
Citation: Tosin, R.; Portis, I.;

Rodrigues, L.; Gonçalves, I.; Barbosa,

C.; Teixeira, J.; Mendes, R.J.; Santos, F.;

Santos, C.; Martins, R.; et al.

Integrating Spectral Sensing and

Systems Biology for Precision

Viticulture: Effects of Shade Nets on

Grapevine Leaves. Horticulturae 2024,

10, 873. https://doi.org/10.3390/

horticulturae10080873

Academic Editor: Stefano Poni

Received: 9 July 2024

Revised: 15 August 2024

Accepted: 16 August 2024

Published: 18 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Integrating Spectral Sensing and Systems Biology for Precision
Viticulture: Effects of Shade Nets on Grapevine Leaves
Renan Tosin 1,2 , Igor Portis 1,2, Leandro Rodrigues 1,2 , Igor Gonçalves 3, Catarina Barbosa 3, Jorge Teixeira 4 ,
Rafael J. Mendes 5 , Filipe Santos 2 , Conceição Santos 5 , Rui Martins 2 and Mário Cunha 1,2,*

1 Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of the University of Porto,
Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal; renan.tosin@fc.up.pt (R.T.);
up202212239@edu.fc.up.pt (I.P.); leandro.a.rodrigues@inesctec.pt (L.R.)

2 INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Campus of the
Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, S/N, 4200-465 Porto, Portugal;
fbsantos@inesctec.pt (F.S.); rmcm@inesctec.pt (R.M.)

3 Associação para o Desenvolvimento da Viticultura Duriense, Edifício Centro de Excelência da Vinha e do
Vinho Parque de Ciência e Tecnologia de Vila Real, Régia Douro Park, 5000-033 Vila Real, Portugal;
igor.goncalves@advid.pt (I.G.); catarina.barbosa@advid.pt (C.B.)

4 GreenUPorto—Sustainable Agrifood Production Research Centre and Inov4Agro, Departamento de Biologia,
Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
agteixei@fc.up.pt

5 iB2Lab, LAQV-REQUIMTE, Biology Department, Faculty of Sciences of the University of Porto, Rua do
Campo Alegre s/n, 4169-007 Porto, Portugal; rafael.mendes@fc.up.pt (R.J.M.); csantos@fc.up.pt (C.S.)

* Correspondence: mccunha@fc.up.pt

Abstract: This study investigates how grapevines (Vitis vinifera L.) respond to shading induced
by artificial nets, focusing on physiological and metabolic changes. Through a multidisciplinary
approach, grapevines’ adaptations to shading are presented via biochemical analyses and hyper-
spectral data that are then combined with systems biology techniques. In the study, conducted in
a ‘Moscatel Galego Branco’ vineyard in Portugal’s Douro Wine Region during post-veraison, shad-
ing was applied and predawn leaf water potential (Ψpd) was then measured to assess water stress.
Biochemical analyses and hyperspectral data were integrated to explore adaptations to shading,
revealing higher chlorophyll levels (chlorophyll a-b 117.39% higher) and increased Reactive Oxygen
Species (ROS) levels in unshaded vines (52.10% higher). Using a self-learning artificial intelligence
algorithm (SL-AI), simulations highlighted ROS’s role in stress response and accurately predicted
chlorophyll a (R2: 0.92, MAPE: 24.39%), chlorophyll b (R2: 0.96, MAPE: 17.61%), and ROS levels
(R2: 0.76, MAPE: 52.17%). In silico simulations employing flux balance analysis (FBA) elucidated
distinct metabolic phenotypes between shaded and unshaded vines across cellular compartments. In-
tegrating these findings provides a systems biology approach for understanding grapevine responses
to environmental stressors. The leveraging of advanced omics technologies and precise metabolic
models holds immense potential for untangling grapevine metabolism and optimizing viticultural
practices for enhanced productivity and quality.

Keywords: chlorophyll; flux balance analysis; phenometabolome; phenotype; photorespiration; ROS;
self-learning artificial intelligence algorithm

1. Introduction
1.1. Grapevine Biology Modulation under Light Stress

In grapevine cultivation, shade nets modulate plant microclimate and mitigate the
adverse effects of excessive light exposure and temperature fluctuations driven by changing
climatic conditions [1]. While this practice contributes to conserving water resources [2],
it also presents a challenge due to the existing gap in knowledge concerning the physi-
ological implications of shade nets on grapevine irrigation requirements and on overall
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plant performance. Addressing this deficiency necessitates an integrated physiological
framework capable of deciphering the interactions among plant physiology, environmental
factors, and cultural practices, with support through a systems biology approach.

This study investigates how spectral data can be applied in the context of systems bi-
ology and combined with the field of precision viticulture (PV). To make a proof of concept,
this paper presents a case study to show the effects of shade nets on grapevines. By focusing
on photorespiration, the study aims to demonstrate the potential for combining spectral
data with systems biology to describe the central metabolism mechanisms of grapevine
responses to shading, specifically regarding Reactive Oxygen Species (ROS) accumulation.

This research hypothesizes that integrating spectral data with systems biology can
elucidate plant phenotypes and physiological mechanisms influenced by shading, thereby
supporting PV practices. The concept of “phenometabolome”, encompassing the entirety
of the grapevine’s metabolic phenotypes in response to shading conditions, is presented to
explore these effects. This term covers a wide array of metabolic pathways and enzymatic
reactions affected by changes in light availability, offering a holistic view of grapevine
physiology under varying environmental conditions. By integrating metabolic models and
in silico data, the study seeks to unravel the metabolic pathways affected by shading condi-
tions, thus shedding light on the biological interactions driving grapevine responses [3].

Table 1 reviews a battery of enzymes and metabolites/compounds pivotal for the
metabolic pathways governing grapevine responses to light-induced stress. This table
serves two primary purposes: (i) identification and analysis—examining enzyme activity
under specific light conditions to reveal patterns of activation or repression, thereby provid-
ing insights into how grapevines respond to varying light intensities and durations—and
(ii) qualitative model analysis of critical metabolic processes, such as water availability,
photorespiration, CO2 absorption during photosynthesis, and sugar formation, which
are all crucial for understanding grapevine responses to light stress within a systems
biology approach.
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Table 1. Enzymes and compounds associated with key metabolic pathways in grapevines that are related to light and shading conditions. The table is categorized
into two sections: unshaded and shaded. Each section contains columns indicating metabolic pathways, enzyme expression (upregulated or downregulated) or
compound level, enzyme or compound function, and relevant references.

Enzymes and Compounds Pathway Expression Function Reference

Unshaded
hydroxycinnamic acids (HCAs) Phenolic acids Up UV protection, pigmentation, cell defense [4,5]
hydroxybenzoic acids (HBAs) Phenolic acids Up UV protection, pigmentation, cell defense [4,5]

Resveratrol Non-flavonoid polyphenols Up UV protection, pigmentation, cell defense [6,7]
Quercetin Polyphenol Up UV protection [6,7]

Kaempferol Polyphenol Up UV protection [6,7]
Myricetin Polyphenol Up UV protection [6,7]

Lipocalin (s240) Oxidative stress defense Up Cell defense [8]
quinone oxidoreductase-like protein (s472) Oxidative stress defense Up Cell defense [8]

ascorbate peroxidase2 (APX2) Oxidative stress defense Up Cell defense [8]
peroxiredoxin (PRX) Oxidative stress defense Up Cell defense [8]

glutathione-s-transferase (GST) Oxidative stress defense Up Cell defense [8]
catalase (CAT) Oxidative stress defense Up Cell defense [8]

isoflavone-reductase-like protein (IRL) Oxidative stress defense Up Cell defense [8]
nucleoside diphosphate kinase2 (NDPK2) Oxidative stress defense Up Cell defense [8]

Auxin (AUX) Hormones UP Hormone signal [9]
Xylose Cell membrane Down Cell membrane [10]

Xylobiose Cell membrane Down Cell membrane [10]
Phenylalanine Amino acid pathway Up UV protection, pigmentation, cell defense [11]

Light-inducible protein (ELIP1) Chlorophyll biosynthesis Up Regulates the chlorophyll biosynthesis [12]
photosystem II PsbO protein Photosynthesis Down (final stage) Photosynthesis [12]

LHB1B1 light-harvesting protein Photosynthesis Down (final stage) Photosynthesis [12]
polyphenol oxidase chloroplast precursor Photosynthesis Down (final stage) Photosynthesis [12]

Shade
blue light receptor cryptochrome 2 (CRY2) Photoreceptors Down Light receptors [9]

HY5 Photoreceptor regulator Down Light receptors [9]
HY5- homolog (HYH Photoreceptor regulator Down Light receptors [9]

cytokinin (CTK) Hormones Up Hormone signal [9]
brassinosteroid (BR) Hormones Up Hormone signal [9]

pyrabactin resistance 1/PYR1-like (PYR) Hormones Up Hormone signal [9]
ABA-responsive (element binding factor) Hormones Up Hormone signal [9]

Maleate Maleic acid Up UV protection, pigmentation, cell defense [11]
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Table 1. Cont.

Enzymes and Compounds Pathway Expression Function Reference

beta-alanine Amino acid pathway Up UV protection, pigmentation, cell defense [11]
Citrate Amino acid pathway Up UV protection, pigmentation, cell defense [11]

Aspartate Amino acid pathway Up UV protection, pigmentation, cell defense [11]
procyanidin B1 Polyphenol Up UV protection, pigmentation, cell defense [11]

Epigallocatechin Polyphenol Up UV protection, pigmentation, cell defense [11]
Catechin Polyphenol Up UV protection, pigmentation, cell defense [11]
Raffinose Sugars; Carbon metabolism Up Carbon metabolism [11]

Up: consists of positive regulation of enzymes involved in metabolic pathways; Down: consists of negative regulation of enzymes involved in metabolic pathways.
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1.2. Systems Biology to Unravel Grape Physiology under Light Stress

As an interdisciplinary approach, systems biology takes the lead in unravelling the
complexities of biological systems [13]. It examines components and interactions as an
integrated whole, recognizing that biological events arise from dynamic relationships
among various molecular, cellular, and environmental factors [14]. By integrating omics
data with computational modelling, systems biology elucidates the molecular mechanisms
governing plant growth, development, and responses to environmental inducements [13].

While traditional models like WOFOST [15], APSIM [16], STICS [17], and others fo-
cus on predicting crop performance based on external factors and management practices,
systems biology offers a holistic perspective for understanding crop physiology and en-
vironmental interactions [18], integrating various biological components to unravel the
complex relationships among genes, proteins, metabolites, and physiological processes [19].
This combination bridges traditional agricultural practices with cutting-edge scientific
methodologies, signifying a paradigm shift in advancing the precision and sustainabil-
ity of modern agriculture [18] by acknowledging the interconnection of crops and their
environment and seeking to leverage this understanding to optimize agricultural outcomes.

One of the critical applications of systems biology in agriculture is in the development
of virtual phenotyping, involving creating a computational model to predict plant char-
acteristics based on metabolite profiles, enzymatic activities, and gene expressions [13].
Integrating bioinformatics tools, such as Flux Balance Analysis (FBA) [20], enhances the
understanding by providing perceptions of cellular components and connectivity within
metabolic pathways. With virtual phenotyping established as a powerful tool, its appli-
cations across various crops have been extensively studied, enabling the examination of
metabolic shifts [21], enzymatic responses [22], and gene activation in plant physiology [23],
thereby optimizing agricultural practices for enhanced productivity and sustainability. In-
corporating physiological diagnosis into virtual phenotyping allows the assessment of plant
responses to diverse environmental conditions [24,25], thereby contributing to informed
decision-making in crop management practices.

1.3. Integrating Plant Spectral Sensing and Systems Biology

Conventional laboratory-based methodologies for plant biochemical analysis, while
indispensable for supporting systems biology models, present several limitations, including
high costs, laborious procedures, and the consumption of sample volumes, which may not
be feasible for rare plants [26,27]. Hence, there is a need for non-destructive, cost-effective,
and efficient alternatives that can complement traditional methods and enhance the scope
of systems biology research.

Hyperspectral sensors allow for the real-time monitoring of biochemical variables
like foliar pigments, which can predict levels of chlorophylls [28], carotenes [29], antho-
cyanins [30], as well as flavonoids [31] and ROS [32]. This study hypothesizes that hyper-
spectral data can model foliar pigments and ROS, making it a novel approach through the
integration of systems biology with hyperspectral data in order to investigate the impact of
shade on photorespiration in grapevines.

Figure 1 illustrates an integrated methodology for showing plant responses through
the merging of genomics, metabolomics, and systems biology approaches. This framework
enables the establishment of connections between laboratory experiments and field obser-
vations, facilitating a more profound knowledge of grapevine physiology under varying
environmental conditions. Central to this methodology is the integration of sensors for
detecting molecular components with the monitoring of the physiological state of plants
in real time. By leveraging high-throughput, high-resolution, and high-dimensionality
techniques, this approach offers a holistic view of plants’ responses to abiotic stress, paving
the way for more precise and tailored agricultural practices. By leveraging advanced
analytical techniques, such as omics technologies, it is possible to investigate the molecular
mechanisms governing plant responses to environmental inducements, thereby optimizing
agricultural practices for enhanced productivity and sustainability.
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Figure 1. Representation of an integrated methodology combining the genomics, metabolomics, and
systems biology approaches, aimed at establishing connections between laboratory experiments and
field observations. Also, represents the integration of sensors for detecting molecular components
and monitoring the physiological state of plants to feed the systems biology.

Bioinformatics tools enable the explanation of metabolic engineering in plants by
representing metabolic pathways through stoichiometric matrices and employing network-
based or constraint-based modelling techniques [33]. These models, often available in
the Systems Biology Markup Language (SBML) format, facilitate the understanding of
metabolic pathways despite occasional limitations in accessing genetic and proteomic
information [34].

By investigating these effects, this paper aims to demonstrate how systems biology can
elucidate the phenotype observed in the field, focusing on the specific case of shade nets.
The study utilizes a qualitative analysis approach, which involves comparing assumptions
with experimental data. This method helps integrate metabolic models and in silico data to
elucidate how shading conditions affect metabolism. By incorporating spectral data and
biochemical variables such as foliar pigments, water status, and ROS levels, this research
aims to reveal the complex biological interactions driving grapevine responses to shade. The
specific objectives of the study include (i) the modelling of foliar pigments (chlorophylls)
and ROS using hyperspectral data, (ii) initiating the development of a virtual phenotype
and validating certain potential behaviors within the photorespiration pathway under both
shaded and unshaded conditions, and (iii) identifying key enzymes and reactions involved
in these processes.

2. Materials and Methods
2.1. Test Site and Sampling

The study was conducted at Quinta de Vale de Cavalos (latitude 41◦07′ N, longitude
7◦28′ W and 500 m of altitude), which belongs to Poças Vinhos, located in Numão in the
Douro Wine Region. The Douro region’s Mediterranean-like climate entails warm, dry
summers with pronounced hydric stress typically observed post-flowering. Viticulture in
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this region occurs under particularly rigorous climatic conditions, with vineyards primarily
situated on terraces and slopes in soils predominantly derived from shale. These vineyards
are in some of Europe’s most arid areas. During the grape ripening period, precipitation
is generally lower than 30 mm, accompanied by high solar irradiation values, elevated
temperature levels, and a high vapor pressure deficit, leading to combined light, thermal,
and hydric plant stresses [35]. Rainfall is ≤28 mm in 80% of the years between approxi-
mately July 20 and September 20, and the available water reserve at the end of this period
is always ≤20%, causing lower berry weight and, consequently, lower wine yields when
irrigation is not feasible [36].

This study focused on the grape (Vitis vinifera L.) variety ‘Moscatel Galego Branco’
(Vitis International Variety Catalogue—VIVC 8031) within a non-irrigated, commercial
parcel encompassed by sections shaded by nets that were installed above and to the sides of
the grapevine rows. The experiment was conducted in both shaded and unshaded sections
of the parcel. Leaf analysis was performed on a single date at the end of maturation (S1:
26/08/2022). One fully developed leaf was collected from each of the grapevines, with ten
grapevines selected from shaded areas and ten from unshaded areas, resulting in a total of
twenty leaves collected.

2.2. Phenotype Characterisation
2.2.1. Hyperspectral Data

Hyperspectral data were obtained from the leaves described in the previous subsection
by collecting a single point measurement on each leaf before detaching them from the
grapevine, using a point-of-measurement hyperspectral prototype device [37]. In this
prototype, light is received by a central pinhole fiber and delivered by surrounding fibers,
enabling it to penetrate the leaf. This device recorded reflectance signatures across the
electromagnetic spectrum (340 nm to 850 nm). A well-developed leaf was selected, and
three data points were collected from different areas of the leaf. The average of these data
points was used for spectral representation. The spectral data will be used to develop a
predictive model of plant pigments and ROS (see next section).

2.2.2. Water Status

Predawn leaf water potential (Ψpd) was measured on the same leaf from which hyper-
spectral information was obtained using a Scholander pressure chamber (PMS600, Albany,
OR, USA) [38], thereby providing a characterization of the effect of the net shades on plant
water status and characterizing the phenotypes under different treatments.

2.3. Biochemical Analysis
2.3.1. Pigments Analysis

A 100 mg fresh grapevine leaf sample was used to quantify pigments. The leaves
sampled in the test site were stored at −80 ◦C and then processed using liquid nitrogen.
Pigments were extracted using an Acetone:Tris-HCl (50 mM) buffer (80:20, pH 7.8) [39].
Maceration was performed on a tissuelyser at 6 m/s with 2.4 mm ceramic beads, and
663 nm, 537 nm, 647 nm, and 470 nm readings were obtained resorting to a spectrophotome-
ter (Omega Multimode Microplate Reader, BMG LABTECH GmbH, Ortenberg, Germany)
to determine chlorophyll a and b levels. Each sample was analyzed in triplicate to ensure
accuracy. Results are presented as mg/g of fresh mass (FM) (mg/gFM).

2.3.2. Superoxide (O.−
2 ) Quantification for ROS Assessment

A total of 100 mg of fresh leaf was used. Extraction occurred on a tissuelyser at
6 m/s, resorting to 2.4 mm ceramic beads. The extraction buffer was comprised of 0.01 M
phosphate buffer (pH = 7.8), 0.05% (w/v) NBT (diluted in 100 µL of DMSO), and 10 mM
sodium azide. After shaking, samples were stored in the dark, followed by centrifugation
(13,000× g, 2 min, 4 ◦C) and heating (85 ◦C, 10 min); after, it was placed on ice for 10 min.
Superoxide (O.−

2 ) levels, indicative of ROS activity, were quantified at 580 nm using a spec-
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trophotometer (Omega Multimode Microplate Reader, BMG LABTECH GmbH, Ortenberg,
Germany) [40,41]. Each sample was analyzed in triplicate to ensure accuracy. The unit is
presented as absorbance per gram of fresh matter (ABS/gFM).

2.4. Spectral Biochemical Modelling Approach

The Vis-NIR data predicted the chlorophylls and the ROS. The aforementioned prepro-
cessing steps were undertaken to ensure the reliability and accuracy of the leaf spectral data.
Potential outliers that could bias the results were identified and removed. A logarithm
multiplicative scattering correction (MSC-log) technique was applied to the spectral data.
This correction method helps to enhance the spectral features and mitigate any variations
caused by scattering effects, thereby improving the overall quality of the data [42].

The modelling of spectra-laboratory analysis (pigments and ROS) was subjected to
modelling via a self-learning artificial intelligence algorithm (SL-AI) [43]. The utilization
of the SL-AI is validated by its proficiency in establishing correlations between spectral
attributes, its not requiring a minimum dataset size, and its ability to analyze biochemical
parameters through Covariance Mode (CovM) analysis. The justification for employing the
SL-AI also stems from its proficiency in managing datasets characterized by variations and
its proven track record in accurately predicting grapevine biochemical characteristics, as
evidenced in previous studies [44,45].

The SL-AI base model was evaluated using the following statistical metrics: coefficient
of determination (R2), root mean square error (RMSE), and mean absolute percentage error
(MAPE—%).

2.5. In Silico Simulations

The photorespiration model proposed by Huma, et al. [46] was considered for the
in silico simulations of the photorespiration process under different shading conditions.
The literature reviewed in Table 1 shows the potential impacts on metabolites involved in
photorespiration synthesis under shaded and unshaded conditions.

The chlorophyll and ROS levels measured in the laboratory and those estimated
through SL-AI were incorporated into the photorespiration model to elucidate the differ-
ences in each shading condition.

This study hypothesizes that under conditions of excessive light exposure, grapevines
experience an elevation in ROS and a decline in chlorophyll levels. Also, grapevines activate
a mechanism to increase chlorophyll production under shaded conditions, compensating for
reduced photon availability. Two scenarios were considered to represent the impact of plant
shade nets on leaf physiological adaptative mechanisms: (i) in unshaded scenarios, leaves
exhibit a lower photosynthetic efficiency, around 80%, yet remain free from oxidative stress;
and (ii) in shaded conditions, leaves become more efficient due to increased chlorophyll
production, enabling photosynthetic rates to surpass those of sun-exposed leaves due to
the absence of oxidative stress by preventing the accumulation of ROS.

Furthermore, under excessive light conditions, the costs of energy and ATP to mitigate
ROS accumulation may compensate for the benefits of increased photon capture. Con-
versely, shaded plants may achieve greater energy efficiency in the Calvin cycle due to
reduced ROS-induced oxidative stress [47].

This study employs systems biology approaches focusing on key reactions, such as
the peroxisomal catalase reaction and the peroxisomal glycolate oxidase reaction that were
presented in the model used for the simulations [46]. These reactions are incorporated into
the in silico model to simulate grapevine photorespiration under different light conditions.
Specifically, three photorespiration simulation hypotheses are formulated: (i) Photorespira-
tion I (PH I): modifying the peroxisomal catalase reaction in response to ROS fluctuations
within shaded environments, what changes would occur in fluxes?; (ii) Photorespiration II
(PH II): how would fluxes be affected by manipulating the peroxisomal glycolate oxidase
reaction?; and (iii) Photorespiration III (PH III): if the peroxisomal catalase reaction and the
glycolate oxidase reaction were adjusted, what alterations would be observed in fluxes?
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In silico simulations were generated using the Cobra toolbox (version 3.1) for MATLAB
(MathWorks Inc., Natick, MA, USA, 2022) [34] with the glpk solver (version 4.47), aiming
to solve the relationship Sv = 0. This equation, fundamental in systems biology, embodies
the mass balance principle or stoichiometry. Here, S represents the stoichiometric matrix,
delineating the stoichiometric coefficients of metabolites engaged in biochemical reactions
within the biological system. Each row of the matrix corresponds to a metabolite, while
each column corresponds to a reaction. Conversely, v symbolises the vector of reaction
rates or fluxes, indicating the flow or rate of each reaction. The equation Sv = 0 stipulates
that the product of the stoichiometric matrix S and the vector of reaction rates v equals zero
under steady-state conditions. This principle underscores mass conservation, ensuring that
the total metabolite production rate equals its consumption within the system.

The in silico model utilized for these simulations had specified lower and upper bounds
in abstract units. The lower bound was set to zero, while the upper bound was determined
as the maximum value for these reactions, also expressed in abstract units. However, for the
qualitative analysis in this paper, the lower bound remained at zero. In contrast, the upper
bound was set to 100 to represent the lower values of ROS observed in laboratory analyses.
The percentage variations were applied to the upper bound of these objective reactions in
the simulations of varying conditions. Furthermore, Monte Carlo (MC) simulation was
performed over ten times from the minimum to the maximum variance to observe changes
in the phenotype space, thereby exploring the robustness and variability of the model
under different conditions.

Principal Component Analysis (PCA) was used to discriminate the phenotype spaces
within photorespiration from the Monte-Carlo simulations.

3. Results and Discussion
3.1. Phenotype Characterisation

This study investigated grapevines’ physiological and metabolic responses to varying
light conditions, contrasting those subjected to direct sunlight with those shaded by nets.

3.1.1. Hyperspectral Signatures

The hyperspectral analysis reveals a distinct difference in activity between plants
subjected to shaded and unshaded conditions (Figure 2), showing that plants receiv-
ing less sunlight have lower values of spectra absorbance when compared to those in
shaded conditions.
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The observed variations in spectral patterns between grapevines exposed to sunlight
and those in shaded conditions indicate distinctions in the vine phenotype (Figure 2).
The shaded treatment shows a higher absorption across the blue (400–480 nm), green
(481–560 nm), and red (561–700 nm) spectral zones, which are commonly associated with
foliar pigments like chlorophylls [48].

3.1.2. Water Status

The differences in Ψpd between shaded and unshaded grapevines (Figure 3) under-
score the influence of light availability on plant water status [49,50]. Specifically, grapevines
in unshaded conditions showed lower Ψpd values, suggesting elevated water uptake and
transpiration rates, possibly due to heightened metabolic activity and photosynthetic capac-
ity in response to abundant sunlight [11,47]. However, grapevines may close their stomata
in stressful conditions, reducing transpiration [51]. In such cases, alternative mechanisms
are needed to dissipate the excess energy, particularly in the unshaded treatment. These
observations align with the concept of phenometabolome, suggesting that shade nets
modulate grapevine physiology, particularly influencing photorespiration [52].
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3.1.3. Pigment and ROS Analysis

The pigment analysis in Table 2 revealed a significant difference in chlorophyll a
and a + b levels. Under shaded conditions, plants exhibited heightened production of
photosynthetic pigments, enhancing their ability to capture and utilize light energy ef-
ficiently. The higher chlorophyll level in shaded grapevines indicates a compensatory
mechanism to optimize light capture and energy transduction under reduced light avail-
ability [29]. This aspect can be further clarified by examining the profile of chlorophyll a
and b. Specifically, understanding the balance between chlorophyll a (typically associated
with photosynthetic activity) and chlorophyll b (which plays a role in light harvesting
and photoprotection) [53,54] could provide insights into the metabolic processes. Vari-
ations in these ratios may indicate shifts in the plant’s balance between catabolic and
anabolic pathways, including the chlorophyll synthesis cycle. These shifts reflect the plant’s
adaptations to environmental conditions such as light availability. For instance, increased
chlorophyll synthesis under low light conditions can enhance light capture efficiency, while
higher catabolic activity in high light conditions may be linked to increased energy de-
mands and ROS detoxification processes [55]. Exploring these variations further could
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offer deeper insights into the dynamic regulatory mechanisms plants employ to optimize
their metabolic responses to changing environments. Therefore, analyzing chlorophyll a/b
ratios can provide information about the physiological responses of grapevines to varying
light conditions, shedding light on their metabolic adjustments for enhanced survival
and productivity.

Table 2. Comparison of shaded and unshaded conditions for chlorophyll a (mg/gFM), chlorophyll b
(mg/gFM), chlorophyll a + b (mg/gFM), and ROS O2

.− (ABS/gFM).

Biochemical Analytes Shaded Unshaded p-Value Variation %

Chlorophyll a (mg/gFM) 0.19 0.12 0.001 * 158.33
Chlorophyll b (mg/gFM) 0.08 0.11 0.006 * 71.03

Chlorophyll a + b (mg/gFM) 0.27 0.23 0.037 * 117.39
ROS O2

.− (ABS/gMF) 0.99 1.90 0.019 * 52.10
* Statistically significant (p < 0.05) according to t-test. mg/gFM: milligrams per gram of fresh matter; ABS/gFM:
absorbance per grams of fresh matter. Variations were computed considering the initial stage of the un-
shaded treatments.

Regarding ROS, there was also a decrease in ROS levels in shaded plants (Table 2),
which may be attributed to a reduction in the plant’s photosynthesis and energy activity
levels, or to its energy efficiency despite the greater amount of chlorophylls [56]. The
differences in ROS levels between shaded and unshaded plants provide further evidence of
the impact of light exposure on grapevine physiology [9,56]. Higher ROS levels observed in
unshaded conditions suggest a link between light intensity, ROS production, and oxidative
stress [56], which supports the hypothesis that shade nets mitigate oxidative stress by
influencing photorespiration, which ultimately affects ROS levels [47]. The grapevine is
a species with a high tolerance to high light intensity [56]), and secondary metabolites
(carotenoids, polyphenols, and aroma compounds) are important tools to counter photoox-
idative stress in this species, allowing its acclimation to higher radiation. These results
show the role of antioxidant defense mechanisms (including enzymatic and non-enzymatic
systems) in grapevines under varying light conditions [57], underscoring the importance
of understanding plant-environment interactions for sustainable viticulture practices.

ROS being at homeostatic levels is essential to the plant under stress conditions, and
shade maintains the eustress levels within homeostatic values. In the unshaded condition,
the regulation of chlorophyll pigments allowed for increased photon capture without
saturating the light-harvesting complexes. This enhanced electron transfer activity within
the photophosphorylation chain led to higher ROS formation in the chloroplast [58]. When
in excess (particularly in organelles that possess electron transport chains, like chloroplasts
and mitochondria), ROS can damage genetic material, lipids, and proteins, among other
biomolecules, ultimately leading to the degradation of the organelles and to cell disturbance.
In unshaded leaves there is a high production of energy and an increase in the transport of
electrons from photosynthesis, which may increase the generation of superoxide molecules,
hydrogen peroxide, and the hydroxyl radical [58].

3.2. Modelling Biochemical Variables

The relationship between spectral data and metabolites bridges environmental condi-
tions and internal biochemical processes by correlating spectral signatures with metabolites.
Vis-NIR has mainly been used to quantify grapevine metabolites [59]. For example, quan-
tifying chlorophyll through the Vis-NIR data [e.g., 28] is a proxy for water status and
lacks a physiological explanation. Integrating hyperspectral data with systems biology
methodologies enables a holistic understanding of how environmental factors influence
plant metabolism and phenotype [13]. It can suggest vineyard management practices
designed to enhance grape quality and yield based on a physiological approach.

The implementation of SL-AI in modelling chlorophyll a (mg/gFM), chlorophyll b
(mg/gFM), and ROS (ABS/gFM) yielded robust statistical metrics (Figure 4) despite the
limitation of a small dataset, comprising 19 observations from the shade and unshaded
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treatment (excluding one outlier observation). However, not all parameters were assessed
across all observations due to the CovM architecture present in SL-AI. This limitation
arises from the predefined number of clusters in the SL-AI, which might not effectively
accommodate the diverse variations present in the dataset. Therefore, while the statistical
metrics demonstrate the robustness of the model, the interpretation of the results should be
cautious, considering the potential impact of data allocation constraints imposed by the
SL-AI architecture.
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3.3. In Silico Simulations

This study combined hyperspectral data with systems biology, allowing simulations of
plant responses under different light conditions and focusing on the role of ROS in mediat-
ing plant stress responses, mainly through its correlation with photorespiration mechanisms.
The simulations, informed by experimental data and the existing literature [52,54], high-
light the central role of enzymes such as peroxisomal catalase and peroxisomal glycolate
oxidase in ROS metabolism. Peroxisomal catalase transforms hydrogen peroxide into
oxygen and water, effectively counteracting the potentially detrimental impacts of ROS [60].
Similarly, peroxisomal glycolate oxidase converts O.−

2 and glycolate into glyoxylate and
H2O2. Although H2O2 is a reactive oxygen species that can contribute to oxidative stress, it
also plays a role in the plant’s antioxidant defense system by acting as a signaling molecule
and being managed by detoxifying enzymes [57].

Plants naturally produce ROS, which may increase when exposed to environmental
stresses like light intensity and temperature, which are different from the levels to which
they are adapted. Plants adopt a range of defense mechanisms known as antioxidants to
protect themselves from ROS damage. These include small molecules such as ascorbic
acid, glutathione, non-protein amino acids, phenolic compounds, α-tocopherol, and certain
alkaloids, as well as antioxidant enzymes like superoxide dismutase, catalase, peroxidases,
ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reduc-
tase [61]. In environments with prolonged sunlight exposure, ROS-detoxifying enzymes
like catalase, glycolate oxidase, and glutathione reductase may be upregulated to eliminate
ROS, thereby safeguarding cellular components from oxidative stress-induced damage.
This regulatory response helps maintain cellular stability and function, ensuring plant
health and resilience [54].
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This paper chose the PH III hypothesis (see Section 2.5) to demonstrate the metabolism
simulation due to its advanced phase of photorespiration, which occurs in peroxisomes—
the primary site of ROS detoxification [62]. This choice aligns with the laboratory data used
in this study, particularly the quantification of O.−

2 . PH III encompasses a widespread set of
reactions involved in photorespiration, including those related to energy metabolism and
biosynthesis. PH III accounts for key processes regulating carbon and energy flow within
the cell by incorporating both peroxisomal catalase and glycolate oxidase reactions.

Figure 5 presents the simulated metabolic map of reactions for PR III under two con-
trasting conditions: (a) shaded and (b) unshaded. The map illustrates the hypothetical
dynamic regulation of photorespiratory metabolism in response to changes in environ-
mental light conditions as theorized in this paper. The reactions highlighted in blue and
red show the intensity of the production or consumption of the reactions’ products; these
reactions include maleate, citrate, and ascorbate, along with their interrelationships derived
from the literature sources (referenced in Table 1).

In the simulations, these reactions have greater fluxes in unshaded conditions com-
pared to shaded conditions. Additionally, PH III facilitates the analysis of metabolic changes
in response to environmental factors such as shading, as evidenced by observed alterations
in metabolite accumulation levels.

Maleate and citrate induce plant pigmentation in shading conditions [11]. Maleate,
primarily associated with photorespiration II, is produced from other reactions and trans-
ported to the mitochondria [63]. Citrate is converted into oxaloacetate in the cytoplasm and
then transferred to the chloroplast, where photorespiration resumes [64]. Ascorbate protects
against oxidative damage during photorespiration by acting as an antioxidant, neutralizing
ROS and safeguarding plant cells [65], and is more induced under sun exposure conditions.

Under unshaded conditions, the fluxes indicate increased activity in metabolic path-
ways associated with the glycolate metabolism and with ATP production, as evidenced
by the elevated levels of chloroplast glycolate and chloroplast ATP due to increased sun
exposure and by heightened activity in the energy acquisition pathways. The unshaded
condition also showed a greater amount of ROS, which alters some mechanisms for ATP
synthesis. Conversely, shaded conditions demonstrate a shift in metabolic activity, with a
reduction in glycolate metabolism and ATP production, accompanied by changes in the lev-
els of intermediates such as chloroplast glycerate and chloroplast ribulose-1,5-bisphosphate
(Figure 5).

This paper (Table 1 and Figure 5) demonstrates the hypothetical metabolic fluxes in pri-
oritizing energy conservation and carbon storage in shaded conditions, leading to decreased
maleate levels, intermediates in energy metabolism, and biosynthesis [11]. Conversely,
unshaded environments with ample sunlight suggest metabolic pathways toward increased
energy production and carbon fixation, resulting in higher levels of maleate [11,47]. Ad-
ditionally, although not shown in the simulations, antioxidants like ascorbate vary with
light availability, including presenting lower levels in shaded conditions due to reduced
ROS production [8,57]. While Reshef, Walbaum, Agam and Fait [11] showcased the impact
of light interference through an in situ case study, providing a realistic representation of
natural conditions, the results of Nilo-Poyanco, Olivares, Orellana, Hinrichsen and Pinto [8],
from a study conducted under controlled indoor conditions, may introduce variations in
the physiological response. This comparison highlights the importance of considering
the experimental context when interpreting the impact of light on plant metabolism, as
controlled conditions might not fully capture the complexity of natural environments.
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Figure 6 shows the phenotype spaces resulting from the three photorespiration sim-
ulation approaches described in Section 2.5. In panel (a), it shows the phenotype spaces
for FBA models under unshaded and shaded conditions. The x-axis in panel (a) indicates
that Principal Component 1 (PC 1) explains more than 99% of the variance, while the
y-axis shows that PC 2 explains less than 1% of the variance, highlighting the dominant
influence of PC 1. For unshaded conditions, FBA models include FBA_P_CT_U (Per-
oxisomal Catalase Reaction as objective), FBA_P_96_U (Peroxisomal Glycolate Oxidase
Reaction), and FBA_B3_U (Peroxisomal Catalase Reaction as objective and Peroxisomal
Glycolate Oxidase Reaction as objective). Similarly, shaded conditions are represented
by FBA_P_CT_S, FBA_P_96_S, and FBA_B3_S, respectively. Panel (b) demonstrates the
phenotype spaces resulting from MC simulations, illustrating the range of variations in
chlorophyll and ROS levels assessed in laboratory experiments. MC simulations encompass
MC_B3 (Peroxisomal Catalase Reaction as objective and Peroxisomal Glycolate Oxidase
Reaction as objective), MC_P_96 (Peroxisomal Glycolate Oxidase Reaction as objective),
and MC_P_CT (Peroxisomal Catalase Reaction as objective). In the case of MC_P_96 and
MC_P_CT, “1” represents higher ROS (unshaded condition) and “10” represents lower
ROS (shaded condition). Unfortunately, the MC_B3 simulation did not yield valid results.
This non-response for the third hypothesis may be related to the choice of two reactions
related to ROS, as the same variation was used for these reactions, suggesting a static stage
for the MC reactions.
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els under different photorespiration conditions. For unshaded conditions, FBA models include
FBA_P_CT_U (Peroxisomal Catalase Reaction as objective), FBA_P_96_U (Peroxisomal Glycolate
Oxidase Reaction), and FBA_B3_U (Peroxisomal Catalase Reaction as objective and Peroxisomal Gly-
colate Oxidase Reaction as objective). Similarly, shaded conditions are represented by FBA_P_CT_S,
FBA_P_96_S and FBA_B3_S, respectively. Panel (b) demonstrates the phenotype spaces resulting
from Monte Carlo (MC) simulations, illustrating the range of variations in chlorophyll and reactive
oxygen species (ROS) levels assessed in laboratory experiments. MC simulations encompass MC_B3
(Peroxisomal Catalase Reaction as objective and Peroxisomal Glycolate Oxidase Reaction as objective),
MC_P_96 (Peroxisomal Glycolate Oxidase Reaction as objective), and MC_P_CT (Peroxisomal Cata-
lase Reaction as objective). In the case of MC_P_96 and MC_P_CT, 1 represents higher ROS (unshaded
condition) and 10, lower ROS (shaded condition). MC_B3 did not result in a valid MC simulation.
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In shaded conditions, plants, including those adapted to high radiation like the
grapevine, can adapt to reduced light availability, leading to changes in metabolic fluxes
and enzyme activities. Conversely, in unshaded conditions with ample sunlight exposure,
metabolic pathways are geared towards increased energy production and carbon fixation.
This differential regulation of metabolic pathways underscores the adaptive strategies
employed by grapevines to optimize their performance under varying light conditions.
The FBA_B3 simulation may better simulate ROS levels than the FBA_P_CT and FBA_P_96
simulations. This inference is drawn from the fact that the FBA_B3 simulation shows the
highest loadings for ROS-related reactions among the three simulations. Specifically, the
FBA_B3 simulation has the highest loadings for reactions involving peroxisomal catalase
and glycolate oxidase, which are both enzymes in ROS metabolism [56].

The top 10 reactions identified through PCA loadings in both shaded and unshaded
conditions encompass key enzymes involved in various metabolic pathways crucial for
plant physiology, as well as the vector of the stoichiometric matrix for each reaction (Table 3).
Chloroplast ferredoxin reductase (Chl_FerredoxinReductase), chloroplast glyceraldehyde-3-
phosphate dehydrogenase (Chl_G3Pdh), and chloroplast phosphoglycerate kinase
(Chl_PGK) represent steps in the Calvin cycle essential for carbon fixation and energy
production [66]. Chloroplast ribulose-5-phosphate kinase (Chl_Ru5Pk) and chloroplast
phosphoglycolate phosphatase (Chl_PGlyPase) are associated with the pentose phosphate
pathway, facilitating the regeneration of ribulose-1,5-bisphosphate and the production of
NADPH, crucial for redox balance and biosynthetic processes [62]. Additionally, chloroplast
ribulose-1,5-bisphosphate oxygenase (Chl_RuBPOxid) participates in photorespiration.

Table 3. The top 10 reactions ranked through the PCA loadings contribute to the leave’s phenotype
in shaded and unshaded conditions and the Flux Balance Analysis (FBA) in a.u. for each simulation.

Top 10 Reactions % FBA_P_CT_U FBA_P_CT_S FBA_P_96_U FBA_P_96_S FBA_B3_U FBA_B_3_S

Chl_FerredoxinReductase 7.39% −793.91 −525 −396.95 −262.5 −396.95 −262.5
Chl_G3Pdh 7.04% 756.10 500 378.05 250 378.05 250
Chl_PGK 7.04% 756.10 500 378.05 250 378.05 250

Chl_Ru5Pk 4.22% 453.66 300 226.83 150 226.83 150
Chl_PGlyPase 2.81% 302.44 200 151.22 100 151.22 100
Chl_RuBPOxid 2.81% 302.44 200 151.22 100 151.22 100

Chl_TPI 2.81% 302.44 200 151.22 100 151.22 100
Chl_X5Piso 2.81% 302.44 200 151.22 100 151.22 100
Mit_Gly_tx 2.81% 302.44 200 151.22 100 151.22 100

Per_Glycolate_tx 2.81% 302.44 200 151.22 100 151.22 100

Total 42.57% - - - - - -

Chl_FerredoxinReductase: chloroplast ferredoxin reductase; Chl_G3Pdh: chloroplast glyceraldehyde-3-phosphate
dehydrogenase; Chl_PGK: chloroplast phosphoglycerate kinase; Chl_Ru5Pk: chloroplast ribulose-5-phosphate
kinase; Chl_PGlyPase: chloroplast phosphoglycolate phosphatase; Chl_RuBPOxid: chloroplast ribulose-1,5-
bisphosphate oxygenase; Chl_TPI: chloroplast triose phosphate isomerase; Chl_X5Piso: chloroplast xylulose-5-
phosphate isomerase; Mit_Gly_tx: mitochondrial glycolate transporter; Per_Glycolate_tx: peroxisomal glycolate
transporter. For unshaded conditions, the vector of Flux Balance Analysis (FBA) models include FBA_P_CT_U (Per-
oxisomal Catalase Reaction as objective), FBA_P_96_U (Peroxisomal Glycolate Oxidase Reaction), and FBA_B3_U
(Peroxisomal Catalase Reaction as objective and Peroxisomal Glycolate Oxidase Reaction as objective). Similarly,
shaded conditions are represented by FBA_P_CT_S, FBA_P_96_S, and FBA_B3_S, respectively.

3.4. Innovation for Precision Viticulture

The integration of systems biology techniques, exemplified in this study, provides
an innovative framework to simulate pathways and metabolic processes within plants to
discover practical applications across industries, including wine production, that can be
incorporated in PV. Leveraging systems biology methodologies enables the simulation of
the effects of environmental variables, such as shaded conditions, on plant metabolism,
thereby facilitating investigations into their implications for final products like wine. The
synthesis and accumulation of ascorbic acid, an antioxidant compound found in grapes
and wine, can offer a pathway for investigating the relationship among shade treatment,
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ROS dynamics, and ascorbic acid levels during grape fermentation. Ascorbic acid’s role
in alleviating oxidative stress and preserving wine quality underscores its importance in
winemaking [65]. Unravelling the impact of shaded conditions on ROS dynamics, ascorbic
acid metabolism, and oxidant potency during fermentation unveils novel avenues for wine
research, offering prospects to refine winemaking techniques and elevate the caliber of the
end product.

This study’s results revealed significant differences in biochemical parameters, includ-
ing water status, hyperspectral signatures, pigment levels, and ROS levels, by supporting
previous research on grapevine physiology e.g., [8,12] and underscoring the importance of
photorespiration in mitigating oxidative stress, yet further exploration is necessary to clarify
whether this mechanism solely protects plants from ROS or whether it serves additional
physiological roles. An understanding of both the specific adaptive strategies employed by
C3 plants to stabilize ROS damage and why photorespiration predominates over alterna-
tive mechanisms would expand the comprehension of plant stress resilience. Moreover,
assessing the limitations and applicability of the metabolic engineering model used in
this study is crucial for interpreting field data and capturing grapevine responses to light
stress. Given the varied responses of grapevine cultivars to oxidative stress, investigating
the genetic and physiological factors contributing to this diversity, and its implications
for viticultural practices, is essential. Additionally, investigating the factors that activate
shifts between iso- and anisohydric responses in grapevines, along with each strategy’s
associated risks and limitations, would advance the understanding of vine physiology and
inform adaptive management practices. Isohydric plants maintain a constant leaf water
potential by tightly regulating stomatal conductance, prioritizing water conservation over
photosynthesis. In contrast, anisohydric plants exhibit more variable leaf water potential,
with stomatal conductance responding directly to changes in soil moisture, thus prioritizing
photosynthesis over water conservation [49,67]. Addressing these questions through future
research endeavors will refine the perception of grapevine stress responses and enhance
the sustainability and resilience of viticultural systems.

Furthermore, integrating hyperspectral sensors within the systems biology frame-
work, particularly in PV, holds promise for enhancing vineyard practices with robust
physiological foundations. This approach enables the analysis of hypotheses grounded
in plant physiology, thereby improving cultural practices and product quality. Moreover,
the combination of spectral analysis and systems biology opens avenues for metabolic
mapping, providing insight into the plant’s phenometabolome and physiological processes.
Additionally, hyperspectral leaf reflectance covering the 350 to 2500 nm range can be
employed for early disease detection, including identifying powdery mildew and other
vineyard diseases [68]. This capability, integrated into a systems biology approach, can
further enhance PV by enabling early intervention and understanding of plant metabolic
responses to diseases. By leveraging this integrated approach, viticulturists can transcend
the limitations of current data-driven PV approaches, often constrained by data circum-
stances, and instead adopt information-rich strategies. This cooperative combination of
technologies and methodologies enables the generation of high-throughput data, which
empowers viticulturists to make data-driven decisions, fostering the development of more
sustainable and resilient agricultural systems.

4. Conclusions

This study investigated grapevines’ physiological and metabolic responses to varying
light conditions through a systems biology approach, focusing specifically on the impact of
shading compared to unshaded sunlight exposure. By combining hyperspectral data with
biochemical parameters such as pigment levels and ROS levels and utilizing an in silico
photorespiration model, the study uncovered adaptive strategies employed by grapevines
in response to changes in light availability.

The observed differences in physiological parameters between shaded and unshaded
grapevines underscore the strong correlation between light availability, plant water sta-
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tus, and metabolic activity. Grapevines exposed to unshaded conditions demonstrated
increased water uptake and transpiration rates, thereby activating defense mechanisms to
protect from excess light and heat. This was indicative of heightened metabolic activity
and enhanced photosynthetic capacity.

Integrating hyperspectral data with systems biology techniques successfully simulated
how plants respond to different light conditions, emphasizing the role of ROS in managing
stress responses. The enzymatic reactions associated with ROS metabolism emphasized miti-
gating oxidative stress under environmental conditions. The concept of “phenometabolome”
introduced in this study captures the complex interaction between grapevine metabolism
and environmental factors, providing a thorough framework to understand how varying
light conditions shape grapevine physiology and adaptive responses.

The study’s findings reveal the balance grapevines maintain between light capture
and stress avoidance, providing insights into their adaptive mechanisms. Future research
should investigate the molecular mechanisms governing grapevine responses to shading
and other environmental stressors. Leveraging advanced technologies such as hyperspec-
tral sensors and robotics, in conjunction with physiological modelling, holds great promise
for refining PV practices and advancing the understanding of plant-environment interac-
tions on a molecular level. However, this emerging field encompasses jargon from diverse
areas, such as photonics and smart technologies, resulting in a somewhat insular interaction
without a common language to bridge these distinct areas within this field of study.

The integration of systems biology methodologies not only provides a robust frame-
work for simulating plant metabolic processes but also offers practical applications across
industries, including that of wine production. Further investigations are warranted into
the molecular mechanisms underlying grapevine responses to shading and other stressors.
Such research can enhance PV practices, optimize crop productivity, and improve grape
quality and yield.
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