training perfor-
mance while testing performance was lower. This is indicative of potential overfitting.
This is consistent with the findings of Martinez et al. [65] where they explored the use of
satellite-derived VIs together with linear, non-linear, decision trees and RFR algorithms to
model mangrove forests. Although their results indicated the ensemble RFR model to be
the best performing with lowest RMSE, they highlighted the potential of overfitting. As ob-
served previously, TSR, MLR, PLSR, HR, and RR had more stable performance comparing
training and testing evaluation metrics. Although MLR performed best in testing there was
not much difference. This suggest that these models generalise better on unseen data in
testing. This corroborates with a study on soybean phenotyping where multimodal UAV
hyperspectral, multispectral, and LiDAR, data collected at three growth stages were used
as input to six algorithms including MLR, RFR, XGBoost, SVM, and back propagation (BP)
for the estimation of LAI [66]. Although their results indicate that XGBoost and RFR had
better performances in validation (R2 of 0.762, RMSE of 0.236 and R2 of 0.737, RMSE of
0.277, respectively) it was not much different from MLR (R2 of 0.649 and RMSE of 0.253).

To conclude, models like CBR, RFR, and ABR showed highest performance in training
for estimation of groundnut canopy state variables, indicating their enhanced capacity to
capture complex relationships and patterns in the data. However, as highlighted before,
the performance was significantly lower in testing which might indicate the need for
careful hyperparameter tuning and feature engineering to minimise potential overfitting.
Moreover, high model complexity, insufficient training data, noisy data, and lack of cross-
validation might also contribute to overfitting. Models like MLR, TSR, PLSR, HR, and
RR showed more consistent performance between training and testing, suggesting their
reliability in estimating groundnut canopy state variables. These models are reliable choices
which might be worthy of consideration in future modelling of agronomic variables.

3.3. Predictor Importance for Estimating Bambara Groundnut Canopy State Variables

As shown in Figure 6, for AGB, the ranking of feature importance is GNDVI (most
important), CIgreen, NDVI, SR, and EVI2 (least important). In CCC estimation, SR leads,
followed by NDVI and GNDVI, with EVI2 and CIgreen being least important. For FVC,
CIgreen is most crucial, then NDVI and GNDVI, with SR and EVI2 as least important.
Lastly, in LAI estimation, GNDVI is most important, followed by EVI2 and NDVI (similar
importance), then CIgreen, and SR (least important).

In accordance with our findings, Gitelson and Merzlyak [67], highlighted that GNDVI
differs from NDVI by substituting the red band with the green band, resulting in increased
sensitivity to changes in chlorophyll concentration. This substitution of bands has led to
enhancements in estimation. Our findings are consistent with the work of Sankaran et al. [68],
who demonstrated strong correlations between GNDVI and seed yield, as well as biomass.
Additionally, Macedo et al. [69] found a robust relationship between GNDVI and corn crop
productivity, further emphasizing the importance of GNDVI in AGB estimation. In addition
to GNDVI, other VIs have also been extensively studied for AGB estimation. For instance,
Liu et al. [70] demonstrated the estimation of potato AGB based on UAV red–green–blue images
using different texture features and crop height. Tao et al. [71] found significant correlations
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between VIs, red-edge parameters, and AGB, highlighting the potential for improved AGB
estimation using a combination of these parameters. Furthermore, the integration of RS data,
such as LiDAR and optical sensors, has been shown to enhance AGB estimation [72].
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Similar to our results, SR was identified as having the best predictive performance for
estimating canopy level chlorophyll content [73]. Additionally, the red-edge region of the
electromagnetic spectrum showed strong potential for estimating CCC [74]. Furthermore,
the red-edge chlorophyll index (CIred-edge) was found to be a good and linear estimator of
CCC in different cropping systems [75]. The relevance of these indices in estimating CCC
was further supported by studies that utilised in situ measurements of spectral reflectance,
biophysical characteristics, and ecosystem CO2 fluxes to estimate CCC [76]. It is important
to note that the effectiveness of these indices in estimating CCC was studied not only
at the canopy level but also at the leaf scale. For instance, the relationship between leaf
chlorophyll content and canopy reflectance was explored, indicating the potential for
accurately extrapolating leaf-scale indices to the canopy level [77].

In the estimation of FVC, CIgreen emerges as the most important index, outperforming
others in robustness and suitability, similar to the results of Thanyapraneedkul et al. [78].
NDVI and GNDVI also played significant roles, showing strong linear relationships with
FVC across various environmental conditions [76,77]. Conversely, indices like SR and EVI2
were found to be less effective in predicting Bambara groundnut FVC. Similar studies by
Viña et al. [79] and Luscier et al. [80] indicated that these indices had lower predictive
performance and are recommended less frequently for monitoring vegetation biophysical
characteristics. This suggests that the selection of appropriate VIs is critical for accurate
and reliable FVC estimation.

Our results revealed that GNDVI was the best index for estimating Bambara groundnut
LAI. The importance of GNDVI for LAI estimation is supported by Dai et al. [81], who
found that GNDVI, along with other indices such as EVI and Soil Adjusted Vegetation Index
(SAVI), exhibited higher correlations with LAI compared to NDVI. EVI2 and NDVI have
also been highlighted as important indices for LAI estimation. Fang et al. [82] discussed the
widespread use of NDVI for LAI estimation, indicating its significance in this context. Kang
et al. [83] emphasised the comparable performance of EVI2 and EVI in LAI estimation at
global scales, further underlining the importance of these indices. On the other hand, our
results indicate CIgreen and SR were identified as the least important indices for Bambara
groundnut LAI estimation. This is supported by the study of Stenberg et al. [84] who
found that CIgreen and SR exhibited poor sensitivity to changes in LAI due to saturation. In
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conclusion, the importance of VIs for LAI estimation varies, with GNDVI being the most
important, followed by EVI2 and NDVI, with CIgreen and SR being the least important.

4. Limitations and Future Perspectives

A limitation of our study is the restricted temporal scope, focusing on data from
2018–2019. Key crop growth information is influenced by multiple factors such as environ-
ment and temperature, necessitating a longer period of data collection to capture inter-annual
variability. Moreover, expanding the study to cover more regions and a wider range of genotypes
is crucial for comparative analysis and generalisation of the findings. Such comprehensive data
would allow for a more robust understanding of crop growth dynamics and the development of
models that are resilient across different environmental conditions and genetic variations.

Another significant challenge in our study is the underlying issue of overfitting. To
mitigate overfitting in ML modelling, several techniques have been proposed. One of the
main methods is k-fold cross-validation, which assesses model performance on different
subsets of the data to ensure generalisation [85]. Feature selection is another technique
whereby irrelevant features are eliminated to reduce model complexity [86]. Regularisation
techniques, such as L1 (Lasso) or L2 (Ridge), which penalise large coefficients aiming to
simplify models are also effective. Novel methods like L1/4 regularisation can address
both overfitting and underfitting [87]. Another technique is monitoring model perfor-
mance on a validation set and employing early stopping when performance deteriorates.
Data augmentation techniques, for example synthetic data augmentation for tabular data
(SMOTE), generative adversarial networks (GAN), and combined use of SMOTE and GAN,
can effectively increase training dataset size thereby increasing model variations and han-
dling concerns of overfitting and loss of generalisation [88]. Moreover, ensemble models,
such as RFR and gradient boosting regressor, have been shown to offer high resilience
against overfitting. However, opting for simpler models or reducing the complexity of the
models are beneficial, as observed in our results. Finally, fine-tuning hyperparameters can
effectively minimise both underfitting and overfitting.

Future studies should explore the use of Explainable artificial intelligence to under-
stand the decision-making mechanisms models and interactions among various indices
and algorithms. The integration of data from various in situ and other sources, such as
meteorological data, field ancillary data, and real-time data, has the potential to enhance
understanding and improve prediction accuracy. In addition, the utilisation of advanced
deep learning methodologies, such as convolutional neural networks, has promise in the
extraction of features from RS data, thereby improving prediction accuracy. Moreover,
multispectral and hyperspectral data, in conjunction with the abovementioned data, have
the potential to provide a comprehensive understanding of crop growth and development.
Future studies should explore the integration of radiative transfer models with deep learn-
ing for gauging the estimation of crop state variables. Such hybrid methods combine both
the strengths of process-based and data-driven models for scalable, accurate, and robust
prediction models.

5. Conclusions

The study investigated correlations between LAI, AGB, FVC, and CCC with VIs/∑VIs
obtained at single stages and over combinations of stages. The highest single-stage cor-
relation was observed at flowering, while ∑VIs spanning from vegetative to senescence
showed the strongest correlations with all canopy state variables. Although ensemble
models performed well in training across all canopy state variables, they exhibited signs
of potential overfitting during testing. In contrast, simpler models consistently provided
reliable results in both training and testing. Our results show that MLR is particularly
effective for AGB and LAI estimation, while RFR shows superior performance for CCC and
FVC estimation. Our findings highlight GNDVI as the most crucial index for estimating
Bambara groundnut AGB and LAI, while SR proves optimal for CCC and CIgreen for FVC,
underlining the importance of careful VI selection in canopy state variable estimation.
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In conclusion, our study demonstrates that VIs derived from images captured by digital
cameras mounted on low-cost UAVs, together with machine learning algorithms, can
accurately estimate Bambara groundnut canopy state variables.
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