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Abstract: The pitaya is a common fruit in southern China, but the growing environment of pitayas is
complex, with a high density of foliage. This intricate natural environment is a significant contributing
factor to misidentification and omission in the detection of the growing state of pitayas. In this paper,
the growth states of pitayas are classified into three categories: flowering, immature, and mature. In
order to reduce the misidentification and omission in the recognition process, we propose a detection
model based on an improvement of the network structure of YOLOv8, namely YOLOv8n-CBN. The
YOLOv8n-CBN model is based on the YOLOv8n network structure, with the incorporation of a
CBAM attention mechanism module, a bidirectional feature pyramid network (BiFPN), and a C2PFN
integration. Additionally, the C2F module has been replaced by a C2F_DCN module containing a
deformable convolution (DCNv2). The experimental results demonstrate that YOLOv8n-CBN has
enhanced the precision, recall, and mean average precision of the YOLOv8n model with an IoU
threshold of 0.5. The model demonstrates a 91.1% accuracy, a 3.1% improvement over the original
model, and an F1 score of 87.6%, a 3.4% enhancement over the original model. In comparison to
YOLOv3-tiny, YOLOv5s, and YOLOv5m, which are highly effective target detection models, the
mAP@0.50–0.95 of our proposed YOLOv8n-CBN is observed to be 10.1%, 5.0%, and 1.6% higher,
respectively. This demonstrates that YOLOv8n-CBN is capable of more accurately identifying and
detecting the growth status of pitaya in a natural environment.

Keywords: YOLOv8n-CBN; pitaya; growth state; image classification

1. Introduction

The primary centres of origin for pitaya are located in the Asia–Pacific region, particu-
larly in China, Vietnam, Thailand, Cambodia, India, and Indonesia. This functional fruit is
endemic to tropical and subtropical regions and is widely consumed by local populations
for its distinctive flavour and rich nutritional value [1]. By 2020, China had become the
world’s leading producer of pitaya, with an annual output of 1.526 million tonnes [2].
The pitaya industry has become a significant contributor to the revitalisation of the local
rural economy. The accurate detection of the optimal ripeness for pitaya is of paramount
importance for the improvement of fruit quality. By accurately identifying the ripeness of
the fruit and removing those that are over-ripe or under-ripe, the optimal time for picking
can be determined, waste can be reduced, and the nutritional value and taste of the fruit can
be ensured to meet market demand and enhance consumer satisfaction [3]. Concurrently,
pitaya growth monitoring enables farmers to monitor the status of plant growth in real time,
enabling them to adjust irrigation, fertiliser schedules, and pruning frequency based on
the data, thereby ensuring that the pitayas receive optimal growing conditions. This kind
of monitoring not only improves the efficiency and effectiveness of crop management but
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also helps to prevent pests and diseases, reduce resource wastage, and ultimately further
improve the yield and quality of pitaya.

Currently, the level of pitaya harvest intelligence in China is relatively low. The tradi-
tional method of pitaya growth condition detection is based on manual observation with
the naked eye, which is both time-consuming and prone to visual fatigue. This ultimately
affects the accuracy and speed of pitaya growth condition detection. Consequently, the gen-
eral trend is to realise the intelligence of pitaya growth detection. In recent years, the field
of deep learning has witnessed a remarkable advancement, with the deep learning-based
target detection algorithm becoming increasingly sophisticated. The deep learning-based
target detection algorithm is capable of automatically extracting the abstract features of
the target from the image through continuous training. This significantly improves the
generalisation ability and robustness of the target detection algorithm compared with the
traditional detection algorithm [4,5].

The market is currently saturated with a plethora of sophisticated deep learning
models. The YOLO series was selected as the target detection model for two reasons.
Firstly, the YOLO series is capable of completing detection through a single network
forward propagation, which makes it more suitable for devices with limited memory and
computational power. In comparison, the SSD and Faster R-CNN models require multi-
stage processing that includes additional candidate region extraction and post-processing
steps, which results in a slower speed [6,7]. Secondly, the YOLO series has a continuously
optimised architecture, strong community support, multiple versions to accommodate
different needs, and a good balance between speed and accuracy, which differentiates it
from other lightweight models such as NanoDet.

In their study, Ma et al. employed the enhanced YOLOv3 algorithm to identify col-
lapsed structures from post-earthquake remote sensing images [8]. They replaced the
Darknet53CNN component of YOLOv3 with a lightweight convolutional neural network,
ShuffleNet v2. By reducing the number of parameters in the improved YOLOv3 model [9],
Ma et al. achieved a detection speed of up to 29.23 f/s and an accuracy of target detection
of 90.89%. In comparison to the original YOLOv3 model, the detection speed increased by
5.21 f/s, while the accuracy increased by 5.24%. In comparison to the original YOLOv3
model, the detection speed and accuracy have been enhanced, while the number of param-
eters has been significantly reduced to 146 MB. The contributions of Ma et al. have been
duly acknowledged. Nevertheless, the number of YOLOv3-S-GIoU parameters remains
quite large in comparison to the number of parameters of the lightweight models currently
available on the market (e.g., YOLOv8n).

Wang et al. employed the improved YOLOv5 model for low-altitude remote sensing
detection of the rural living environment [10]. They modified the Bottleneck structure to
enhance the model’s ability to capture multi-scale features and added the SimAM spatial
attention mechanism module, which enhances the model’s attention to key features. Wang
et al. enhanced the YOLOv5 model by 2.2%, 11.5%, and 6.5% in terms of precision, recall,
and mAP, respectively, in comparison to the original model. Nevertheless, the enhanced
YOLOv5 model proposed by Wang et al. remains susceptible to erroneous or omitted
detection when the target is obscured or in shadow. Su et al. proposed the NMW-YOLOv5
model, which was developed based on YOLOv5 [11]. This model re-designed YOLOv5’s
C3 module and integrated WIoS into the model. The NMW-YOLOv5 model of Su et al.
reduces the weights of the scene features and mitigates the effect of low-quality images
in the training process. The model achieved a mean average precision (mAP50) of 97.3%
for target detection. It is evident that this model is not without limitations. While the high
accuracy of the model is a notable advantage, it is accompanied by a greater computational
demand, necessitating the use of high-performance computing equipment to ensure optimal
performance. Zhou et al. put forth a pitaya detection method based on RDE-YOLOv7 [12].
The authors introduced the RepGhost and decoupling head into the YOLOv7 model,
replacing the ELAN and coupling head, and incorporated an ECA attention mechanism.
In comparison to the original YOLOv7, the RDE-YOLOv7 model demonstrated enhanced
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precision (P), recall (R), and mean average precision (mAP). The comparative analysis of
the attention mechanisms is presented in the experiments conducted by Zhou et al., which
provides a valuable direction for this paper in optimising the model.

To conclude, while some advancements have been made in the field of fruit growth
state recognition through deep learning, numerous challenges remain to be addressed in
the context of deep learning-based pitaya growth state recognition. Notwithstanding the
encouraging outcomes achieved by many researchers and scholars in the identification of
ripe pitaya, no research has been conducted on the recognition of pitaya at other growth
stages. Given the complex natural environment, there is a significant risk of misclassification
and omission in the detection of pitaya at different growth stages. In order to enhance the
current state of knowledge in this field, we put forward a proposal for a pitaya growth state
detection method based on the YOLOv8 network structure and the improved YOLOv8n-
CBN model. In this paper, the growth state of pitaya is classified into three categories:
flowering, immature, and mature. The YOLOv8n-CBN model is employed to identify and
classify pitaya according to its growth state.

2. Materials and Methods
2.1. Construction of Data Sets

The present study involved the construction of a dataset comprising 1748 images of
pitayas, which were used for the purposes of training and evaluating the YOLOv8n-CBN
model. The images in the dataset were primarily sourced from the universe.roboflow
website, which provides high-quality open-source image resources and image data for
diverse scenes. Roboflow Universe is a computer vision community platform developed by
Roboflow Inc., a company headquartered in Des Moines, IA, USA. The dataset is primarily
comprised images sourced from this website, which accounts for approximately 60% of
the total. Additionally, the dataset incorporates images from other online resources and
field photography conducted by our team. We extend our gratitude to all contributors. We
have ensured that the collection and utilisation of the dataset adhere to the relevant laws
and regulations pertaining to copyright and data protection. Further details regarding the
construction of the dataset and a comprehensive list of contributors can be found in the
Appendix A.

The images in the dataset were classified into three categories: flowering, immature,
and mature. Flowering pitayas have not yet formed fruit, which resemble long strips and
appear yellow in colour (see Figure 1a). Ripening pitayas have fruit that are ripe and appear
red in large areas (see Figure 1b). Unripe pitayas have formed fruit that appear green in
colour (see Figure 1c). These images were saved in the .jpg format.
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Figure 1. Partial images of the pitaya dataset.

The dataset was annotated using the MakeSense tool, which generated the correspond-
ing label files in .txt format. During the annotation process, fruit that are indistinguishable
and ambiguous to the naked eye are not labelled. A Python 3.9 script was employed to
randomly divide the dataset into three subsets: a training set (1223 images), a validation
set (349 images), and a test set (176 images). The ratio of the three subsets was 7:2:1. The
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training set was employed to train the model, the validation set was utilised to adjust
the hyperparameters of the model and conduct a preliminary assessment of the model’s
capability, and the test set was used to test the model’s detection accuracy and assess its
generalisation capability.

2.2. Methods

The process of the YOLOv8n-CBN detection system for pitaya growth status based on
the improved YOLOv8 network structure is shown in Figure 2.
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Figure 2. Flowchart of pitaya growth status detection system.

2.2.1. YOLOv8n Network Structure

The primary components of the YOLOv8 target detection algorithm are divided
into three sections: Backbone, Head, and Neck [13]. The Backbone is responsible for
the extraction of features from the input data and their subsequent transmission to the
subsequent layers, where they are employed in the performance of the task. The Head
is responsible for mapping the features extracted from the Backbone network to the task-
related outputs. The role of the Neck is to further process the features extracted from the
Backbone network and prepare them for use in the Head for a particular task. The network
structure of YOLOv8n is depicted in Figure 3.
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It should be noted that BN represents a batch normalization operation, SiLu is the
activation function, Split is a slicing operation, Conv represents a convolution operation,
Concat is the feature connection module, SPPF represents the spatial pyramid pooling
module, Max pool2d represents the maximum pooling, Bbox represents the bounding box
loss, and Cls represents the classification loss [14–17].
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2.2.2. CBAM Attentional Mechanisms

CBAM is an attention mechanism module designed to enhance the performance
of convolutional neural networks [18]. The primary objective of CBAM is to enhance
the perceptual capabilities of the model by incorporating channel and spatial attention
mechanisms into the convolutional neural network. The CBAM attention mechanism
module is capable of enhancing the performance of the model without increasing the
complexity of the network. The channel attention module is employed to assign weights to
input channel feature maps, while the spatial attention module is used to assign weights to
input spatial feature maps. The structure of the CBAM attention mechanism is shown in
Figure 4.

Horticulturae 2024, 10, x FOR PEER REVIEW 5 of 16 
 

 

It should be noted that BN represents a batch normalization operation, SiLu is the 
activation function, Split is a slicing operation, Conv represents a convolution operation, 
Concat is the feature connection module, SPPF represents the spatial pyramid pooling 
module, Max pool2d represents the maximum pooling, Bbox represents the bounding box 
loss, and Cls represents the classification loss [14–17]. 

2.2.2. CBAM Attentional Mechanisms 
CBAM is an attention mechanism module designed to enhance the performance of 

convolutional neural networks [18]. The primary objective of CBAM is to enhance the per-
ceptual capabilities of the model by incorporating channel and spatial attention mecha-
nisms into the convolutional neural network. The CBAM attention mechanism module is 
capable of enhancing the performance of the model without increasing the complexity of 
the network. The channel attention module is employed to assign weights to input chan-
nel feature maps, while the spatial attention module is used to assign weights to input 
spatial feature maps. The structure of the CBAM attention mechanism is shown in Figure 
4. 

 
Figure 4. Structure diagram of CBAM attention mechanism. 

The principal objective of the channel attention module is to enhance the feature rep-
resentation of each channel. For the input features, the features are first fed into the pool-
ing layer [19], which reduces the number of features in the network layer through global 
maximum pooling and global average pooling operations. This can suppress overfitting 
to some extent. The average pooling layer is employed to calculate the mean value of the 
image region during forward propagation, and the features are distributed evenly across 
the region during backward propagation. The application of average pooling allows for 
the suppression of image noise, the retention of a substantial quantity of image texture 
information for the purpose of feature classification, and the retention of a greater quan-
tity of image background information. The average pooling process is shown in Figure 5. 

 
Figure 5. Average pooling process diagram. 

In the maximum pooling layer, the maximum value of the image region is selected 
as the pooling value in forward propagation, and the maximum value is retained in back-
ward propagation. The values of other positions are set to 0. Maximum pooling eliminates 
a significant amount of redundant information, but also results in the loss of a considera-
ble amount of image detail. Consequently, edge information is typically retained in this 
manner. The maximum pooling process is shown in Figure 6. 

Figure 4. Structure diagram of CBAM attention mechanism.

The principal objective of the channel attention module is to enhance the feature
representation of each channel. For the input features, the features are first fed into the
pooling layer [19], which reduces the number of features in the network layer through global
maximum pooling and global average pooling operations. This can suppress overfitting
to some extent. The average pooling layer is employed to calculate the mean value of the
image region during forward propagation, and the features are distributed evenly across
the region during backward propagation. The application of average pooling allows for
the suppression of image noise, the retention of a substantial quantity of image texture
information for the purpose of feature classification, and the retention of a greater quantity
of image background information. The average pooling process is shown in Figure 5.
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In the maximum pooling layer, the maximum value of the image region is selected as
the pooling value in forward propagation, and the maximum value is retained in backward
propagation. The values of other positions are set to 0. Maximum pooling eliminates a
significant amount of redundant information, but also results in the loss of a considerable
amount of image detail. Consequently, edge information is typically retained in this manner.
The maximum pooling process is shown in Figure 6.

The feature vectors resulting from global average pooling and global maximum pool-
ing are input to a fully connected layer MLP. This fully connected layer is considered to be
involved in training the model, along with the convolutional basis. The fully connected
layer learns the weights of each channel, classifies the features, and decides which chan-
nel’s result is more important for learning. It then intersects the feature vectors and finally
outputs the weights. A sigmoid activation function is added to the output vectors, as this is
a necessary component of a neural network. Without an activation function in the hidden
layers, the added layers are meaningless. For our dichotomous function, a sigmoid function
is used. This maps values between 0 and 1, and the function values can be interpreted as
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mathematical probabilities. The addition of the sigmoid activation function allows weights
to be applied to each channel of the image. Finally, integration is performed by multiplying
the weights obtained by the original image features, re-adjusting the importance of each
channel, and feeding the resulting feature map into the spatial attention module for the
next step.
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The spatial attention module is primarily concerned with identifying the most crucial
regions within the feature image. This is achieved by first obtaining the feature image from
the channel attention module and then averaging and maximally pooling it. This process
yields two distinct channels, which are then spliced to generate two feature vector maps.
Finally, the two maps are compressed to form a single channel, which is then convolved
with a weight derived from the channel attention module. This weight is then activated
by a sigmoid function, a process that is largely analogous to the aforementioned channel
attention module. The maps are compressed to form a one-unit channel, and a convolution
of quantity 1 is carried out to obtain the spatial attention weight, which is then activated
by a sigmoid function. This step and the above channel attention module are largely the
same, and will not be expanded in detail in this paper. Subsequently, the output weights
are constrained to a range of (0, 1) through the application of a sigmoid activation function.
Finally, the obtained weights are multiplied with the original image features to weight each
spatial feature.

2.2.3. The BiFPN Network

The BiFPN network is an object detection neural network architecture derived from the
Path Aggregation Network (PAnet) [20]. Employing a bidirectional pyramid structure, it
facilitates simultaneous upward and downward feature fusion. Through iterative processes,
it effectively enhances the quality of feature maps and extracts multi-scale object informa-
tion. YOLOv8 utilizes an enhanced network that refines the feature pyramid network (FPN
+ PAN) by incorporating bottom-up paths, thereby bolstering target detection capabilities,
particularly for small-scale targets [21]. However, the BiFPN network outperforms FPN
+ PAN in detecting small objects due to its more sophisticated feature fusion strategy. In
PAN-FPN, the transmission of features through an increased number of layers within the
network may result in the loss of fine details, particularly in deep feature maps. BiFPN’s
bidirectional architecture captures additional contextual information through two-way fea-
ture exchange, thereby enhancing the efficiency of feature propagation within the network
and consequently elevating the quality of feature representation. The architecture of BiFPN
is depicted in Figure 7.
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The circles represent features at varying scales, while the arrows illustrate the fusion
of features across different scales. When examining the dark yellow circles in isolation,
it can be discerned that the features are fused from top to bottom. Conversely, when
considering the green circles in isolation, it is evident that the features are fused from
bottom to top. Consequently, the feature fusion methodology employed by BiFPN is
consistent and systematic.

BiFPN employs a rapid normalised fusion algorithm, whereby feature maps of dis-
parate layers are merged by multiplying them with a learnable weight that is optimised by
backpropagation during training [22]. This algorithm is frequently designated as weighted
feature fusion [23]. The objective of weighted feature fusion is to facilitate the network’s ca-
pacity to automatically discern the significance of disparate input features and adjust their
contribution to the ultimate fusion result in a corresponding manner. The fast normalised
fusion algorithm is illustrated below:

ptd
i = Conv

(
ω1 × pin

i + ω2 × R
(

pin
i+1
)

ω1 + ω2 + ϵ

)
(1)

pout
i = Conv

(
ω′

1 × pin
i + ω′

2 × ptd
i + ω′

3 × R
(

pin
i−1
)

ω1 + ω2 + ω3 + ϵ

)
(2)

In the aforementioned algorithm, Ptd
i represents an intermediate feature of level i,

Pout
i represents the output feature of level i, Pin

i represents the input feature of level i,
Conv represents a separable convolution, R denotes an upsampling or downsampling
operation, and ω′ represents the weight associated with the learning process. The value of
ϵ is extremely small and serves to guarantee the stability of the values in question; ωi refers
to the weight of the input feature map.

2.2.4. The C2F_DCN Module

The C2F_DCN module is based on the C2F module, which replaces the Bottleneck
module with the Bottleneck_SCN module [24]. The structures of the C2F module and
the C2F_DCN module are depicted in Figure 8. In the C2F module, the input data are
initially subjected to a convolutional processing stage, which is then followed by a Split
processing stage. Subsequently, the data are processed by the Bottleneck module, and
finally, the outputs of the residual module and the Backbone module are concatenated
and subjected to a convolutional processing stage for output generation [25]. The residual
module comprises a Split and subsequent Concat stage.
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Figure 8. The structure diagram of the C2F module and the C2F_DCN module.

The Bottleneck module is comprised two CBS modules, whereas the Bottleneck_DCN
module is based on the Bottleneck module, with the CBS module replaced by the CBS_DCN
module. The Bottleneck module initially passes through one CBS module and subsequently
proceeds to pass through the other CBS module. The structures of the Bottleneck module
and the Bottleneck_DCN module are depicted in Figure 9.
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The CBS module comprises a convolutional layer, a BatchNorm2d layer, and a SiLU
activation function [26]. The CBS_DCN module is based on the CBS module, which
replaces the convolutional layer with DCNv2 (a deformable convolution). In the CBS
module, the input is initially processed by the convolutional layer, then normalised by BN
(BatchNorm), and finally activated by the SiLU function. In the CBS module, the input is
initially processed by the convolutional layer, then normalised by the batch normalisation
(BN) layer, and finally by the SiLU activation function. The structures of the CBS and
CBS_DCN modules are depicted in Figure 10.
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DCNv2, or Deformable Convolutional Networks Version 2, represents an enhanced
iteration of the original Deformable Convolutional Networks (DCN) model [27]. It has
been optimised and extended from the DCN foundation, incorporating advancements
in convolutional network design. Deformable convolution entails the introduction of
an offset to the sampling position in the standard convolution operation. This enables
the model to adaptively adjust the sampling position of the convolution kernel, thereby
facilitating a more optimal accommodation of changes in image content. In conventional
convolution, the sampling is performed with a fixed grid, as illustrated in Figure 11a.
Consequently, traditional convolution is unable to adapt to alterations in the target shape
and pose when dealing with targets exhibiting complex geometric variations, resulting
in inaccurate feature extraction for small, occluded or truncated targets. Furthermore,
traditional convolution is constrained in its capacity for feature fusion, typically only
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fusing features from fixed locations, which constrains the network’s comprehension of
complex scenes. Figure 11b illustrates the deformable convolution sampling process.
The sampling locations for deformable convolution are indicated by yellow dots with
enhanced offsets (red arrows). Consequently, in comparison to traditional convolution,
deformable convolution can enhance the model’s ability to localise and generalise to
targets by adaptively adjusting the sampling points, particularly in target detection and
segmentation tasks.
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The structure of DCNv2 is illustrated in Figure 12. Initially, a set of prediction results
for convolution kernel offsets is input following a conventional convolution operation [28].
Subsequently, the offset field is traversed in order to obtain the bias field of the convolution
kernel sampling points. This enables the convolution kernel to learn the offsets in the x and
y directions, respectively. Consequently, the bias matrix of the convolution kernel sampling
points is obtained, and thus the offsets ∆pn are obtained. Ultimately, the convolution kernel
structure of the feature map is optimised using bilinear interpolation methods. Figure 12
illustrates that the number of channels for the offset is 3N, where 3 refers to the offset in the
x-direction and the offset in the y-direction, as well as the value of the penalty parameter
∆mk. In comparison to DCNv1, the number of channels utilized for the prediction result has
been modified from the initial 2N to 3N. This alteration is attributed to the incorporation of
an additional parameter in DCNv2 for learning purposes, namely the penalty parameter,
∆mk. The value of N represents the number of pixels within the convolution kernel [29].
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The formula for DCNv2 at a given sampling point is as follows:

y(po) = ∑
po∈R

ω(pn) ∗ x(po + pn + ∆pn) ∗ ∆mk (3)

In Equation (3), the notation y(po) is used to denote the value of po at each position
of y in the output feature map. The notation ω(pn) is used to denote the weights of the
convolutional kernel at pn; pn is an element in R, where R denotes the size of the sensory



Horticulturae 2024, 10, 899 10 of 16

field. For example, R{(1, 1), (1, 0), . . . (1, 1)} denotes a 3 × 3 convolutional kernel. The
variable x is used to denote the position of the feature map, x(po + pn + ∆pn). The offset
added at the traditional convolutional sampling points with added offsets is represented
by the variable ∆pn. The penalty parameter, denoted by the variable ∆mk, is a decimal
between 0 and 1.

The bilinear interpolation formula is defined as follows:

x(p) = ∑ G(q, p) ∗ x(q) (4)

In Equation (4), the symbol x(p) denotes the pixel value that has been calculated
by means of interpolation. The variable p represents an arbitrary position within the
offset region, which is defined as (p = po + pn + ∆pn). The symbol q denotes the spatial
position of the input feature mapping, while the function G(q, p) represents the bilinear
interpolation function for a single 2D convolutional kernel [30].

2.2.5. YOLOv8n-CBN Network Architecture

The proposed modification to the YOLOv8n model entails the incorporation of the
CBAM attention mechanism into its network structure. This could be theoretically imple-
mented after each convolutional block in the Backbone network. The CBAM attention
mechanism module was incorporated subsequent to the initial C2F module (layer 3) within
the Backbone section. The objective of incorporating CBAM into the YOLOv8n model is
to enhance detection accuracy for complex scenes and small targets. Secondly, the BiFPN
mechanism is incorporated into the feature enhancement module. The objective is to
facilitate the more effective capture of multi-scale features and enhance the efficiency of
feature information transfer within the network. Ultimately, a number of the C2F modules
present in the Neck section have been substituted with C2f_DCN. The network structure of
YOLOv8n-CBN is illustrated in Figure 13.
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3. Results and Discussion
3.1. Experimental Environment

The experimental environment was conducted using PyCharm Community Edition
2023.2.3, on a laptop with an NVIDIA GeForce RTX 3060 GPU with 24 GB of video memory.
The programming language was Python 3.9.18, with CUDA v118 used to accelerate the
GPU, and the deep learning framework PyTorch 2.0.1 was employed.

3.2. Ablation Experiment

To assess the efficacy of the aforementioned improvements, ablation experiments were
conducted to compare the effects before and after the implementation of the improvements.
The evaluation metrics employed were precision (P), recall (R), F1 score (F1), average preci-
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sion mean (mAP@0.5) at an IoU threshold of 0.50, average precision mean (mAP@0.50–0.95)
at different IoU thresholds, inference time, and model size (weight), which are defined in
Equations (5)–(9).

P =
TP

FP + TP
(5)

R =
TP

FN + TP
(6)

AP =
∫ 1

0
P(R)dR (7)

F1 =
2P·R
P + R

(8)

mAP =
∑n

i=0 AP(i)
n

(9)

In the aforementioned equation, TP represents the number of correctly identified
targets, FP denotes the number of targets that the detector erroneously identifies as targets
but which are, in fact, non-targets, and FN signifies the number of non-targets that the
detector incorrectly identifies as targets.

In order to ascertain the influence of each enhanced module on the model, we con-
ducted ablation experiments and compared the original YOLOv8n model with a series of
modified iterations. The results of the aforementioned ablation experiment are presented
in tabular form in Table 1.

Table 1. Ablation experiment.

None CBAM BiFPN C2F-DCN P R F1 mAP
@0.5

mAP
@0.50–0.95

Inference
Time Weight

✓ 0.880 0.805 0.842 0.890 0.470 5.6 ms 6.2 MB
✓ 0.895 0.853 0.873 0.905 0.477 5.6 ms 6.2 MB
✓ ✓ 0.881 0.854 0.867 0.911 0.476 5.8 ms 6.2 MB
✓ ✓ 0.893 0.835 0.863 0.902 0.478 6.3 ms 6.4 MB
✓ ✓ ✓ 0.911 0.843 0.876 0.911 0.482 6.4 ms 6.4 MB

As illustrated in Table 1, the precision and recall rates have been enhanced by 3.1% and
3.8%, respectively, in comparison to the preceding values following the implementation of
the proposed modifications. Additionally, the mAP@0.5 and mAP@0.50–0.95 values have
exhibited an improvement of 2.1% and 1.2%, respectively. This implies that the enhanced
model will diminish the occurrence of leakage and erroneous detection in the process of
pitaya growth detection. Additionally, we observed that following the replacement of the
C2F-DCN module, the inference time increased, and the size of the weight file for the model
increased by 0.2 MB compared to the pre-improvement period. This is attributed to the
introduction of additional offset parameters by the deformable convolution, which resulted
in an increase in the storage and computational requirements of the model.

3.3. Performance Comparison of Different Models

A performance comparison is conducted between the improved YOLOv8n-based
YOLOv8n-CBN algorithms and the target detection algorithms of YOLOv3-tiny, YOLOv5s,
YOLOv5m, and YOLOv8n. The training set of the dataset was first subjected to training in
YOLOv3-tiny, YOLOv5s, YOLOv5m, and YOLOv8n. Subsequently, the weight files trained
by each of the aforementioned models were obtained and incorporated into the validation
set for verification. Ultimately, the data presented in Table 2 were generated.
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Table 2. Performance comparison of different models.

YOLOv3-Tiny YOLOv5s YOLOv5m YOLOv8n YOLOv8n-CBN

P 0.823 0.859 0.872 0.880 0.911
R 0.780 0.884 0.872 0.805 0.843
F1 0.801 0.871 0.872 0.842 0.876

mAP@0.50 0.844 0.904 0.906 0.890 0.911
mAP@0.50–0.95 0.381 0.432 0.466 0.470 0.482
inference time 3.9 ms 5.7 ms 11.6 ms 5.6 ms 6.4 ms

weight 16.9 MB 14.1 MB 40.8 MB 6.2 MB 6.4 MB

In comparison to the YOLOv3-tiny model, the YOLOv8n-CBN model demonstrated
an 8.8% improvement in precision, a 6.3% improvement in recall, a 7.5% improvement in F1
score, a 6.7% improvement in mAP@0.50, and a 10.5 MB reduction in weight. Additionally,
the mAP@0.50–0.95 metric exhibited a 10.1% enhancement. In terms of inference time, the
YOLOv8n-CBN model is observed to exhibit a slight increase of 2.5 ms in comparison to
YOLOv3-tiny.

A reduction of 4.1% has been observed in the recall of the YOLOv8n-CBN model in
comparison to the YOLOv5s. Furthermore, the inference time of YOLOv8n-CBN is ex-
tended by 0.7 ms. However, in terms of precision, F1 score, mAP@0.50, and mAP@0.50–0.95,
the YOLOv8n-CBN model outperforms the YOLOv5s model by 5.2%, 0.5%, 0.7%, and 5.0%,
respectively. Additionally, the YOLOv8n-CBN model is 7.7 MB smaller in terms of weight
than the YOLOv5s model.

In comparison to the YOLOv5m model, the YOLOv8n-CBN model demonstrates a
3.9% enhancement in precision, a 2.9% reduction in recall, and a 0.4% increase in F1 score.
The mAP@0.50 value increased by 0.5%, while the mAP@0.50–0.95 value increased by 1.6%.
Additionally, there was a reduction in inference time of 5.2 ms and a reduction in weight of
34.4 MB.

As can be seen in Table 2, the mAP@0.50 value for YOLOv8n-CBN is 0.911, which is
lower than the value reported by some research scholars in the Introduction section. The
discrepancy can be attributed to the fact that the detected targets are not identical. The
target of their detection is the ripe pitaya, which is bright red in a large area and exhibits
a significant contrast with the background environment. Consequently, the detection is
more precise, and there are minimal instances of missed recognition. Conversely, the
targets of our model are the three stages of pitaya growth, in which the unripe pitaya is
situated in closer proximity to the environment due to its green colour, thus rendering
it more susceptible to misrecognition during the recognition process. Consequently, the
enhancements we have implemented continue to possess a certain degree of significance,
despite the fact that our proposed model exhibits a lower mAP value than those proposed
by certain researchers in the Introduction section.

In conclusion, the YOLOv8n-CBN model demonstrates greater overall superiority
than the aforementioned models. Consequently, it is more effective at accurately detecting
the growth status of dragon fruit in complex natural environments.

3.4. A Comparative Analysis of the Loss Function Prior to and following Improvement

In order to observe the performance difference between the YOLOv8n-CBN model
and the YOLOv8n model, and to verify whether the YOLOv8n-CBN model underfitted or
overfitted during training and validation, we recorded the loss functions of the YOLOv8n-
CBN model and the YOLOv8n model during training and validation. The results are
presented in Figure 14.
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Figure 14 illustrates that the loss function changes exhibited by the YOLOv8n and
YOLOv8n-CBN models are largely similar. It can thus be concluded that the stability and
robustness of the YOLOv8n model, both before and after the improvement, are essentially
identical. Furthermore, it can be observed that neither model exhibits the phenomenon
of “low loss function in the training set, but high loss function in the validation set”.
Instead, the loss functions of the training sets for both models demonstrate convergence
and gradually approach a smooth trajectory. This suggests that neither model is subject to
overfitting nor underfitting.

3.5. Comparison of the Growth State of Pitaya Fruit Results before and after the Improved Model

In order to observe the impact of the models prior to and following the implementation
of enhancements on the detection of pitaya growth state, we have utilised the YOLOv8n
and YOLOv8n-CBN models on the same pitaya growth state images, as illustrated in
Figure 15.
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Figure 15. Comparison of test results of pitaya growth state before and after YOLOv8n improvement.



Horticulturae 2024, 10, 899 14 of 16

Figure 15 presents a comparison of two groups of pitaya detection results, each
comprising two images. The images on the left were obtained using the YOLOv8n model,
while those on the right were obtained using the YOLOv8n-CBN model. It can be observed
from the initial set of results that the YOLOv8 model has exhibited a tendency to misjudge
the detection of the blurrier pitaya, whereas the YOLOv8-CBN model has demonstrated a
higher degree of accuracy in this regard. From the second group, it can be observed that
the YOLOv8-CBN model is capable of accurately identifying obscured pitayas, whereas the
YOLOv8n model is prone to the phenomenon of missed judgement in such instances. It
can thus be concluded that the YOLOv8-CBN model outperforms the YOLOv8n in terms
of avoiding the phenomenon of missed judgement.

4. Conclusions

In order to enhance the efficacy of pitaya detection in complex natural environments,
which are prone to false negatives and false positives, we have developed an enhanced
model, YOLOv8-CBN. This is based on the YOLOv8n network model and is designed
to detect the three growth stages of pitaya: flowering, immature, and ripe. This model
represents a significant advancement over previous studies in this field, with the following
key contributions:

The YOLOv8n-CBN model incorporates a CBAM attention mechanism module, fuses
a BiFPN network, and replaces a portion of the C2F module with the C2F_DCN module.
The experimental results demonstrate that the method enhances the network’s ability to
extract features and the efficiency of transferring network feature information. Ultimately,
mAP@0.50 reached 91.1%, and the F1 score reached 87.6%. In comparison to the current
mainstream models of YOLOv3-tiny, YOLOv5s, YOLOv5l, and YOLOv8n, this model
demonstrates superior performance. While there is a discrepancy in the mAP value between
this model and those proposed by some individuals in the introduction, this is unavoidable
given that the detection targets are not identical. Consequently, this model can be effectively
applied to detect the growth status of pitayas in a natural environment.

The YOLOv8-CBN model demonstrates remarkable efficacy in discerning the growth
status of pitayas. For agricultural producers, it offers a valuable tool for real-time monitor-
ing of plant development and the identification of unripe fruits, facilitating more efficient
and informed decision-making regarding crop management. It is therefore evident that
this study has significant implications for the advancement of intelligent techniques in
agricultural operations.
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Appendix A

The Primary Source of the Dataset: https://universe.roboflow.com/dragonfarm-aurrj/
dragon_det (accessed on 21 December 2023).

https://universe.roboflow.com/dragonfarm-aurrj/dragon_det
https://universe.roboflow.com/dragonfarm-aurrj/dragon_det
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