
Citation: Cantón-Martínez, S.;

Mesas-Carrascosa, F.J.; Rosa, R.d.l.;

López-Granados, F.; León, L.;

Pérez-Porras, F.; Páez, F.C.;

Torres-Sánchez, J. Evaluation of

Canopy Growth in Rainfed Olive

Hedgerows Using UAV-LiDAR.

Horticulturae 2024, 10, 952.

https://doi.org/10.3390/

horticulturae10090952

Academic Editor: Xinyang Yu

Received: 29 July 2024

Revised: 2 September 2024

Accepted: 3 September 2024

Published: 6 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Article

Evaluation of Canopy Growth in Rainfed Olive Hedgerows
Using UAV-LiDAR
Susana Cantón-Martínez 1, Francisco Javier Mesas-Carrascosa 1,* , Raúl de la Rosa 2 , Francisca López-Granados 2,
Lorenzo León 3 , Fernando Pérez-Porras 1 , Francisco C. Páez 4 and Jorge Torres-Sánchez 1,*

1 Department of Graphic Engineering and Geomatics, Campus de Rabanales, University of Cordoba,
14071 Córdoba, Spain; z52camas@uco.es (S.C.-M.); o12pepof@uco.es (F.P.-P.)

2 Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain;
raul.rosa@ias.csic.es (R.d.l.R.); flgranados@ias.csic.es (F.L.-G.)

3 Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Center “Alameda del Obispo”,
14004 Córdoba, Spain; lorenzo.leon@juntadeandalucia.es

4 Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Center “Cabra”, 14940 Cabra, Spain;
franciscoc.paez@juntadeandalucia.es

* Correspondence: ig2mecaf@uco.es (F.J.M.-C.); jorge.torres@uco.es (J.T.-S.)

Abstract: Hedgerow cultivation systems have revolutionized olive growing in recent years because
of the mechanization of harvesting. Initially applied under irrigated conditions, its use has now
extended to rainfed cultivation. However, there is limited information on the behavior of olive
cultivars in hedgerow growing systems under rainfed conditions, which is a crucial issue in the
context of climate change. To fill this knowledge gap, a rainfed cultivar trial was planted in 2020 in
Southern Spain to compare ‘Arbequina’, ‘Arbosana’, ‘Koroneiki’, and ‘Sikitita’, under such growing
conditions. One of the most important traits in low-water environments is the canopy growth. Because
traditional canopy measurements are costly in terms of time and effort, the use of light detection and
ranging (LiDAR) sensor onboard an uncrewed aerial vehicle (UAV) was tested. Statistical analyses of
data collected in November 2022 and January 2023 revealed high correlations between UAV-LiDAR
metrics and field measurements for height, projected area, and crown volume, based on validation
with measurements from 36 trees. These results provide a solid basis for future research and practical
applications in rainfed olive growing, while highlighting the potential of UAV-LiDAR technology to
characterize tree canopy structure efficiently.

Keywords: remote sensing; olive growing systems; drone; olive breeding; 3D point cloud

1. Introduction

Olive growing systems have significantly changed in recent years from traditional to
more intensive systems in both long-established and new growing areas. The main changes
are primarily channeled toward optimizing productivity via strategies such as efficient crop
management, irrigation, pruning, harvest mechanization, and innovative training systems,
such as hedgerow orchards. This cultivation system is characterized by planting densities
between 1200 and 2500 trees·ha−1, contrasting with the traditional ones ranging from 50 to
160 trees·ha−1 [1]. The evolution of this new cultivation system is driven by the potential
for full mechanization of the harvest, its early bearing, and high productivity with a lower
influence of the natural cycle of “on” and “off” years [1].

Most hedgerow olive orchards planted today are under irrigation [2]. However, there is
an increasing trend of using this growing system in new orchards in dry farming conditions
or with very low irrigation [3]. Nevertheless, there is a notable absence of the scientific
literature addressing the management of high-density olive orchards in rainfed conditions;
therefore, it is necessary to conduct research to define best practices regarding management
decisions such as the selection of olive cultivars or the planting pattern [4]. In the selection
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and development of the best-suited olive cultivars for rainfed hedgerow orchards, field
phenotyping is crucial. Traditional phenotyping methods, which rely on manual data
collection of measurable traits, are time-intensive [5] and prone to errors, especially in
the case of the olive tree, whose crown has an irregular geometry [6]. Enhancing the
acquisition of crop traits, ranging from morphological attributes and flowering time to
yield, remains a paramount challenge. The inefficiencies and time-prohibitive barriers of
traditional phenotyping methods hinder and delay breeding program design and prediction
outcomes [7]. In particular, canopy-related traits are essential in the adaptation of cultivars
to water-reduced environments [8].

With respect to the acquisition of phenotypic data about canopy architecture and
vegetative development, the use of 3D models created with different sensors and platforms
has increased in recent years because of their accuracy and efficiency [9]. Among the
different technologies used in the generation of 3D models, photogrammetric products
created with cameras onboard uncrewed aerial vehicles (UAVs) have been widely reported
in the scientific literature. This technology has been successfully validated in a wide
range of herbaceous and woody crops including rice [10], soybean [11], sorghum [12],
blueberry bush [13], and almond varieties [14]. In olive crops, UAV photogrammetry
was used for phenotyping purposes in table olive cultivars in intensive and hedgerow
planting patterns [6] and to assess the dwarfing effect of different rootstocks to improve
the suitability of ‘Picual’ cultivar to hedgerow growing systems [15]. However, UAV
photogrammetry has shortcomings when working with small trees with low heights and
low leaf density; its point density and spatial resolution might not be sufficient to detect
and characterize specific phenotypic traits. De Castro et al. [16] reported that accurate UAV
photogrammetric point clouds were able to reconstruct olive trees in a hedgerow orchard
27 months after planting, but the accuracy of the tree reconstruction was not sufficient for
phenotyping purposes when tested one year earlier.

An issue with the photogrammetric reconstruction of small trees is related to the underes-
timation of heights that have been observed in adult trees, due to difficulties in reconstructing
thin branches that are difficult to detect in aerial images [17,18]. An alternative to the use
of passive sensors in these situations is the use of active sensors, such as light detection
and ranging (LiDAR) sensors, mounted on UAVs. LiDAR sensors emit laser pulses that are
reflected by the crop, allowing the measurement of the distance between the sensor and the
crop based on the flight time of the laser pulses. These data, along with the precise positioning
and orientation of the sensor, allow for the creation of accurate 3D reconstructions of the
crop that do not present the same problems associated with passive sensors in the case of
thin branches. In this research area, Ref. [19] obtained accurate results using UAV-LiDAR for
calculating the phenotypic traits of Eucalyptus sp. trees.

The aim of this study was to assess whether UAV-LiDAR technology can be employed
to effectively extract phenotypic traits related to the crown structure of young olive trees
cultivated in a rainfed hedgerow orchard. To the best of the authors’ knowledge, this is both
the first time that UAV-LiDAR technology has been used and validated in an olive orchard
and the first study of rainfed olive orchards with a high-density hedgerow planting pattern.

2. Materials and Methods
2.1. Study Site

The work was carried out on a 1.1-ha plot located at the IFAPA Center in Cabra,
southern Spain (37.502619◦ N, 4.428879◦ W, WGS84). This region has an average rainfall of
582 mm·year−1; more detailed meteorological data for the period in which the work was
carried out can be seen in Figure 1.
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Figure 1. Meteorological data of the study area for the period in which the work was carried out. 

The southern half of the experimental orchard has a slight slope of about 3% with a 
north orientation, and the northern half has a slope of about 8% with the same orientation. 
The olive trees were planted in March of 2020 under rainfed conditions with a planting 
pattern of 6 × 1.5 m, resulting in a tree density of 1111 trees·ha−1. The trial was arranged in 
a design of 3 randomized blocks with elementary plots composed of 3 rows of 30 plants 
each (Figure 2). Four olive cultivars were selected for testing under rainfed conditions on 
the basis of their vigor: ‘Arbosana’ and ‘Sikitita’ (low vigor), ‘Arbequina’ (intermediate 
vigor), and ‘Koroneiki’ (high vigor)) [20,21]. 

 

Figure 1. Meteorological data of the study area for the period in which the work was carried out.

The southern half of the experimental orchard has a slight slope of about 3% with a
north orientation, and the northern half has a slope of about 8% with the same orientation.
The olive trees were planted in March of 2020 under rainfed conditions with a planting
pattern of 6 × 1.5 m, resulting in a tree density of 1111 trees·ha−1. The trial was arranged
in a design of 3 randomized blocks with elementary plots composed of 3 rows of 30 plants
each (Figure 2). Four olive cultivars were selected for testing under rainfed conditions on
the basis of their vigor: ‘Arbosana’ and ‘Sikitita’ (low vigor), ‘Arbequina’ (intermediate
vigor), and ‘Koroneiki’ (high vigor)) [20,21].
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2.2. UAV-Based LiDAR Platform and Flight Configuration

The uncrewed aerial platform used in this work was a DJI Matrice 600 Pro (DJI,
Shenzhen, China). The UAV was equipped with a Velodyne Puck 16 (Velodyne, San José,
CA, USA) LiDAR sensor capable of recording data up to a distance of 100 m with an
accuracy of 3 cm. This sensor can register two returns of the laser pulses, has 16 channels,
and has horizontal and vertical fields of a view of 360◦ and 30◦, respectively. To complement
the LiDAR sensor, an Applanix APX-15 UAV (Applanix, Richmond Hill, ON, Canada)
sensor was integrated into the system. The APX-15 is a compact GNSS-Inertial module that
combines a multifrequency GNSS receiver with high-performance MEMS inertial sensors.
This sensor provides high-accuracy position and orientation solutions operating at a high
data rate, providing position, roll, pitch, and heading outputs at 100 Hz, which is essential
for accurate and efficient mapping and surveying tasks.

The UAV flights were performed at a height of 45 m above the ground and at a speed
of 5.7 m/s. Flight routes were designed to have a 66% overlap between adjacent flight paths.
Six flights were carried out for this work, a monthly flight from July 2022 to November
2022, and an additional flight in January 2023 after the harvest and pruning of the lower
part of the crown.

2.3. Point Cloud Generation and Individual Tree Segmentation

The workflow for the generation and analysis of the LiDAR point cloud consisted of
the following main steps (Figure 3):

• Determining the trajectory followed by the sensor;
• Generating and cleaning the 3D point cloud;
• Extracting and characterizing each olive tree crown;
• Statistically analyzing the data.
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Figure 3. Workflow of the generation and analysis of LiDAR point clouds.

Initially, the direct orientation (position and orientation) of the LiDAR sensor was
processed via Applanix POSPac MMS software version 8.8 (Trimble Applanix, Richmond
Hill, ON, Canada), based on the data of the inertial measurement unit (IMU) and the nearest
GNSS reference station from the Andalusian positioning network. From the direct orienta-
tion and LiDAR sensor data, a raw 3D point cloud was generated via LiDAR Tools software
version 3.2.0 (Headwall Photonics Inc., Bolton, MA, USA) for subsequent cleaning. Next,
the raw 3D point cloud was split at the turns based on trajectory, removing those points
from the flight line changes. Additionally, points with a scan angle greater than 15◦ were
removed. The point cloud was subsequently aerotriangulated using TerraMatch version 024
(Terrasolid, Espoo, Finland) to improve spatial coherence, followed by classification using
TerraScan-UAV version 024 (Terrasolid, Espoo, Finland) to distinguish between ground and
vegetation points. The heights of the points classified as vegetation were normalized using
ground points as a reference. Based on the planting pattern, a grid was generated where
each element represented the space occupied by an individual tree using a rectangle. This
grid was projected onto the normalized vegetation point cloud to individually isolate each
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tree. This approach allowed for the determination of tree-scale structural parameters such
as height, volume, and projected area. All point cloud processing was conducted using
the R Statistical Software (v4.1.2; R Core Team 2021) development environment and the
rLiDAR [22] and lidR [23] packages.

2.4. Validation

Concurrent with the flights conducted in November 2022 (preharvest) and January 2023
(postharvest), manual crown measurements were performed on 36 selected trees (Figure 2).
These measurements included the total height of the tree, the height of the canopy, and two
crown diameters, one in the transverse orientation and another longitudinally, at three levels
of the vegetative mass (1/6 of the crown height, 1/2 of the crown height, and 5/6 the of crown
height) (Figure 4).
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Figure 4. Field measurements were obtained for each tree to calculate the volume assuming the
shape of an elliptic cylinder (A) and an ellipsoid (B): ht (total height of the tree), hc (height of the tree
crown), and the diameters measured at different heights of the tree crown.

The total height of each tree was measured at the apex of the crown using a telescopic
ruler. Crown diameters (horizontal projected and perpendicular widths) were acquired
using a tape measure. Possible geometric representations of the crown (elliptic cylinder
and ellipsoid) were calculated from the height and width measurements. For the elliptic
cylinder shape, the crown was divided into three parts and the diameters measured at each
height were used to calculate the volume of three elliptic cylinders; finally, the volume of
the three sections was aggregated to obtain the total crown volume. For the ellipsoid shape,
the height of the vegetative mass and the diameters at the central section of the crown were
used to calculate the volume. The projected crown area was calculated as that of an ellipse,
using the largest diameter in the longitudinal direction of the hedgerow and the largest
diameter in the transverse direction. All these determinations were used as ground truths
in supporting UAV cartography to validate the geometric characteristics captured with the
LiDAR sensor (height, area, and volume).

2.5. Statistical Analysis

Mean comparison tests were conducted to determine the existence of significant
differences at p < 0.05 between field-measured and LiDAR-derived variables. A paired
samples t-test was applied to variables with a normal distribution, while a Wilcoxon test
was used for those that did not meet the normality assumption.

To validate the LiDAR-derived variables, correlations between these variables and the
field measurements were computed to provide a quantitative assessment of their interrela-
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tionship. Pearson’s correlation coefficient was calculated for normally distributed variables;
conversely, Spearman’s correlation coefficient was used for non-normally distributed vari-
ables. All statistical analyses were conducted using R Statistical Software (v4.1.2; R Core
Team 2021).

3. Results
3.1. Point Cloud Generation

After processing the UAV-LiDAR data, point clouds were obtained with densities of
1268 points·m−2 for the preharvest flight (November 2022) and 1370 points·m−2 for the
postharvest flight (January 2023). Figure 5A represents a transversal section of the Novem-
ber 2022 point cloud showing 15 olive trees; the points are colored following the ground
and vegetation classification performed in TerraScan-UAV. In contrast with point clouds
generated with passive sensors, the point cloud generated with UAV-LiDAR represents
the soil under the canopy. In Figure 5B,C, a comparison of two trees and their respective
three-dimensional representations is shown, confirming the accurate reconstruction of the
irregular crowns of the olive trees.
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Figure 5. Results of the point cloud generation process. (A) Transversal section of one of the
hedgerows in November with points classified as vegetation (green) or soil (brown). (B,C) Field
vs. LiDAR comparison of two different trees (points were colored blue for lower values and red for
higher values using a color ramp covering the height range of each crop).

3.2. Validation of the LiDAR-Derived Crown Metrics

Table 1 presents a comparative analysis of crown parameters measured in the field
and derived from LiDAR data for trees observed in November 2022 and January 2023.
The LiDAR-derived tree heights were nearly equivalent in November and January, with
means of 1.61 m and 1.62 m, respectively, whereas the field measurements showed a
slight decrease from 1.98 m to 1.92 m. The estimated crown area from the LiDAR data
remained almost unchanged between November and January. In contrast, the volume
measurements from the LiDAR data decreased over the two months, from 1.93 m3 to
1.75 m3. Conversely, field measurements for the same period revealed an increase in area
and volume. Field measurements were higher than those derived from LiDAR point clouds
for volume assuming an elliptic cylinder shape and for height at both dates studied. On
the other hand, LiDAR volume estimations were higher than the field volume calculated
considering an ellipsoid shape; also, the LiDAR-based area estimations were higher than
the field estimations.
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Table 1. Summary of the field-measured and LiDAR-derived crown parameters for the matched trees.

Data Origin Date Crown Parameter Mean Maximum Minimum Standard Deviation

LiDAR

November 2022
Height (m) 1.61 1.94 1.22 0.20
Area (m2) 1.89 3.02 0.72 0.49

Volume (m3) 1.93 3.86 0.54 0.77

January 2023
Height (m) 1.62 1.93 1.35 0.18
Area (m2) 1.88 2.83 1.01 0.43

Volume (m3) 1.75 3.46 0.64 0.65

Field

November 2022

Height (m) 1.98 2.47 1.57 0.25
Area (m2) 1.75 2.88 0.96 0.50

Volume (elliptic cyl.) (m3) 2.09 4.26 0.73 0.90
Volume (ellipsoid) (m3) 1.68 3.44 0.37 0.63

January 2023

Height (m) 1.92 2.38 1.54 0.25
Area (m2) 1.85 2.88 0.97 0.50

Volume (elliptic cyl.) (m3) 2.10 4.11 0.93 0.84
Volume (ellipsoid) (m3) 1.70 3.12 0.55 0.61

The statistical analysis of the means revealed that, in November, the only variable
that did not show significant differences between the field and the LiDAR estimations was
the volume, when using the formula of an elliptic cylinder. In January, there were two
variables with no differences associated with the measurement method: the area and the
volume calculated using the formula of an ellipsoid. Due to the normality of the data,
all the mean comparisons were carried out using the paired samples t-test, except for
the height in November, where the Wilcoxon test was used because it did not meet the
normality assumption.

Figure 6 shows the results of the study of the correlation between the LiDAR-derived
and field-measured crown parameters. Due to the normality of the data, Pearson’s cor-
relation coefficient values were calculated for most comparisons, except for the height
in January 2023, for which Spearman’s coefficient was used because the data were not
normally distributed. To avoid overcomplicating the figure, only the field volume with the
highest correlation coefficient was included in the scatter plots. All correlation coefficients
were statistically significant at a significance level of p < 0.001, and there were no extreme
values that could have exaggerated or dampened the strength of the correlation. The best
correlation coefficients for volume estimation were achieved when the UAV-LiDAR volume
was compared with the volume of the elliptic cylinder (0.93 in November 2022 and 0.81 in
January 2023); the correlation coefficients with the ellipsoid volume were 0.91 and 0.77 for
November and January, respectively. Except for the crown area in January 2023 (0.69), all
the correlation coefficients were greater than 0.80, reaching 0.93 for the crown volume in
November 2023. The correlation coefficients of the other crown parameters decreased on
the second flight date, except for the crown height, which increased from 0.85 to 0.91.

3.3. LiDAR Data Extraction in the Experimental Orchard

After validating the LiDAR technology with data from 36 trees over two months, the
proposed workflow for extracting phenotypic traits was applied to the remaining trees.
This allowed us to quantify the height, volume, and projected area of 1080 trees. Figure 7
represents a map showing the values of the three canopy-related traits studied in this work
for the entire experimental crop. The first notable observation from the spatial distribution
maps of the analyzed variables is that the trees exhibit greater development in the southern
part of the plot. Regarding the differences between varieties, although their analysis is
beyond the scope of this work, it can be observed that the ’Sikitita’ cultivar consistently
shows lower values for the studied canopy parameters.
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4. Discussion

The point cloud densities achieved in this study were comparable to those obtained
with the same LiDAR sensor by Camarretta et al. [19] although they performed a cross-strip
flight path at lower speed and flight height. The configuration used by [19] should have
rendered a higher point density, but the authors chose to retain only the first-return points,
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whereas, in the present work, all the returns were considered in the generation of the
point cloud.

The underestimation of tree height could be attributed to the fact that field height
measurements were taken at the upper leaves of the trees, which, in young trees of the
studied experimental orchard, are usually located in a thin branch. Given the low leaf and
branch densities of young olive trees under rainfed conditions, it is challenging to obtain a
laser pulse return that coincides with the top leaf where the height is measured in the field.
The discrepancies in area and volume between the LiDAR and field datasets are probably
also related to the same reason, as well as the fact that field data are estimations rather
than actual measurements. In these estimations, the olive trees are considered to have a
geometric shape that does not match the actual tree shape (see Figure 5) and introduces
errors that affect the correlation with the UAV-LiDAR data.

The mean and maximum heights estimated from the LiDAR point cloud were almost
identical in November 2022 and January 2023. Given that harvesting and pruning in the
orchard did not affect the height, it can be stated that LiDAR measurements are consistent
and reproducible. The mean LiDAR-derived projected area was also almost constant. In
contrast, the crown volume extracted from the LiDAR data decreased by approximately 9%
on the second date, which could be related to damage to the side branches caused by the
harvester machine and to pruning. A decrease in crown volume caused by over-the-row
harvesters in hedgerow olive orchards has been previously reported via the use of LiDAR
sensors installed on tractors [24]. Field estimates of area and volume showed an increase
in these values, although it was minimal in the case of the volume. These increases are
not consistent with the field operations carried out in the orchard and are likely related to
inaccuracies in the field measurements of crown diameters and the use of formulas that
assume the olive crown to be a geometric solid.

The high values of the correlation coefficients achieved for the crown parameters
studied on both validation dates are indicative of the accuracy and repeatability of the
proposed workflow based on UAV-LiDAR data. The repeatability of LiDAR measurements
has also been demonstrated in previous experiments using a terrestrial platform in almond
orchards [25]. The fact that the UAV-LiDAR volume correlated better with an elliptic
cylinder than with an ellipsoid could be explained by the division of the crown into
three sections applied in the cylinder volume calculation, which allowed for a better fit
to the irregularities of the olive crown. The decrease in the correlation coefficient for
volume and area in January could be related to potential issues in the field measurements
previously mentioned. The field-measured values for these crown parameters were higher
in January 2023 than in November 2022, which is improbable considering that the olives
were harvested and pruned between these dates.

Previous studies using UAV photogrammetry in olive orchards [15,16] have demon-
strated high precision in extracting phenotypic traits associated with crown architecture.
However, the incorporation of a LiDAR sensor in this study has enabled the attainment of
high accuracy in the same task for olive trees shorter than 2 m for the first time. The ability
to achieve a detailed reconstruction of the olive tree crown at this early developmental
stage is crucial, as during these initial stages, the olive trees exhibit their growth habits.
Beyond this point, in hedgerow orchards, the shape and growth pattern of trees are largely
influenced by pruning and hedgerow management. Consequently, the high cost of a LiDAR
sensor, in comparison with the cameras employed in photogrammetry, is justified by the
benefits of monitoring the crown architecture and growth pattern from the inception of the
olive orchard.

As demonstrated in Figure 7, the proposed workflow paves the way to produce
extensive and accurate datasets for the phenotyping of olive cultivars during their initial
stages of field development. Accurate measurements of more than 1000 trees via traditional
manual methods would not have been possible, but the efficiency of the proposed workflow
made it feasible. This enhanced ability to evaluate a larger number of trees in a more efficient
manner will enable the extraction of more robust conclusions about the cultivars evaluated
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in phenotyping experiments. Thus, for example, an index of heterogeneity in the growth of
different cultivars could be calculated from measurements of all individual trees. This is a
significant improvement over conclusions derived from smaller datasets, which are often
constrained by the availability of the workforce in traditional field measurements. Although
the analysis of differences between varieties is beyond the scope of this work and will be
addressed in future publications, it has been observed that the ’Sikitita’ cultivar, developed
for use in hedgerow cultivation [26], has shown less vegetative growth compared to the
other studied varieties. At the plot level, the differences observed between the northern
and southern areas are likely related to the lower slope of the southern area mentioned in
the description of the experimental orchard.

5. Conclusions

This study demonstrated that UAV-LiDAR technology provides significant precision
in extracting phenotypic traits associated with the crown architecture of olive trees. This
precision has been achieved for the first time for olive trees shorter than 2 m, a crucial
developmental stage where the trees exhibit their growth habits. Although the LiDAR data
underestimated height and volume compared with field measurements, the correlations
between LiDAR-derived and field-measured crown parameters are high, indicating the
accuracy of the proposed UAV-LiDAR data-based workflow. To the best of the authors’
knowledge, this is the first study that employed UAV-LiDAR technology to explore olive
tree phenotyping, and it is also the first work about phenotyping in a rainfed hedgerow
olive orchard. Since the methodology has shown its ability to characterize individual
cultivar performance in detail with respect to tree architecture, future work is focused on
the agronomic evaluation of the plethora of data generated in the studied field, including
yield data. These results support the decision making of olive breeding programs whose
main objective is to select the cultivars that are best adapted to the particularities of the
rainfed hedgerow system.
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