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Abstract: Anthocyanins, constituents of flavonoid compounds prevalent in plants, possess significant
value in both plant development and human nutrition. The regulation of anthocyanin biosynthesis
primarily involves the orchestration of MYB, bHLH, and WD40 transcription factors. Consequently,
the bHLH family assumes a pivotal role in modulating plant developmental processes. In the present
investigation, a transcription factor, denoted as LvbHLH13, was identified as a positive regulator
of anthocyanin pigmentation in lily petals. LvbHLH13 is classified within the IIId subgroup of Ara-
bidopsis bHLH proteins. Functional analyses involving the transient expression and gene silencing of
LvbHLH13 revealed its capacity to enhance and diminish anthocyanin accumulation, respectively,
by modulating the LvMYB5 expression, thereby influencing the downstream structural gene expres-
sion. The overexpression of LvbHLH13 resulted in an increase in the expression of the downstream
structural genes related to anthocyanin synthesis, whereas silencing of LvbHLH13 correspondingly
decreased the expression. Yeast one-hybrid and EMSA assays demonstrated the interaction between
LvbHLH13 and the LvMYB5 promoter, leading to the activation of anthocyanin biosynthesis. A
further luciferase (LUC) analysis corroborated the stimulatory effect of LvbHLH13 on the LvMYB5
promoter sequence. Consequently, LvbHLH13 assumed a crucial role in lily-petal pigmentation.
A yeast two-hybrid analysis revealed that LvbHLH13 diverged from typical bHLH transcription
factor behavior as it did not form a complex with MYB to regulate anthocyanin biosynthesis. This
discrepancy could be attributed to the deletion of the N-terminal conserved sequence of LvbHLH13.
This study provides a new bHLH candidate and bHLH-MYB partner to explore the anthocyanin reg-
ulatory network in further research and provides new opportunities for breeding lilies with various
anthocyanin contents. These findings lay a theoretical foundation for subsequent investigations into
lily flower coloring mechanisms.

Keywords: lily; anthocyanins; LvbHLH13; LvMYB5; protein–nucleic acid interaction; protein interaction

1. Introduction

The lily has captivated human affection for centuries. These flowers are not just
aesthetically pleasing, but they also play significant roles in various fields, including horti-
culture, floriculture, medicine, and symbolism. The range of lily flower colors spans from
pristine white to vibrant pinks, oranges, and even near-black hues. Each hue carries biolog-
ical importance, with color being an essential factor in attracting pollinators and ensuring
successful reproduction [1–4]. During the pigment accumulation of plants, flavanols and
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anthocyanins have attracted particular attention because they are responsible for not only
rendering most colors and preventing biotic and abiotic damage in plants but also the
health benefits for humans [5–7]. Due to their high antioxidant activity, anthocyanins have
been linked to the prevention of several chronic diseases [8].

Anthocyanins, which are part of flavonoid compounds, are synthesized through
a complex pathway regulated transcriptionally by a set of interconnected genes [9–12].
These genes encompass chalcone synthase (CHS), chalcone isomerase (CHI), flavanone
3-hydroxylase (F3H), and flavonoid 3′-hydroxylase (F3′H), responsible for generating
common precursors. Further downstream in the pathway are genes like flavonoid-3-O-
glucosyltransferase (3GT), anthocyanidin synthase (ANS), and dihydroflavonol-4-reductase
(DFR) [13–15], typically considered to be late biosynthetic genes (LBGs). In lilies, the
expression of DFR, ANS, and 3GT is intimately linked to color formation. The regula-
tory transcription factors (TFs) controlling these genes consist of MYB TFs, bHLH TFs,
and MYB-bHLH-WD40 (MBW) complexes, composed of MYB, bHLH, and WD40 repeat
proteins [4,9,11,16–19].

Recent investigations have increasingly shed light on the role of numerous bHLH
TFs in governing the flavonoid pathway [20–24]. Strawberry R2R3-FaMYB5 interacts with
FaEGL3 and FaLWD1 to form a MBW complex, which positively regulates the accumula-
tion of anthocyanin through the activation of F3′H [25]. HvnAnt2 interacts with flavonoid
3′-monooxygenase, anthocyanin biosynthesis gene regulators, and key enzymes in folate
metabolism, which play a role in the formation of different qingke barley-grain colors [26].
Another study suggested that ThRAX2 may pass through a specific recognition of the
MYB-T motif to enhance Cd tolerance to regulate the downstream expression and also
regulate anthocyanidin synthase protein transport and activity [27]. The bHLH TFs have
been extensively studied, with an increasing focus on their involvement in the response to
environmental factors such as cold temperatures, salt, drought, and iron deficiency [28].
Another bHLH factor, inducer of C-repeat binding factor expression 2 (ICE2), acts antago-
nistically to control seed dormancy by regulating the ABA catabolism gene ABA8OX3 in a
temperature-dependent manner [29]. The above studies indicate the different functions of
bHLH TFs in different plants.

In the genome of Arabidopsis thaliana, 32 families of bHLH genes encode TFs with three
or more branches [30], each featuring a crucial helix-loop–helix structural domain essential
for homodimer or heterodimer formation [15]. This domain exhibits a highly conserved
amino acid sequence, typically encompassing the DNA binding domain. The majority of
group III members function as TFs governing flavonoid-metabolism genes, illustrated by
TT8 (TRANSPARENT TESTA8), GL3 (GLABRA3), and EGL3 (ENHANCER OF GLABRA3),
which regulate anthocyanin synthesis in Arabidopsis thaliana [31–33]. TT8, a significant
bHLH transcription factor in anthocyanin regulation, primarily oversees DFR expression
in seedlings and pods and plays a role in MBW complex assembly. However, compared
with III f subgroup bHLH TFs, in III d subgroups, a segment of amino acids is mutated.
The N-terminal conservatism of the III d subgroup is considered to be an important factor
regulating anthocyanin accumulation [3,4,34]. Conversely, MYB genes constitute another
class of regulators not involved in MBW complexes. MYBs related to flavonoid function
typically bind to the promoters of target structural genes to initiate expression, relying
on interaction with bHLHs for this binding mechanism [35,36]. Research on the gene
regulatory network governing anthocyanin production in lilies is notably scarce, especially
when contrasted with studies conducted in model plants. [37]. The previous study showed
that LvMYB5 could activate anthocyanin synthesis by interacting with structural genes [37].
The content of anthocyanins was positively correlated with the transcript abundance of
LvMYB5. The results suggested that LvMYB5 controlled anthocyanin biosynthesis together
with its regulator partner, bHLH. Unfortunately, the bHLH partner of LvMYB5 in lily has
not reported. So, it is necessary to identify lily anthocyanin regulatory factors and lay a
basis for the breeding of highly gorgeous and high-anthocyanin lilies.
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In this study, a bHLH TF was identified through transcriptome sequencing, and
subsequent expression verification revealed that LvbHLH13 exhibited a similar expression
pattern to that of early anthocyanin structural genes. Transient overexpression and virus-
induced gene silencing (VIGS) experiments were then conducted, demonstrating that
LvbHLH13 plays a regulatory role in modulating anthocyanin biosynthesis by influencing
the expression of LvMYB5 and structural genes. To further validate the functionality of
these gene-encoded proteins and elucidate the interaction between LvMYB5 and LvbHLH13,
yeast one-hybrid assays, electrophoretic mobility shift assay (EMSA), dual-luciferase assay
(LUC), and subcellular localization were conducted. The findings of this study revealed the
molecular regulatory mechanism of bHLH genes in lily color formation, contributing to a
deeper understanding of anthocyanin biosynthesis and flower color development.

2. Materials and Methods
2.1. Materials

The cultivar was used as previously described [7]. In 2022, the plants were cultivated in
a greenhouse at Shenyang Agricultural University, where temperatures fluctuated between
2 and 25 degrees Celsius.

Samples were separated manually into three groups according to the growing stage:
the bud stage (S1), the coloring stage (S2), and the full-blooming stage (S3). In S3, the unpig-
mented region of the petal was marked as X. All samples were collected and immediately
frozen in liquid nitrogen and stored at −80 ◦C for further analysis. Nicotiana benthamiana
seedlings at 4–6 weeks of age were used in the experiments.

2.2. RNA Extraction, cDNA Synthesis, and qRT-PCR

An RNA extraction kit (Biolab, Beijing, China) was utilized following the manufac-
turer’s instructions. RNA integrity was evaluated via 1.0% agarose gel electrophoresis,
while purity was determined by the A260/A280 absorption ratio using a spectrophotome-
ter (BIODROP, Cambridge, UK). Subsequently, 1 mg of total RNA from each sample was
reverse-transcribed into cDNA using the PrimeScript™ RT kit (Monad, Suzhou, China)
following the manufacturer’s protocols. The resulting cDNA was diluted tenfold with
ddH2O and employed as a template for quantitative real-time PCR (qRT-PCR).

The reaction was carried out with a 1 mL volume mixture containing 100 µL of cDNA
(50 ng/µL), 30 µL of each forward and reverse primers (10 pmol/µL), 500 µL of Mon-
Amp™ ChemoHS qPCR SYBR Green SuperMix (Monad, Suzhou, China), and 340 µL of
ddH2O. The steps are as follows: predenaturation, 95 ◦C 10min; denaturation, 95 ◦C 10 s;
renaturation, 60 ◦C 30 s; extension phase, 72 ◦C 30 s; for a total of 40 cycles. Quantitative
analysis of anthocyanin-related genes was conducted using qRT-PCR with three biological
replicates and a technical replicate. The reference gene actin was employed for normaliza-
tion purposes. Relative gene expression levels were determined using the 2−∆∆Ct method,
where ∆Ct = Ct (target gene) − Ct (actin). Gene-specific primers were designed utilizing
the NCBI web tool Primer-BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 14
May 2023), ensuring product sizes within the range of 100 to 200 bp. Further details on the
anthocyanin genes and the primers used are provided in Supplementary Table S1.

2.3. Anthocyanin Concentration Analysis

The anthocyanin concentrations were determined according to references [37–40].
Briefly, 0.1 g of the ground sample powder was added to 700 µL of methanol extraction
buffer (1% HCl) at 4 ◦C, and the mixture was incubated overnight. Then, 400 µL of ddH2O
and 400 µL of chloroform were added sequentially to extract chlorophyll. Centrifugation
was performed (Thermo Scientific, Waltham, MA, USA) at 14,000× g at 4 ◦C for 5 min to
obtain anthocyanin supernatants. Absorption values were measured at 530 nm and 657 nm
(Thermo Scientific, Evolution™ 350, USA). Finally, we calculated the anthocyanin content
of the plant using the formula A530–0.33A657. For each sample, three replicates were
extracted and measured. The analysis was carried out using the SPSS16.0 software package.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.4. Virus-Induced Gene Silencing (VIGS) of LvMYB5 and LvbHLH13 Genes in Lily Petals

A 250 bp fragment was amplified from specific regions of LvMYB5 (LvMYB5-TRV2)
and LvbHLH13 (LvbHLH13-TRV2) with EcoR I and Xho I inserted by the 5 ‘end of the
forward and reverse primers, respectively (Supplemental Table S1). The target segment
was cloned into the pTRV2 vector, resulting in recombinant plasmids pTRV2-LvMYB5
and pTRV2-LvbHLH13. These recombinant plasmids were subsequently introduced into
Escherichia coli DH5α, and positive clones were selected for DNA sequencing to verify the
integrity and accuracy of the inserted sequences [41].

Three groups (pTRV1 + pTRV2, pTRV1 + pTRV2-LvMYB5, and pTRV1 + pTRV2-
LvbHLH13) were cultured in an LB medium supplemented with 25 mg/L rifampin and
50 mg/L kanamycin at 28 ◦C until reaching an optical density at 600 nm (A600) of 0.8–1.0,
measured using a spectrophotometer. The cells were then centrifuged into pellets and
resuspended in a buffer solution containing 10 mM MES, 10 mM MgCl2, and 150 mM
acetosyringone at pH 5.6, with the A600 adjusted to 0.8. The resuspended cells were then
incubated for 3 h at room temperature in the dark. Prior to infiltration, each group received
an equivalent volume of Agrobacterium cultures harboring pTRV1 and pTRV2 vectors.

The mixture was injected into the outer petals at the S2 stage using a 1 mL needle-free
syringe. Six biological replicates were used per treatment. Phenotypic identification was
carried out in a growth chamber with the following settings: 25 ◦C, 60% humidity, and 16 h
light–8 h dark. After treatment in the dark for 24 h, the growth chamber was subjected to a
16 h light–8 h dark cycle; photographs were taken after 6 days.

2.5. Overexpression of LvMYB5 and LvbHLH13 Genes in Lily Petals

In the presence of 35S promoter control, the cDNA of LvbHLH13 was cloned to the
pCAMBIA1300-GFP vector between BamH I and Sal I via homologous recombination. Then,
using the freeze-thaw method, the recombinant plasmid was transformed into a single-cell
strain of Agrobacterium tumefaciens. The plasmid was incubated at 28 ◦C for 48 h. Finally,
the expression vector named 35S::LvbHLH13 was obtained. The sequence of the primers
used is provided in Supplementary Table S1.

2.6. Subcellular Localization of LvMYB5 and LvbHLH13

The coding sequences (CDSs) of LvMYB5 and LvbHLH13 were cloned into the BamH
I and Sal I restriction sites of the pCAMBIA1300-GFP vector, resulting in LvMYB5-GFP and
LvbHLH13-GFP constructs. Both the control and recombinant vectors were then injected into
Nicotiana benthamiana leaves through agroinfiltration, following the established protocols [7].
After an incubation period of 72 h (including 24 h in the dark), fluorescence was observed
using a confocal laser scanning microscope, as described previously [42]. Details of the
primers are listed in Supplementary Table S1.

2.7. Yeast One-Hybrid Assay of LvbHLH13 and LvMYB5 Promoter

Three deletion fragments of MYBp (2000+ bp), namely, MYBp1 (1200 bp), MYBp2
(900 bp), and MYBp4 (300 bp), were inserted into the Xho I and Sac I sites in the pAbAi
vector. Subsequently, pAbAi-LvMYB5 and pGADT7-LvbHLH13 were co-transformed into
yeast cells (Y1H) following the provided instructions.

2.8. Electrophoretic Mobility Shift Assay (EMSA) of LvbHLH13 and LvMYB5 Promoter

The coding sequence (CDS) of LvbHLH13 was cloned into the pGEX6P vector and sub-
sequently introduced into DE3 Rosetta Competent cells. Following induction with 0.5 mM
IPTG, the recombinant LvbHLH13-His tag protein was purified using a GST-tag Protein
Purification Kit (Beyotime, Shanghai, China) according to the manufacturer’s instructions.
Subsequently, the purified protein was subjected to 8% SDS–PAGE for isolation. In the
EMSA (Electrophoretic Mobility Shift Assay), three labeled DNA probes containing the
G-box from the upstream promoter sequence of LvMYB5 were employed for detection.
Unlabeled probes were used as competitors. The EMSAs were performed using a chemilu-
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minescent EMSA Kit (Beyotime, Shanghai, China). Details of the primers are presented in
Supplementary Table S1.

2.9. Dual-Luciferase Transient Assay

A 2000 bp LvMYB5 upstream promoter sequence was inserted into a pGreenII-0800-
LUC vector to construct the reporter vector LvMYB5 pro-LUC. The CDS sequence of
LvbHLH13 was cloned into the 35S:: GFP vector (pGreenII-62-SK). The effector vectors,
including LvbHLH13-62-SK and the empty vector pGreenII-62-SK, were utilized in this
study. The A. tumefaciens reporter and effector strains were co-transformed into 4-week-old
tobacco (N. benthamiana) leaves using previously described methods [43].

For the detection of luciferase (LUC) activity, a Dual-Luciferase Reporter Assay Sys-
tems (Promega) was used. The primer sequences are listed in Supplementary Table S1.

2.10. Yeast Two-Hybrid Assay of LvbHLH13 and LvMYB5 Promoter

The CDS sequences of LvbHLH13 and LvMYB5 were inserted into the EcoR I/BamH I
sites of the pGADT7 vector and the EcoR I/Pst I sites of the pGBKT7 (BD) vector, respectively.
pGADT7-LvbHLH13 and pGBKT7-LvMYB5 constructs were then co-transformed into yeast
cells (Y2H), following the protocol’s instructions. The CDS sequence of 53 was cloned into
the pGBKT7 vector (resulting in pGBKT7-53), co-transformed with pGADT7-T, and used as
a positive control. The transformed yeast cells were initially cultured in a medium without
tryptophan and leucine (−T/−L) and subsequently transferred to a medium containing
aureobasidin A (ABA), tryptophan, leucine, histidine, and adenine (−T/−L/−H/−A) for
further analysis.

2.11. Statistical Measurement

All statistical data were analyzed using ANOVA with Tukey’s correction according
to the study by Sun. Different letters indicate significant differences (p < 0.05) in the least
significant difference (LSD) test or Student’s t-test (* p-value < 0.05, ** p-value < 0.01,
*** p-value < 0.001) [40].

3. Results
3.1. Spatiotemporal Differences in Gene Expression during Anthocyanin Accumulation in
Lily Petals

Figure S2 illustrates the results of the identification of the bHLH transcription factor
family using the lily transcriptome and genomic databases. The open reading frames
(ORFs) of LvbHLH13-encoded proteins consisted of 544 amino acids, with the MYB interac-
tion domain located in the N-terminal region, similar to other bHLH transcription factor
proteins associated with plant anthocyanin production. Based on the color change observed
in lily petals (Figure 1A), samples were collected at three flowering stages, namely, the bud
stage (S1), the coloring stage (S2), and the full blooming stage (S3), along with unpigmented
petal samples (X). As depicted in Figure 1B, extracts with the same dilution ratio displayed
a progressive deepening of color from white to purple throughout the petal development.
At each stage, the total anthocyanin content of the petals was determined. The results
revealed that S1 petals, corresponding to the white extract, exhibited a significantly lower
anthocyanin content than the samples from the other two stages. Anthocyanin accumu-
lation markedly increased from 0.04 mg/g (S1) to 3.82 mg/g (S3) as the petals began to
exhibit coloration (Figure 1B). Hence, the variation in the anthocyanin content in petals
suggests a gradual accumulation of anthocyanins during flower development.

To examine the genes associated with the color of lilies, the transcription factor (TF)
LvbHLH13 (GeneBank accession no. PP442030) was isolated and cloned to analyze the
gene expression at different developmental stages. Following a previous study [37], the
anthocyanin-related structural genes LvCHS, LvF3H, LvDFR, Lv3GT, and LvANS, as well
as the positive transcriptional regulator LvMYB5, were cloned from lily. qRT-PCR was
performed to quantitatively analyze the gene expression in the different stages. The results
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are shown in Figure 1C. LvMYB5 was upregulated in S2 and S3, and most of the late
structural genes also revealed increased expression during flower development. Moreover,
compared to the pigmented section (S3), the unpigmented zone (X) had a substantially
lower concentration of cyanidin derivatives (Figure 1C), which can be attributed to an-
thocyanin accumulation. However, the expression of LvbHLH13 was highest in the S1
period, slightly downregulated in the S2 period, and significantly downregulated in the S3
period. This is consistent with changes in early anthocyanin biosynthesis genes, indicating
that LvbHLH13 is mainly expressed during the early stage of anthocyanin accumulation.
Therefore, LvbHLH13 and LvMYB5 show spatiotemporal differences in the expression of
petal color accumulation, suggesting that LvbHLH13 may be upstream of LvMYB5, and
they could have opposing effects on anthocyanin synthesis and/or accumulation.
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Figure 1. Investigating anthocyanin content and analyzing LvMYB5, LvbHLH13, and associated
structural genes’ expression during lily development. (A) Demonstration of the three developmental
stages of lily (S1, S2, and S3). (B) Extraction and quantification of anthocyanin in lily petals at
different stages. (C) Expression trend of LvbHLH13, LvMYB5, and related structural genes during
lily development. Data are means (±standard deviation) of three biological replicates per construct.
Significant variations were determined by the Student’s t-test (Different letters indicate significant
differences (p < 0.05) test by least significant difference (LSD), which are calculated by Student’s t-test
(p < 0.05). Significance between groups with different letters were all conformed to level).

3.2. Functional Analysis of the Transcription Factors LvMYB5 and LvbHLH13

LvbHLH13 was cloned to investigate the gene expression dynamics during petal
coloring in lily. The cDNA sequence comprises a total length of 1635 base pairs (bp),
encompassing the entire open reading frame. Subcellular localization assays demonstrated
that the LvbHLH13 protein is localized within the nucleus, indicating its role as a nuclear
protein (Figure 3).

Figure 3A shows the predicted protein sequences from LvbHLH13 and the bHLH
gene family in Arabidopsis thaliana. The phylogenetic tree demonstrates that LvbHLH13
belongs to the Arabidopsis bHLH TF IIId subgroup, which contains four branches of
AtbHLH3, AtbHLH13, AtbHLH17, and AtbHLH14. In addition, NtAN1A, MrbHLH1, and
MdbHLH3 were grouped with AtbHLH42, AtbHLH12, and AtbHLH2 in the IIIf subgroup
of the Arabidopsis bHLH TF family, all having similar functions in activating anthocyanin
synthesis [31–33,36,44–49]. Thus, through gene evolutionary analysis, it was preliminary
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confirmed that LvbHLH13 is closely related to other bHLH TFs and plays an important role
in the regulation of anthocyanin biosynthesis.
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Multiple sequence alignment was performed using the LvbHLH13 protein sequence
and anthocyanin synthesis-related bHLH TFs from other plants, as shown in Figure 3B.
LvbHLH13 has similar features to bHLH TFs in many other plants, with all having the
common conserved basic-helix1-loop-helix2 domain in common. In addition, IIId, IIIe, and
IIIf subgroups usually have a conserved interaction motif (MIR) that interacts with the
MYB protein at the N-terminal region. However, in LvbHLH13, only a few amino acids are
conserved. The N-terminal conservatism of the IIId subgroup is considered an important
factor in regulating anthocyanin accumulation. In addition, unlike R proteins, the special
function of the III subgroup of the bHLH family is through the regulation of downstream
genes. Therefore, the difference in the N-terminal region indicates that LvbHLH13 may lack
the ability to form the traditional MBW complex and perform the relevant functions [3,4,34].

3.3. LvbHLH13 Gene Silencing Inhibits Anthocyanin Synthesis in Lily Petals

To elucidate the role of the LvbHLH13 gene in anthocyanin production during the
development of lily petals, a 273 bp DNA fragment corresponding to the LvbHLH13 gene
was cloned into the pTRV2 vector for virus-induced gene silencing (VIGS). To avoid the
conserved basic-helix1-loop-helix2 domain region of the bHLH gene family, the specific
N-terminal region was selected as the cloned fragment (Figure S1). The results of using
the recombinant pTRV2 + pTRV1 to infect lily petals are shown in Figure 4. After trans-
fection with the empty TRV vector, the color of lily petals was not significantly affected,
but upon transfection with the pTRV2-LvbHLH13 vector, bleached color was observed after
LvbHLH13 silencing. Compared to the region infected with the empty TRV vector, the ex-
tracted sample from the region infected with pTRV2-LvbHLH13 was visibly lighter in color,
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and the anthocyanin content was also significantly reduced (Figure 4B,C). Furthermore,
qRT-PCR analysis revealed that the expression levels of LvbHLH13, LvMYB5, Lv3GT, LvCHS,
LvDFR, and LvF3′H were downregulated in lily petals infected with the pTRV2-LvbHLH13
recombinant vector (Figure 4D). The above results indicate that after LvbHLH13 gene silenc-
ing, the expression of related genes was downregulated and anthocyanin accumulation
decreased significantly. Hence, it is reasonable to infer that silencing the LvbHLH13 gene
impacts the pigmentation of lily petals by downregulating the expression of genes involved
in the anthocyanin biosynthesis pathway.

Horticulturae 2024, 10, x FOR PEER REVIEW 9 of 16 
 

 

LvbHLH13 and the known anthocyanin bHLH regulators in other species. Black lines: MYB inter-
action; black frame: bHLH domain. Different color stands for ‘sequence homology’ and is an in-
dustry standard for sequence matching. 

3.3. LvbHLH13 Gene Silencing Inhibits Anthocyanin Synthesis in Lily Petals 
To elucidate the role of the LvbHLH13 gene in anthocyanin production during the 

development of lily petals, a 273 bp DNA fragment corresponding to the LvbHLH13 gene 
was cloned into the pTRV2 vector for virus-induced gene silencing (VIGS). To avoid the 
conserved basic-helix1-loop-helix2 domain region of the bHLH gene family, the specific 
N-terminal region was selected as the cloned fragment (Figure S1). The results of using 
the recombinant pTRV2 + pTRV1 to infect lily petals are shown in Figure 4. After trans-
fection with the empty TRV vector, the color of lily petals was not significantly affected, 
but upon transfection with the pTRV2-LvbHLH13 vector, bleached color was observed 
after LvbHLH13 silencing. Compared to the region infected with the empty TRV vector, 
the extracted sample from the region infected with pTRV2-LvbHLH13 was visibly lighter 
in color, and the anthocyanin content was also significantly reduced (Figure 4B,C). Fur-
thermore, qRT-PCR analysis revealed that the expression levels of LvbHLH13, LvMYB5, 
Lv3GT, LvCHS, LvDFR, and LvF3′H were downregulated in lily petals infected with the 
pTRV2-LvbHLH13 recombinant vector (Figure 4D). The above results indicate that after 
LvbHLH13 gene silencing, the expression of related genes was downregulated and an-
thocyanin accumulation decreased significantly. Hence, it is reasonable to infer that si-
lencing the LvbHLH13 gene impacts the pigmentation of lily petals by downregulating 
the expression of genes involved in the anthocyanin biosynthesis pathway. 

 

Figure 4. Verification of the function of LvbHLH13 in anthocyanin biosynthesis by virus-induced 
gene silencing (VIGS). (A,B) Lily petals and their extracted anthocyanins after different treatments. 
(C) Measurement of total anthocyanin content in lily petals. (D) Expression levels of LvbHLH13, 
LvMYB5, and structural genes in lily petals. Data are means (±standard deviation) of three biolog-
ical replicates per construct. Significant variations were determined by the Student’s t-test (* p < 
0.05, ** p < 0.01, *** p < 0.001). Different leĴers indicate significant differences (p < 0.05) test by least 
significant difference (LSD). 

Figure 4. Verification of the function of LvbHLH13 in anthocyanin biosynthesis by virus-induced
gene silencing (VIGS). (A,B) Lily petals and their extracted anthocyanins after different treatments.
(C) Measurement of total anthocyanin content in lily petals. (D) Expression levels of LvbHLH13,
LvMYB5, and structural genes in lily petals. Data are means (±standard deviation) of three biological
replicates per construct. Significant variations were determined by the Student’s t-test (* p < 0.05,
** p < 0.01, *** p < 0.001). Different letters indicate significant differences (p < 0.05) test by least
significant difference (LSD).

3.4. Overexpression of LvbHLH13 Promotes Anthocyanin Accumulation in Lily Petals

Silencing the LvbHLH13 gene has already confirmed that it can affect anthocyanin
accumulation. To reconfirm this conclusion, transient overexpression was utilized to
investigate the underlying mechanisms of LvbHLH13. Two groups of Agrobacterium
suspensions containing empty vectors, 35S::LvbHLH13, respectively, were infiltrated into
the outer petals of green lily buds that had just begun to pigment, and then darken for one
day. After one week, the empty vector group exhibited slight discoloration, indicating that
Agrobacterium infection had no positive effect on anthocyanin accumulation. However,
the petal infiltrated with 35S::LvbHLH13 had a darker color and higher anthocyanin level
than the empty vector control petal (Figure 5A–C).

Using qRT-PCR, we successfully confirmed the gene expression patterns in lily leaves
(Figure 5D). Data on anthocyanin synthesis-related structural gene expression revealed that,
in contrast to the control group, the transient overexpression of LvbHLH13 could lead to the
upregulation of LvMYB5, LvCHS, LvF3′H, LvDFR, LvANS, and Lv3GT expression. These
results further suggest that the overexpression of LvbHLH13 in lily petals can promote
anthocyanin accumulation through LvMYB5.
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Figure 5. The biosynthesis of anthocyanins in LvbHLH13 overexpression lily. (A) Color change in lily
petals of untransformed control and transformation with LvbHLH13. (B) Extraction of total antho-
cyanins in untransformed control and transgenic lily petals. (C) Quantification of total anthocyanin
content in lily petals. (D) The expressions of LvbHLH13, LvMYB5, and related structural genes in
the anthocyanin biosynthetic pathway. The vertical bars represent the standard error of triplicate
experiments. Data are means (±standard deviation) of three biological replicates per construct.
Significant variations were determined by the Student’s t-test (*** p < 0.001). Different letters indicate
significant differences (p < 0.05) test by least significant difference (LSD).

A yeast one-hybrid (Y1H) assay was used to investigate the interaction between
LvbHLH13 and LvMYB5 in vitro (Figure 6A). The three partial fragments of the MYB
promoter, namely, MYBp1 (1–1200 bp), MYBp2 (1–900 bp), and MYBp3 (1–300 bp), were
inserted into the EcoR I and Pst I sites of the pAbAi vector, respectively. None of them
displayed autoactivation on an SD/−U/−L medium with 75 ng/mL ABA background
lacking uracil and leucine. Then, the bait constructs carrying the pM1/2/4-pabai plas-
mid vectors were severally co-transformed with pGADT7-LvbHLH13, after which normal
growth was observed in the yeast cell on the medium (SD/−U/−L with ABA). These
results indicate that LvbHLH13 can physically interact with the sequence of the LvMYB5
promoter in vitro.

Moreover, EMSA was used to analyze the interaction between the LvbHLH13 and
LvMYB5 promoter sequences further and identify the binding sites (Figure 6B). The CDS of
LvbHLH13 was cloned into pGEX6P (LvbHLH13-GST) and inserted into Rosetta Competent
cells (DE3). Three labeled DNA probes (Figure S1) containing the G box in the LvMYB5
upstream promoter sequence (G1, G2, and G4) were used for detection probes, and unla-
beled probes were used as competitors. As shown in Figure 6B, in the presence of both the
labeled probe and LvbHLH13-GST, the electrophoresis bands shifted, and even when the
competitor probe was increased to 100 times, the bias was still produced, indicating the
specific binding between LvbHLH13 and LvMYB5 promoters.

In order to further investigate whether LvbHLH13 can affect LvMYB5 promoter
expression in vivo, we developed a dual-luciferase expression vector (Figure 7A). The
2000 bp LvMYB5 upstream promoter sequence was inserted into the pGreenII-0800-LUC
vector to construct the reporter vector LvMYB5 pro-LUC. The CDS of LvbHLH13 was
cloned into the 35S::GFP vector (LvbHLH13-62-SK), using LvbHLH13-62-SK and the empty
vector (pGreenII-62-SK) as effector carriers. When LvMYB5 pro-LUC and LvbHLH13-62-SK
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were co-infiltrated simultaneously, the luciferase activity in N. benthamiana leaves was
significantly higher than that in leaves co-infiltrated with pGreenII-62-SK and LvMYB5
pro-LUC alone (as shown in Figure 7B,C). Notably, LvbHLH13-62-SK alone did not induce
increased activation. These results strongly suggest that LvbHLH13 interacts with the
promoter of LvMYB5 to synergistically promote the in vivo production of anthocyanins.

Horticulturae 2024, 10, x FOR PEER REVIEW 11 of 16 
 

 

sults indicate that LvbHLH13 can physically interact with the sequence of the LvMYB5 
promoter in vitro. 

Moreover, EMSA was used to analyze the interaction between the LvbHLH13 and 
LvMYB5 promoter sequences further and identify the binding sites (Figure 6B). The CDS 
of LvbHLH13 was cloned into pGEX6P (LvbHLH13-GST) and inserted into RoseĴa Com-
petent cells (DE3). Three labeled DNA probes (Figure S1) containing the G box in the 
LvMYB5 upstream promoter sequence (G1, G2, and G4) were used for detection probes, 
and unlabeled probes were used as competitors. As shown in Figure 6B, in the presence 
of both the labeled probe and LvbHLH13-GST, the electrophoresis bands shifted, and 
even when the competitor probe was increased to 100 times, the bias was still produced, 
indicating the specific binding between LvbHLH13 and LvMYB5 promoters. 

 

Figure 6. Experimental verification of the physical interaction between LvbHLH13 and LvMYB5 
promoters. (A) In vitro interaction of LvbHLH13 and LvMYB5 promoter detected in Y1H assays. 
The yeast strain was co-transformed with the indicated combinations of LvbHLH13 and LvMYB5 
promoters fused to pGADT7 or pGBKT7. All of the yeast clones were grown on appropriate media 
to maintain the expression vectors and to test for activation of the reporter gene. The different 
lengths of the MYB gene are named M1 (1200 bp), M2 (900 bp), and M4 (300 bp). (B) Results of the 
EMSA test on the interaction between LvbHLH13 and LvMYB5 sequences. G1, G2, and G4 are the 
three G-box-labeled DNA probes in the upstream promoter sequence of LvMYB5. 

In order to further investigate whether LvbHLH13 can affect LvMYB5 promoter ex-
pression in vivo, we developed a dual-luciferase expression vector (Figure 7A). The 2000 
bp LvMYB5 upstream promoter sequence was inserted into the pGreenII-0800-LUC vec-
tor to construct the reporter vector LvMYB5 pro-LUC. The CDS of LvbHLH13 was cloned 
into the 35S::GFP vector (LvbHLH13-62-SK), using LvbHLH13-62-SK and the empty vector 
(pGreenII-62-SK) as effector carriers. When LvMYB5 pro-LUC and LvbHLH13-62-SK were 
co-infiltrated simultaneously, the luciferase activity in N. benthamiana leaves was signifi-
cantly higher than that in leaves co-infiltrated with pGreenII-62-SK and LvMYB5 
pro-LUC alone (as shown in Figure 7B,C). Notably, LvbHLH13-62-SK alone did not in-
duce increased activation. These results strongly suggest that LvbHLH13 interacts with 
the promoter of LvMYB5 to synergistically promote the in vivo production of anthocya-
nins. 

Figure 6. Experimental verification of the physical interaction between LvbHLH13 and LvMYB5
promoters. (A) In vitro interaction of LvbHLH13 and LvMYB5 promoter detected in Y1H assays.
The yeast strain was co-transformed with the indicated combinations of LvbHLH13 and LvMYB5
promoters fused to pGADT7 or pGBKT7. All of the yeast clones were grown on appropriate media to
maintain the expression vectors and to test for activation of the reporter gene. The different lengths
of the MYB gene are named M1 (1200 bp), M2 (900 bp), and M4 (300 bp). (B) Results of the EMSA
test on the interaction between LvbHLH13 and LvMYB5 sequences. G1, G2, and G4 are the three
G-box-labeled DNA probes in the upstream promoter sequence of LvMYB5.
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Figure 7. In vivo interactions between LvMYB5 promoter and LvbHLH13 TFs were verified by using
the dual luciferase assay in N. benthamiana leaves. (A) Schematic diagrams showing the vector
constructs. (B) Comparison of color changes with different carriers infiltrating under fluorescence.
(C) Results of luciferase activity detection. Data are means (±standard deviation) of three biological
replicates per construct. Significant variations were determined by the Student’s t-test (*** p < 0.001).

A yeast two-hybrid (Y2H) assay was performed by inserting the CDS of LvbHLH13
into the EcoR I/ BamH I site of pGADT7 and inserting the CDS of LvMYB5 into the EcoR
I/ Pst I site of pGBKT7 to investigate the interaction between LvbHLH13 and LvMYB5.
As shown in Figure S2, normal growth was observed in yeast cells co-transformed with
pGBKT7-LvMYB5 and pGADT7-LvbHLH13 using SD/−Trp/−Leu media, but their growth
was inhibited on SD/−Trp/−Leu/−His/−Ade media. This suggests that LvbHLH13 is
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unable to interact with LvMYB5 to further form the MBW complex, which may be caused
by the absence of MIR sequence at the N-terminal region of LvbHLH13.

4. Discussion

Anthocyanins serve as essential contributors to flower growth and development,
enhancing their visual allure and nutritional value and providing biological safeguarding.
The transcriptional orchestration of structural genes alongside associated transcription
factors (TFs) dictates anthocyanin synthesis. Numerous investigations of diverse plant
species have underscored the influence of various bHLH TFs in governing anthocyanin
or proanthocyanidin production. Noteworthy examples include TT8, GL3, and EGL3 in
Arabidopsis [32,33]; LcbHLH1 and LcbHLH3 in litchi [50]; and MdbHLH3 and MdbHLH33
in apple [51]. The strawberry R2R3-FaMYB5/FaEGL3/FaLWD1 form a MBW complex,
which positively regulates anthocyanin accumulation [25]. HvnAnt2 plays a crucial role in
the formation of different qingke barley grain colors [26]. ThRAX2 may also regulate the
transport and activity of the anthocyanidin synthase protein [27]. ICE2 acts antagonistically
to control seed dormancy [29]. The burgeoning evidence underscores the pivotal role
of bHLH proteins in anthocyanin accumulation. To date, most reported anthocyanin-
related bHLHs belong to the IIIf subfamily, with limited studies exploring anthocyanin
pathway regulation by other subfamilies, particularly in lilies. In this study, we found
that the expression pattern of the bHLH IIId transcription factor during lily petal coloring
correlates with LvMYB5 expression and anthocyanin accumulation. Despite previous
indications of the bHLH IIId TFs’ involvement in various plant development processes and
responses to environmental stresses, their specific role in flavonoid biosynthesis in lilies
remains underexplored.

In the previous study [37], LvMYB5’s ectopic expression was found to enhance pig-
mentation in lily flowers. LvMYB5 strongly activated the expression of anthocyanin-related
structural genes, leading to increased anthocyanin accumulation. In the present research,
we demonstrated that the overexpression of LvbHLH13 in lily petals regulates pigment
accumulation and the expression of the key genes involved in the anthocyanin biosynthesis
pathway, including LvMYB5, LvCHS, LvF3′H, LvDFR, LvANS, and Lv3GT (Figures 5 and 6).
Conversely, silencing the LvbHLH13 gene resulted in a significant reduction in the relative
anthocyanin content in petals, accompanied by a noticeable discoloration of the infected
area. These findings collectively underscore the critical role of LvbHLH13 in anthocyanin
biosynthesis and its specific regulatory relationship with LvMYB5.

In our study, the expression of LvbHLH13 was highest in the S1 period, slightly
downregulated in the S2 period, and significantly downregulated in the S3 period. This is
consistent with changes in the early anthocyanin biosynthetic gene LvCHS, indicating that
LvbHLH13 is mainly expressed during the early stage of anthocyanin accumulation.

LvbHLH13 has similar features to bHLH TFs in many other plants (Figure 3B). In
comparison, IIId and IIIf subgroups usually have a conserved interaction motif (MIR) that
interacts with the MYB protein at the N-terminal region. However, in the IIId subgroup
LvbHLH13, a segment of amino acids is mutated (YYNGXIKTRKTXQXXEI-LXRSXQLRELY).
The N-terminal conservatism of the IIId subgroup is considered an important factor in
regulating anthocyanin accumulation. Therefore, the difference observed in the N-terminal
region indicates that LvbHLH13 may be different from IIIf subgroups bHLH TFs, which
have the ability to form the traditional MBW complex, while performing functions via
the regulation of the downstream MYB [3,4,34]. This provides a basis for the study of the
bHLH III subgroup in lily.

Lily petals had a bleached color after LvbHLH13 VIGS silencing. Compared to the
region infected with the empty TRV vector, the region infected with pTRV2-LvbHLH13
was visibly lighter in color, and the anthocyanin content was also significantly reduced
(Figure 4B,C). qRT-PCR analysis revealed that the expressions of LvbHLH13 and related
genes were significantly downregulated in lily petals (Figure 4D), and anthocyanin accu-
mulation decreased significantly. Meanwhile, the transient overexpression of LvbHLH13
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could lead to the upregulated expression of LvMYB5, LvCHS, LvF3′H, LvDFR, LvANS, and
Lv3GT. These results further suggest that the overexpression of LvbHLH13 in lily petals
can promote anthocyanin accumulation through LvMYB5 (Figure 5). These results are
consistent with previous studies indicating that the TFs positively regulated anthocyanins
in other plants [25,28,37,39,40,50]. This suggests that the bHLH TF family is genetically
homogeneous in terms of their functions associated with plant coloration.

LvbHLH13 is functionally similar to other reported genes in the bHLH TFs family,
but its underlying mechanism, as described above, is different from that in most plants.
Studies have reported that in the presence of light, LvCOP1 can facilitate the ubiquitination
and degradation of LvMYB1, thereby precisely regulating anthocyanin accumulation in
lily [40]. We predict that LvbHLH13 and its upstream LvCOP1, may be profoundly linked
in regulating anthocyanin.

In summary, the current study reveals a IIId subfamily bHLH partner of LvMYB5 that
contributes to the regulation of anthocyanin biosynthesis in lily. The expression profile of
LvbHLH13 is different from that of traditional MBW complexes, which interact with the
LvMYB5 promoter to activate its transcription, promoting anthocyanin accumulation. This
study reveals a new bHLH candidate and bHLH-MYB partner involved in the anthocyanin
regulatory network that need further research. These findings provide valuable insights for
breeding lilies with varying anthocyanin contents.
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