Characteristics and Potential Use of Fruits from Different Varietal Groups of Sechium edule (Jacq.) Sw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Morphological and Physicochemical Characterization of the Fruits
2.2. Postharvest Characterization and 1-MCP Application
2.3. Statistical Analysis
3. Results and Discussion
3.1. Morphological and Phytochemical Characterization of the Fruits
3.2. Postharvest Characterization
3.3. Effect of 1-MCP on Chayote Fruits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guzmán-Barrera, L.A.; Solano-Legaria, J.P.; Iñiguez-Cadena, J.; Castellanos-Sahagún, J. Phylogenetic relationships among Mexican species of the genus Sechium (Cucurbitaceae). Turk. J. Bot. 2021, 45, 14. [Google Scholar] [CrossRef]
- Iñiguez-Luna, M.I.; Cadena-Iñiguez, J.; Soto-Hernández, R.M.; Morales-Flores, F.J.; Cortes-Cruz, M.; Watanabe, K.N. Natural bioactive compounds of Sechium Spp. for therapeutic and nutraceutical supplements. Front. Plant Sci. 2021, 12, 772389. [Google Scholar] [CrossRef] [PubMed]
- Mishra, L.K.; Das, P. Nutritional evaluation of squash (Sechium edule) germplasms collected from Garo Hills of Meghalaya—North East India. Int. J. Agric. Environ. Biotechnol. 2015, 8, 971–975. [Google Scholar] [CrossRef]
- Vieira, E.F.; Pinho, O.; Ferreira, I.M.P.L.V.O.; Delerue-Matos, C. Chayote (Sechium edule): A Review of nutritional composition, bioactivities and potential applications. Food Chem. 2019, 275, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Aguilar, S.; Ruiz-Posadas, L.D.M.; Cadena-Iñiguez, J.; Soto-Hernández, M.; Santiago-Osorio, E.; Aguiñiga-Sánchez, I.; Rivera-Martínez, A.R.; Aguirre-Medina, J.F. Sechium edule (Jacq.) Swartz, a new cultivar with antiproliferative potential in a human cervical cancer HeLa Cell line. Nutrients 2017, 9, 798. [Google Scholar] [CrossRef] [PubMed]
- Gordillo-Salinas, L.S.; Arévalo-Galarza, M.L.; Ramírez-Rodas, Y.C.; Tlapal-Bolaños, B.; Villegas-Monter, A.; Cadena-Iñiguez, J. In vitro antifungal activity of wild chayote fruit juice (Sechium compositum) on Botrytis cinerea. Acta Hortic. 2022, 1340, 185–190. [Google Scholar] [CrossRef]
- Riviello-Flores, M.D.l.L.; Arévalo-Galarza, M.D.L.; Cadena-Iñiguez, J.; Soto-Hernández, R.M.; Ruiz-Posadas, L.D.M.; Gómez-Merino, F.C. Nutraceutic characteristics of the extracts and juice of chayote (Sechium edule (Jacq.) Sw.) fruits. Beverages 2018, 4, 37. [Google Scholar] [CrossRef]
- Debnath, P.; Das, B.; Biswas, S.; Kar, A.; Mukherjee, P.K. Quality evaluation and quantification of cucurbitacin E in different cultivars of Cucumis sativus L. fruit by a validated high-performance thin-layer chromatography method. JPC-J. Planar Chromat. 2021, 34, 139–146. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Choi, D.; Zhang, C.; Liu, H.; Lee, S. Profiling cucurbitacins from diverse watermelons (Citrullus spp.). Hortic. Environ. Biotechnol. 2018, 59, 557–566. [Google Scholar] [CrossRef]
- Montecinos-Pedro, L.A.; Arévalo-Galarza, M.d.L.; García-Osorio, C.; Cadena-Iñiguez, J.; Ramírez-Guzmán, M.E. Post-harvest quality of squash fruits stored at low temperature. Rev. Mex. Cienc. Agríc. 2019, 10, 1157–1166. [Google Scholar] [CrossRef]
- Islam, S.; Kumar, A.; Dash, K.K.; Alom, S. Physicochemical analysis and nutritional properties of fresh, osmo-dehydrated and dried chayote (Sechium edule L.). J. Postharvest Technol. 2018, 6, 49–56. [Google Scholar]
- Ramírez-Rodas, Y.; Arévalo-Galarza, L.; Cadena-Iñiguez, J.; Delgado-Alvarado, A.; Ruiz-Posadas, L.; Soto-Hernández, M. Postharvest storage of three chayote (Sechium edule (Jacq.) Sw.) varieties. Sci. Agropecu. 2021, 12, 239–247. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Arévalo-Galarza, L.; Ruiz-Posadas, L.M.; Aguirre-Medina, J.F.; Soto-Hernández, M.; Luna-Cavazos, M.; Zavaleta-Mancera, H.A. Quality evaluation and influence of 1-MCP on Sechium edule (Jacq.) Sw. fruit during postharvest. Postharvest Biol. Technol. 2006, 40, 170–176. [Google Scholar] [CrossRef]
- Serradilla, M.J.; Falagán, N.; Bohmer, B.; Terry, L.A.; Alamar, M.C. The role of ethylene and 1-MCP in early-season sweet cherry ‘Burlat’ storage life. Sci. Hortic. 2019, 258, 108787. [Google Scholar] [CrossRef]
- Megías, Z.; Martínez, C.; Manzano, S.; García, A.; del Mar Rebolloso-Fuentes, M.; Valenzuela, J.L.; Garrido, D.; Jamilena, M. Ethylene biosynthesis and signaling elements involved in chilling injury and other postharvest quality traits in the non-climacteric fruit of zucchini (Cucurbita pepo). Postharvest Biol. Technol. 2016, 113, 48–57. [Google Scholar] [CrossRef]
- Lien, N.; Zsom, T.; Mai, D.; Baranyai, L.; Hitka, G. Comparison of 1-MCP treatment on four melon cultivars using different temperatures. J. Appl. Bot. Food Qual. 2020, 93, 122–129. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Soto-Hernández, M.; Arévalo-Galarza, M.d.L.; Avendaño-Arrazate, C.H.; Aguirre-Medina, J.F.; Ruiz-Posadas, L.d.M. Caracterización bioquímica de variedades domesticadas de chayote Sechium edule (Jacq.) Sw. comparadas con parientes silvestres. Rev. Chapingo Ser. Hortic. 2011, 17, 45–55. [Google Scholar]
- Cadena-Iñiguez, J.; Avendaño-Arrazate, C.H.; Soto-Hernández, M.; Ruiz-Posadas, L.M.; Aguirre-Medina, J.F.; Arévalo-Galarza, L. Infraspecific variation of Sechium edule (Jacq.) Sw. in the state of Veracruz, México. Genet. Resour. Crop Evol. 2008, 55, 835–847. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, B. Using Clear Nail Polish to Make Arabidopsis Epidermal Impressions for Measuring the Change of Stomatal Aperture Size in Immune Response. In Plant Pattern Recognition Receptors: Methods and Protocols; Shan, L., He, P., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; pp. 243–248. ISBN 978-1-4939-6859-6. [Google Scholar] [CrossRef]
- Salisbury, E.J.I. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Phil. Trans. R. Soc. Lond. 1928, 216, 1–65. [Google Scholar] [CrossRef]
- Zhou, J.-Y.; Sun, C.-D.; Zhang, L.-L.; Dai, X.; Xu, C.-J.; Chen, K.-S. Preferential accumulation of orange-colored carotenoids in ponkan (Citrus reticulata) fruit peel following postharvest application of ethylene or ethephon. Sci. Hortic. 2010, 126, 229–235. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. [34] Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Plant Cell Membranes; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; APS Press: New York, NY, USA; St. Paul, MI, USA, 2006; pp. 1–218. ISBN 978-0890541920. [Google Scholar]
- Vafaee, Y.; Ghaderi, N.; Khadivi, A. morphological variation and marker-fruit trait associations in a collection of grape (Vitis vinifera L.). Sci. Hortic. 2017, 225, 771–782. [Google Scholar] [CrossRef]
- González-Santos, R.; Cadena-Íñiguez, J.; Morales-Flores, F.J.; Ruiz-Vera, V.M.; Pimentel-López, J. Prediction of the effects of climate change on Sechium edule (Jacq.) swartz varietal groups in Mexico. Genet. Resour. Crop Evol. 2017, 64, 791–804. [Google Scholar] [CrossRef]
- Poljak, I.; Vahčić, N.; Liber, Z.; Tumpa, K.; Pintar, V.; Zegnal, I.; Vidaković, A.; Valković, B.; Kajba, D.; Idžojtić, M. Morphological and chemical diversity and antioxidant capacity of the service tree (Sorbus domestica L.) fruits from two eco-geographical regions. Plants 2021, 10, 1691. [Google Scholar] [CrossRef]
- Fanourakis, D.; Nikoloudakis, N.; Pappi, P.; Markakis, E.; Doupis, G.; Charova, S.N.; Delis, C.; Tsaniklidis, G. The role of proteases in determining stomatal development and tuning pore aperture: A review. Plants 2020, 9, E340. [Google Scholar] [CrossRef]
- Khadivi-Khub, A. Physiological and genetic factors influencing fruit cracking. Acta Physiol. Plant. 2014, 37, 1718. [Google Scholar] [CrossRef]
- Li, N.; Fu, L.; Song, Y.; Li, J.; Xue, X.; Li, S.; Li, L. Water entry in jujube fruit and its relationship with cracking. Acta Physiol. Plant. 2019, 41, 162. [Google Scholar] [CrossRef]
- Van Meeteren, U.; Aliniaeifard, S. Stomata and Postharvest Physiology. In Postharvest Ripening Physiology of Crops; Pareek, S., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 157–216. ISBN 978-0-429-16053-0. [Google Scholar]
- Yang, F.-H.; DeVetter, L.W.; Strik, B.C.; Bryla, D.R. Stomatal functioning and its influence on fruit calcium accumulation in Northern Highbush blueberry. HortScience 2020, 55, 96–102. [Google Scholar] [CrossRef]
- Habermann, E.; Dias de Oliveira, E.A.; Contin, D.R.; San Martin, J.A.B.; Curtarelli, L.; Gonzalez-Meler, M.A.; Martinez, C.A. Stomatal development and conductance of a tropical forage legume are regulated by elevated [CO2] under moderate warming. Front. Plant Sci. 2019, 10, 609. [Google Scholar] [CrossRef]
- Qi, X.; Torii, K. Hormonal and environmental signals guiding stomatal development. BMC Biol. 2018, 16, 21. [Google Scholar] [CrossRef]
- Simkin, A.J.; Faralli, M.; Ramamoorthy, S.; Lawson, T. Photosynthesis in non-foliar tissues: Implications for yield. Plant J. 2020, 101, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Shan, N.; Hu, L.; Zhang, C.; Yu, C.; Ren, H.; Turgeon, R.; Zhang, Z. The complex character of photosynthesis in cucumber fruit. J. Exp. Bot. 2017, 68, 1625–1637. [Google Scholar] [CrossRef]
- Inamdar, J.A.; Gangadhara, M.; Shenoy, K.N. Structure, Ontogeny, Organographic Distribution, and Taxonomic Significance of Trichomes and Stomata in the Cucurbitaceae. In Biology and Utilization of the Cucurbitaceae; Cornell University Press: Ithaca, NY, USA, 2019; pp. 209–224. ISBN 978-1-5017-4544-7. [Google Scholar]
- Casson, S.; Gray, J.E. Influence of environmental factors on stomatal development. New Phytol. 2008, 178, 9–23. [Google Scholar] [CrossRef]
- Conesa, A.; Manera, F.C.; Brotons, J.M.; Fernandez-Zapata, J.C.; Simón, I.; Simón-Grao, S.; Alfosea-Simón, M.; Martínez Nicolás, J.J.; Valverde, J.M.; García-Sanchez, F. Changes in the content of chlorophylls and carotenoids in the rind of fino 49 lemons during maturation and their relationship with parameters from the CIELAB color space. Sci. Hortic. 2019, 243, 252–260. [Google Scholar] [CrossRef]
- Fu, A.; Wang, Q.; Mu, J.; Ma, L.; Wen, C.; Zhao, X.; Gao, L.; Li, J.; Shi, K.; Wang, Y.; et al. Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. Hortic. Res. 2021, 8, 35. [Google Scholar] [CrossRef]
- Hashimoto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and photosynthesis. Subcell. Biochem. 2016, 79, 111–139. [Google Scholar] [CrossRef] [PubMed]
- Cambrón-Sandoval, V.H.; España-Boquera, M.L.; Sánchez-Vargas, N.M.; Sáenz-Romero, C.; Vargas-Hernández, J.J.; Herrerías-Diego, Y. Producción de clorofila en Pinus pseudostrobus en etapas juveniles bajo diferentes ambientes de desarrollo. Rev. Chapingo Ser. Cienc. For. Y Del Ambiente 2011, 17, 253–260. [Google Scholar] [CrossRef]
- Sawicki, A.; Willows, R.D.; Chen, M. Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f. Photosynth. Res. 2019, 140, 115–127. [Google Scholar] [CrossRef]
- Koh, P.C.; Noranizan, M.A.; Nur Hanani, Z.A.; Karim, R.; Rosli, S.Z. Application of edible coatings and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (Cucumis melo L. reticulatus Cv. Glamour). Postharvest Biol. Technol. 2017, 129, 64–78. [Google Scholar] [CrossRef]
- Olayinka, U.; Etejere, E.O. Proximate and chemical compositions of watermelon (Citrullus lanatus (Thunb.)) Matsum and Nakai cv Red and cucumber (Cucumis sativus L. cv Pipino). Int. Food Res. J. 2018, 25, 1060–1066. [Google Scholar]
- Valverde-Miranda, D.; Díaz-Pérez, M.; Gómez-Galán, M.; Callejón-Ferre, Á.-J. Total soluble solids and dry matter of cucumber as indicators of shelf life. Postharvest Biol. Technol. 2021, 180, 111603. [Google Scholar] [CrossRef]
- Hadiwijaya, Y.; Putri, I.E.; Munawar, A.A. Multi-product calibration model for soluble solids and water content quantification in Cucurbitaceae family, using visible/near-infrared spectroscopy. Heliyon 2021, 7, e07677. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.K.; Pandey, A.; Jha, A.K.; Ngachan, S.V. Genetic characterization of chayote [Sechium edule (Jacq.) Swartz.] landraces of North Eastern Hills of India and conservation measure. Physiol. Mol. Biol. Plants 2017, 23, 911–924. [Google Scholar] [CrossRef] [PubMed]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Wichrowska, D.; Ptach, W.; Prus, P.; Sadan, H.A.; Ferenc, P.-F.; Stachowski, P.; et al. Effect of drip fertigation with nitrogen on yield and nutritive value of melon cultivated on a very light soil. Agronomy 2021, 11, 934. [Google Scholar] [CrossRef]
- Amin, M.Z.; Islam, T.; Uddin, M.R.; Uddin, M.J.; Rahman, M.M.; Satter, M.A. Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.). Heliyon 2019, 5, e02462. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, G.; Rizzolo, A.; Grassi, M.; Provenzi, L.; Lo Scalzo, R. External maturity indicators, carotenoid and sugar compositions and volatile patterns in ‘Cuoredolce®’ and ‘Rugby’ mini-watermelon (Citrullus lanatus (Thunb) Matsumura & Nakai) varieties in relation of ripening degree at harvest. Postharvest Biol. Technol. 2018, 136, 1–11. [Google Scholar] [CrossRef]
- Qian, C.; Ren, N.; Wang, J.; Xu, Q.; Chen, X.; Qi, X. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.). Food Chem. 2018, 243, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, P.V.; Caleb, O.J.; Gil, M.I.; Izumi, H.; Colelli, G.; Watkins, C.B.; Zude, M. Quality and safety of fresh horticultural commodities: Recent advances and future perspectives. Food Packag. Shelf Life 2017, 14, 2–11. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, R.R. Chapter 1—Postharvest Diseases of Fruits and Vegetables and Their Management. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–52. [Google Scholar] [CrossRef]
- Li, J.; Wan, F.; Guo, W.; Huang, J.; Dai, Z.; Yi, L.; Wang, Y. Influence of α- and γ-Fe2O3 nanoparticles on watermelon (Citrullus lanatus) physiology and fruit quality. Water Air Soil Pollut. 2020, 231, 143. [Google Scholar] [CrossRef]
- Díaz-Pérez, M.; Carreño-Ortega, Á.; Salinas-Andújar, J.-A.; Callejón-Ferre, Á.-J. Application of logistic regression models for the marketability of cucumber cultivars. Agronomy 2019, 9, 17. [Google Scholar] [CrossRef]
- Barsha, D.C.; Singh, M.; Khanal, P.; Pandey, M.; Pathak, R. Effect of different edible coatings on postharvest quality of mandarin orange (Citrus reticulata Blanco). Agro Bali Agric. J. 2021, 4, 136–144. [Google Scholar] [CrossRef]
- Shumye Adilu, G.; Woldetsadik, K.; Fitiwi, I. Postharvest changes in weight and sugar content of cactus pear [Opuntia ficus-indica (L.) Mill.] fruit under integrated handling practices. Int. J. Fruit Sci. 2020, 20, S1862–S1875. [Google Scholar] [CrossRef]
- Márquez-Cardozo, C.J.; Molina-Hernández, D.; Caballero Gutiérrez, B.L.; Ciro-Velásquez, H.J.; Restrepo Molina, D.A.; Correa-Londoño, G. Physical, physiological, physicochemical and nutritional characterization of pumpkin (Cucurbita maxima) in postharvest stage cultivated in Antioquia-Colombia. Rev. Fac. Nac. De Agron. Medellín 2021, 74, 9735–9744. [Google Scholar] [CrossRef]
- Lufu, R.; Ambaw, A.; Opara, U. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Sci. Hortic. 2020, 272, 109519. [Google Scholar] [CrossRef]
- Mukama, M.; Ambaw, A.; Berry, T.M.; Opara, U.L. Analysing the dynamics of quality loss during precooling and ambient storage of pomegranate fruit. J. Food Eng. 2019, 245, 166–173. [Google Scholar] [CrossRef]
- Romero-Velázquez, S.D.; Tlapal-Bolaños, B.; Cadena-Iñiguez, J.; Nieto-Ángel, D.; Arévalo-Galarza, M.d.L. Hongos causantes de enfermedades postcosecha en chayote (Sechium edule (jacq.) Sw.) y su control in vitro. Agron. Costarric. 2015, 39, 19–32. [Google Scholar] [CrossRef]
- Montecinos-Pedro, L.A.; Ayala-Escobar, V.; Arévalo-Galarza, M.L.; Cadena-Iñiguez, J.; Leyva-Madrigal, K.Y.; Mora-Romero, G.A.; Tovar-Pedraza, J.M. First report of Fusarium citri causing postharvest fruit rot of chayote in Mexico. Plant Dis. 2023, 107, 2226. [Google Scholar] [CrossRef]
- Olguín-Hernández, G.; Cadena-Iñiguez, J.; Arévalo-Galarza, M.d.L.; Valdez-Carrasco, J.; Rosas-Saito, G.; Tlalpal-Bolaños, B. Organismos Asociados al Chayote (Sechium edule (Jacq.) Sw. en México; Colegio de Postgraduados: México City, México, 2017; ISBN 978-607-715-340-5. [Google Scholar]
- Ramírez-Rodas, Y.C.; Arévalo-Galarza, M.d.L.; Cadena-Iñiguez, J.; Soto-Hernández, R.M.; Peña-Valdivia, C.B.; Guerrero-Analco, J.A. Chayote fruit (Sechium edule var. virens levis) development and the effect of growth regulators on seed germination. Plants 2023, 12, 108. [Google Scholar] [CrossRef]
- N’Gaza, A.L.F.; Kouassi, K.I.; Koffi, K.K.; Kouakou, K.L.; Baudoin, J.-P.; Zoro, B.I.A. Prevalence and variation of viviparous germination with respect to fruit maturation in the bottle gourd Lagenaria siceraria (Molina) Standley (Cucurbitaceae). Heliyon 2019, 5, e02584. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Ortiz, F.A.; Castro-Rosas, J.; Gómez-Aldapa, C.; Mora-Escobedo, R.; Rojas-León, A.; Rodríguez-Marín, M.L.; Falfán-Cortés, R.N.; Román-Gutiérrez, A.D. Enzyme activity during germination of different cereals: A review. Food Rev. Int. 2019, 35, 177–200. [Google Scholar] [CrossRef]
- Damaris, R.N.; Lin, Z.; Yang, P.; He, D. The rice alpha-amylase, conserved regulator of seed maturation and germination. Int. J. Mol. Sci. 2019, 20, 450. [Google Scholar] [CrossRef]
- Zhu, L.; Shan, W.; Wu, C.; Wei, W.; Xu, H.; Lu, W.; Chen, J.; Su, X.; Kuang, J. Ethylene-induced banana starch degradation mediated by an ethylene signaling component MaEIL2. Postharvest Biol. Technol. 2021, 181, 111648. [Google Scholar] [CrossRef]
- Saad, M.M. Effect of some postharvest treatments on reducing chilling injury of cucumber fruits during cold storage. Ann. Agric. Sci. Moshtohor 2019, 57, 455–468. [Google Scholar] [CrossRef]
- Yao, W.; Xu, T.; Farooq, S.U.; Jin, P.; Zheng, Y. Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharvest Biol. Technol. 2018, 144, 20–28. [Google Scholar] [CrossRef]
- Xiong, S.; Sun, X.; Tian, M.; Xu, D.; Jiang, A. 1-Methylcyclopropene treatment delays the softening of Actinidia arguta fruit by reducing cell wall degradation and modulating carbohydrate metabolism. Food Chem. 2023, 411, 135485. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, Y.; Zhu, J.; Zhang, N.; Wei, Y.; Jiang, S.; Ye, J.; Shao, X. 1-Methylcyclopropene reduces postharvest water loss by modulating cuticle formation in tomato fruit. Postharvest Biol. Technol. 2023, 206, 112564. [Google Scholar] [CrossRef]
- Balaguera-López, H.E.; Espinal-Ruiz, M.; Rodríguez-Nieto, J.M.; Herrera-Arévalo, A.; Zacarías, L. 1-Methylcyclopropene inhibits ethylene perception and biosynthesis: A theoretical and experimental study on cape gooseberry (Physalis peruviana L.) fruits. Postharvest Biol. Technol. 2021, 174, 111467. [Google Scholar] [CrossRef]
- Hao, J.; Li, X.; Xu, G.; Huo, Y.; Yang, H. Exogenous progesterone treatment alleviates chilling injury in postharvest banana fruit associated with induction of alternative oxidase and antioxidant defense. Food Chem. 2019, 286, 329–337. [Google Scholar] [CrossRef]
- Liang, S.; Kuang, J.; Ji, S.; Chen, Q.; Deng, W.; Min, T.; Shan, W.; Chen, J.; Lu, W. The membrane lipid metabolism in horticultural products suffering chilling injury. Food Qual. Saf. 2020, 4, 9–14. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, Y.; Lin, H.; Lin, M.; Li, H.; Yuan, F.; Chen, Y.; Xiao, J. Effects of paper containing 1-mcp postharvest treatment on the disassembly of cell wall polysaccharides and softening in younai plum fruit during storage. Food Chem. 2018, 264, 1–8. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, H.; Jiang, H.; Xu, Y.; Cao, J.; Jiang, W. Multiple 1-MCP treatment more effectively alleviated postharvest nectarine chilling injury than conventional one-time 1-MCP treatment by regulating ROS and energy metabolism. Food Chem. 2020, 330, 127256. [Google Scholar] [CrossRef] [PubMed]
Varietal Group | Shape | Length (cm) | Weight (g) | SF (Stomata/mm2) | Stomatal Size (µm) | SI (%) | CO* | Ca+b (µg g−1) | Cx+c (µg g−1) | TA (%) | TSS (°Bx) | Total Sugars (%) | Moisture (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a. minor | round | 3.05–4.27 | 23.44 ± 0.64 | 11.30 b ± 1.37 | 28.70 bc ± 0.73 | 0.504 | −0.184 ± 0.099 | 1.0 a ± 0.0 | Nd | 0.14 bc ± 0.004 | 5.42 bc ± 0.106 | 2.38 cd ± 0.12 | 90.97 bc ± 0.48 |
a. levis | pyriform | 5.77–8.50 | 114.37 ± 11.30 | 6.89 ab ± 0.50 | 29.48 bc ± 0.81 | 0.190 | −1.832 ± 0.165 | Nd | Nd | 0.11 ab ± 0.004 | 5.26 abc ± 0.104 | 2.39 cd ± 0.20 | 91.99 bcd ± 0.18 |
a. dulcis | pyriform | 7.74–9.56 | 87.20 ± 1.74 | 19.52 cd ± 1.03 | 28.80 bc ± 0.79 | 0.444 | −1.973 ± 0.081 | Nd | 1.0 a ± 0.0 | 0.18 e ± 0.007 | 5.56 c ± 0.160 | 2.55 d ± 0.28 | 81.23 a ± 0.78 |
a. spinosum | pyriform | 7.30–7.90 | 214.08 ± 6.58 | 5.73 a ± 0.54 | 31.44 cd ± 0.92 | 0.142 | 0.341 ± 0.034 | 1.0 a ± 0.0 | 1.0 a ± 0.0 | 0.14 bc ± 0.004 | 5.02 abc ± 0.30 | 2.51 d ± 0.10 | 90.82 ab ± 0.19 |
a. levis gigante | pyriform | 10.14–13.16 | 415.32 ± 21.13 | 17.35 cd ± 0.54 | 24.01 a ± 0.67 | 0.248 | −1.071 ± 0.181 | 1.0 a ± 0.0 | Nd | 0.11 ab ± 0.005 | 5.18 abc ± 0.237 | 1.51 a ± 0.05 | 93.02 cde ± 0.19 |
v. levis | pyriform | 7.68–12.50 | 197.56 ± 21.28 | 16.71 c ± 1.55 | 22.14 a ± 0.98 | 0.380 | −4.793 ± 0.173 | 33 bc ± 4.0 | 5 bc ± 1.0 | 0.13 bc ± 0.005 | 4.82 a ± 0.216 | 2.17 bcd ± 0.15 | 95.34 ef ± 0.025 |
n. minor | pyriform | 5.02–7.18 | 36.15 ± 1.67 | 7.23 ab ± 0.60 | 28.03 b ± 0.85 | 0.272 | −8.87 ± 0.440 | 227 d ± 16.0 | 44 d ± 2.0 | 0.16 de ± 0.004 | 5.44 bc ± 0.104 | 2.25 cd ± 0.15 | 90.58 ab ± 0.37 |
n. spinosum | round– pyriform | 7.62–15.82 | 310.00 ± 33.59 | 24.66 d ± 1.93 | 35.24 e ± 0.76 | 0.579 | −5.553 ± 0.538 | 68 bc ± 17.0 | 13 bc ± 3.0 | 0.12 ab ± 0.004 | 5.05 abc ± 0.283 | 2.34 cd ± 0.13 | 93.86 def ± 0.020 |
n. xalapensis | pyriform | 7.27–10.75 | 252.16 ± 16.61 | 23.50 cd ± 1.88 | 32.47 de ± 0.76 | 0.666 | −11.080 ± 0.416 | 166 cd ± 16.0 | 30 cd ± 3.0 | 0.14 bc ± 0.005 | 5.01 ab ± 0.276 | 1.76 ab ± 0.12 | 92.14 cde ± 1.31 |
n. maxima | elongated pyriform | 12.35–15.99 | 511.32 ± 13.82 | 39.26 e ± 1.83 | 27.30 b ± 0.71 | 0.632 | −14.322 ± 3.893 | 149 cd ± 9.0 | 23 cd ± 3.0 | 0.10 a ± 0.004 | 4.78 a ± 0.11 | 2.20 bcd ± 0.09 | 96.25 f ± 0.18 |
Mean | - | - | 227.47 | 17.21 | 28.76 | 0.406 | - | 0.065 | 0.012 | 0.13 | 5.11 | 2.21 | 91.62 |
Varietal Group | Weight Loss | Shelf Life (Days) | Pathogen Isolated | |
---|---|---|---|---|
Daily (%) | Level | |||
n. minor | 2.38 ± 0.13 | High | 4 | Colletotrichum sp., Fusarium sp. |
a. levis gigante | 0.82 ± 0.03 | Low | 10 | Colletotrichum sp., Phoma sp. |
n. spinosum | 1.62 ± 0.08 | Medium | 7 | Colletotrichum sp., Fusarium sp., Phoma sp., Alternaria sp., Aspergillus niger |
n. xalapensis | 1.29 ± 0.06 | Medium | 9 | Phoma sp., Colletotrichum sp., Fusarium sp., Alternaria sp., Aspergillus niger |
a. levis | 1.34 ± 0.08 | Medium | 7 | Phoma sp. |
a. dulcis | 1.56 ± 0.09 | Medium | 7 | Phoma sp., Colletotrichum sp. |
n. maxima | 1.07 ± 0.06 | Low | 9 | Phoma sp., Colletotrichum sp. |
a. minor | 2.54 ± 0.15 | High | 3 | No incidence |
a. spinosum | 1.45 ± 0.10 | Medium | 7 | No incidence |
v. levis | 0.87 ± 0.3 | Low | 11 | Colletotrichum sp., Phoma sp., Alternaria sp., Epicoccum sp. |
Treatment | n. minor | a. minor | v. levis (B) | a. levis | a. dulcis | v. levis (A) | |
---|---|---|---|---|---|---|---|
Control | %WL | 17.20 ± 0.77 b * | 18.99 ± 0.819 b | 13.29 ± 0.55 b | 14.34 ± 1.62 a | 17.91 ± 1.324 b | 10.22 ± 0.59 b |
CI | 2.2 | 2.2 | 1.3 | 2.3 | 2.2 | 2.2 | |
1-MCP | %WL | 10.97 ± 0.76 a | 13.52 ± 0.600 a | 9.25 ± 0.50 a | 11.36 ± 0.91 a | 14.40 ± 0.598 a | 6.62 ± 0.32 a |
CI | 0.9 | 1.1 | 0.7 | 1.6 | 1.2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Ponce, E.A.; Arévalo-Galarza, M.d.L.; Cadena-Iñiguez, J.; Soto-Hernández, M.; Ramírez-Rodas, Y.; García-Osorio, C. Characteristics and Potential Use of Fruits from Different Varietal Groups of Sechium edule (Jacq.) Sw. Horticulturae 2024, 10, 844. https://doi.org/10.3390/horticulturae10080844
Rivera-Ponce EA, Arévalo-Galarza MdL, Cadena-Iñiguez J, Soto-Hernández M, Ramírez-Rodas Y, García-Osorio C. Characteristics and Potential Use of Fruits from Different Varietal Groups of Sechium edule (Jacq.) Sw. Horticulturae. 2024; 10(8):844. https://doi.org/10.3390/horticulturae10080844
Chicago/Turabian StyleRivera-Ponce, Edgar Adrián, Ma. de Lourdes Arévalo-Galarza, Jorge Cadena-Iñiguez, Marcos Soto-Hernández, Yeimy Ramírez-Rodas, and Cecilia García-Osorio. 2024. "Characteristics and Potential Use of Fruits from Different Varietal Groups of Sechium edule (Jacq.) Sw" Horticulturae 10, no. 8: 844. https://doi.org/10.3390/horticulturae10080844
APA StyleRivera-Ponce, E. A., Arévalo-Galarza, M. d. L., Cadena-Iñiguez, J., Soto-Hernández, M., Ramírez-Rodas, Y., & García-Osorio, C. (2024). Characteristics and Potential Use of Fruits from Different Varietal Groups of Sechium edule (Jacq.) Sw. Horticulturae, 10(8), 844. https://doi.org/10.3390/horticulturae10080844