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Abstract: Flowering is a complex developmental mechanism and is essential for successful
reproduction in plants. Complex regulatory networks transform vegetative shoot apical
meristems into inflorescence meristems. Further, floral meristems transition to floral bud
outgrowth and flowering. Floral regulatory pathways are independently involved in
flowering, and most of what we know about genetic regulation comes from model plants.
Despite the advancements in plant development biology, the understanding of molecular
mechanisms and floral signals in horticultural plants is complex. Studies on gene regulatory
mechanisms provide a global view of flowering in horticultural plants. In this paper, we
discuss the flowering pathways converging on complex gene regulatory mechanisms and
summarize the recent findings in horticultural plants in order to help us understand how
they regulate flowering and provide an update for future research.

Keywords: Arabidopsis thaliana; bud; citrus; floral meristem identity; FLOWERING LOCUS
T; gene regulation; grapevine; tomato

1. Introduction
Floral induction is a crucial switch in the plant life cycle that results in the production of

seeds for successive generations. Floral induction involves the transcriptional regulation of
several genes and their regulatory pathways, including numerous environmental cues that
transform vegetative meristems into inflorescence meristems, which leads to floral meristem
identity, floral bud outgrowth, and flowering [1–3]. In model plants such as Arabidopsis
thaliana, flowering is triggered by molecular regulatory pathways, including vernalization,
age-dependent, autonomous, and photoperiod pathways (Figure 1) [4]. Morphological
flowering signs are qualitative and visible only after the complex signals have already
induced flowering. This is also because direct measurements of the internal developmental
state of plants during floral induction are lacking [5]. Considerable advances have been
made in understanding the molecular genetic mechanisms that result in reproductive phase
transition [6].

This progress in flowering-related genes has been precisely studied in model plants
such as Arabidopsis and rice (Oryza sativa). One of the prime reasons for this is that large
amounts of genetic and genomic resources are required to identify the regulatory mecha-
nisms. As the number of identified genes in model plants has increased, molecular biology
techniques, including genetic transformation, in vitro regeneration, and gene expression
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patterns, have enabled the knowledge of these genes to be applied to other plants, es-
pecially perennial plants growing in the natural environment; these genes are linked to
flowering regulatory pathways [7,8]. These regulatory pathways consist of FLOWERING
LOCUS T (FT), FLOWERING LOCUS C (FLC), SUPPRESSOR OF OVEREXPRESSION
OF CONSTANS 1 (SOC1), CONSTANS (CO), LEAFY (LFY), AGAMOUS-LIKE20 (AGL20),
APETALA1 (AP1), and WUSCHEL-related homeobox (WUS) genes [7,9–12]. Other floral
regulators, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1-like, FLOW-
ERING LOCUS T (FT)-like, and FRIGIDA (FD)-like genes, as well as upregulation, also
trigger flowering [13–15]. The orthologs of Arabidopsis, such as FT, SOCI, LFY, TERMINAL
FLOWER1 (TFL1), and MADS-box, have been identified in Citrus (Citrus sinensis, Poncirus
trifoliata, and Fortunella hindsii) [16–18], apple (Malus domestica Borkh.) [19], longan (Di-
mocarpus longan Lour.) [20], avocado (Persea americana Mill.) [21], kiwifruit vine (Actinidia
deliciosa) [22], pomegranate (Punica granatum L.) [23], loquat (Eriobotrya japonica) [24], and
tomato (Solanum lycopersicum L.) [25].

The FT protein is the most famous florigen (a systemic signal that promotes flowering);
it is synthesized in the leaf vasculature and moves through the phloem to the shoot apical
meristem [26,27]. In Citrus species, FT (CiFT, CsFT, PtFT, ToFT, CiFT, CiFT2, and CiFT3)
has been found to functionally characterize and promote early flowering [28–33]. Carrizo
citrange (Citrus triptera x Citrus sinensis) CcFT1, CcFT2, and CcFT3 genes overexpression
induced non-inductive flowering in transgenic Carrizo rootstocks and grafted juvenile
scions [32]. Grapevine (Vitis vinifera L.) VvFT overexpression in Arabidopsis promotes
early flowering [34]. Apple MdFT1 overexpression induced early flowering in annual and
perennial plants [19]. The transcript abundance of FT is increased by the transcriptional
activator, the CO protein, which strongly influences floral regulation [35]. In tomatoes, six
FT-like genes, namely, SlSP3D, SlSP6A, SlSP5G, SlSP5G1, SlSP5G2, and SlSP5G3, have been
identified [25]. Mango (Mangifera indica) MiTFL1-1, MiTFL1-2, MiTFL1-3, and MiTFL1-4
overexpression in Arabidopsis repressed flowering [36]. MdTFL1-1 gene virus-induced gene
silencing promotes early flowering in apple [37]. Overexpression and CRISPR/Cas9 base
editing of CiMADS43 induce leaf curling and early flowering in lemon (Citrus limon) [38]. In
sweet cherry (Prunus avium), PavMADS1, and PavMADS2, RNAi-based silencing enhances
FT expression during dormancy [39]. Overexpression of the silver birch (Betula pendula)
BpMADS4 gene in apple induced early flowering [40]. SOCI-like genes, AcSOC1e, AcSOC1f,
and AcSOC1i overexpression promote flowering in kiwifruit vines [41]. Arabidopsis LFY
(AtLFY), a floral meristem identity gene, has been reported to be the first transgene to
accelerate flowering in perennial plants [42]. The AtLFY ortholog has also been reported
in grapevine VFL [43]. VFL is highly expressed in the floral meristem that develops
the following spring. This expression pattern indicates the significance of VFL in floral
meristem initiation and organization, similar to other LFY-like genes in different species [44].
MdLFY overexpression in apple increases shoot diameter [45].

Other floral meristem identity genes, such as API and FRUITFUL [23], have also
been characterized and named in grapevine VAP1 and VFUL-L. VFUL-L and VAPI are
expressed in the very early stages of uncommitted lateral meristems, and their expression
is sustained in other initiative organs, such as inflorescences or tendrils [46,47]. In tomatoes,
FALSIFLORA (FA) encodes a similar protein to AtLFY. A mutation in FA causes a delay
in flowering. Further, fa mutants replace flowering with leaves and inflorescence with a
similar phenotype to lfy Arabidopsis [48]. FUL-like genes regulate inflorescence development
and flowering in tomatoes [49].



Horticulturae 2025, 11, 102 3 of 16Horticulturae 2025, 11, x FOR PEER REVIEW 3 of 17 
 

 

 

Figure 1. Schematic representation of Arabidopsis flowering regulatory pathways [26,50–57], includ-
ing floral regulators and suppressors. The black solid arrows indicate gene regulation, and the black 
straight lines indicate gene suppression. 
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the meristem identity gene and the machinery that maintains the undifferentiation of the 
meristem, represented by the CLAVATA (CLV) and WUS pathway [58]. C. sinensis CsWUS 
overexpression in tobacco plays a role in floral organ development [12]. In contrast, virus-
induced gene silencing causes thorn development in lemon [12]. A mutation in COM-
POUND INFLORESCENCE, a homolog of WOX9 (S); the F-box gene, a homolog of UNU-
SUAL FLORAL ORGAN, UFO (AN); and its partner FALSIFLORA, a homolog of LFY (FA), 
play an essential role in inflorescence determination in tomato [59]. The tomato MADS-
box gene JOINTLESS (J) is involved in flower development and pedicel differentiation, 
whereas jointless mutants affect the inflorescence meristem [60]. Additionally, the TO-
MATO MADS-box 8 gene (TM8) is highly expressed in tomato reproductive organs and 
plays an essential role in flower development [61]. The TOMATO MADS-Box 6 (TM6) gene 
acts as a transcriptional regulator during floral development [62]. A loss of function of the 
TOMATO AP3 (TAP3) gene results in the homeotic development of stamens and petals. 
TM6 and AP3 play significant roles in flower development in tomato (Figure 2) [63]. 
Grapevine VvMADS9 (VvPI), VvAP3, and VvTM6 have been identified. VvMADS9 shows 
a low-expression pattern in the latent bud, and VvTM6 is vastly expressed in reproductive 
organs [34]. 

Over the past three decades, molecular and genetic analyses have led to the identifi-
cation of various genes and transcription factors (TFs) and provided insights into how 
they control floral development and floral meristem identity in plants. In this review, we 
highlight the current knowledge of floral regulation and the mechanisms of floral regula-
tory pathways. 

Figure 1. Schematic representation of Arabidopsis flowering regulatory pathways [26,50–57], including
floral regulators and suppressors. The black solid arrows indicate gene regulation, and the black
straight lines indicate gene suppression.

The mechanism by which the meristem terminates involves the interaction between
the meristem identity gene and the machinery that maintains the undifferentiation of
the meristem, represented by the CLAVATA (CLV) and WUS pathway [58]. C. sinensis
CsWUS overexpression in tobacco plays a role in floral organ development [12]. In contrast,
virus-induced gene silencing causes thorn development in lemon [12]. A mutation in
COMPOUND INFLORESCENCE, a homolog of WOX9 (S); the F-box gene, a homolog of
UNUSUAL FLORAL ORGAN, UFO (AN); and its partner FALSIFLORA, a homolog of LFY
(FA), play an essential role in inflorescence determination in tomato [59]. The tomato MADS-
box gene JOINTLESS (J) is involved in flower development and pedicel differentiation,
whereas jointless mutants affect the inflorescence meristem [60]. Additionally, the TOMATO
MADS-box 8 gene (TM8) is highly expressed in tomato reproductive organs and plays
an essential role in flower development [61]. The TOMATO MADS-Box 6 (TM6) gene
acts as a transcriptional regulator during floral development [62]. A loss of function
of the TOMATO AP3 (TAP3) gene results in the homeotic development of stamens and
petals. TM6 and AP3 play significant roles in flower development in tomato (Figure 2) [63].
Grapevine VvMADS9 (VvPI), VvAP3, and VvTM6 have been identified. VvMADS9 shows
a low-expression pattern in the latent bud, and VvTM6 is vastly expressed in reproductive
organs [34].

Over the past three decades, molecular and genetic analyses have led to the identi-
fication of various genes and transcription factors (TFs) and provided insights into how
they control floral development and floral meristem identity in plants. In this review,
we highlight the current knowledge of floral regulation and the mechanisms of floral
regulatory pathways.
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plants, such as orange (C. sinensis), olive (Olea europaea L.), litchi (Litchi chinensis Sonn.), 
mango, and apple, flowering can be induced by exposure to cold or chilling [74–76]. Low 
temperatures also influence the timing of bud bursts and flowering in grapevines [77]. 

The flowering response to low temperatures has also been reported in Satsuma man-
darin (Citrus unshiu Mar.) [78]. The overexpression of Citrus CiFT induces early flowering 
in pear (Pyrus communis) [79]. Vernalization works by inhibiting the expression of FLC, a 
robust floral repressor of flowering encoded by the MADS-box protein in the shoot apical 
meristem [80]. The SEPALLATA-like MADS-Box gene (CaSEP5) is highly expressed in 
flower organs in peppers (C. annuum). CaSEP5 silencing results in leaf-like sepals and 
rigid, straight pedicels (Figure 2) [67]. FD acts as a floral repressor by stimulating the ex-
pression of FLC. However, it acts as an inhibitor in the independent pathway [80]. Cold 
exposure degrades the FRI protein and downregulates FLC [81]. Furthermore, FLC sup-
presses the expression of SOC1 and inhibits the upregulation of FD in the shoot apical 
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Figure 2. Overview of floral regulation and development in tomato plant (Solanum lycopersicum) [25,
48,59–66] and chili plant (Capsicum annuum) [67–69]. The black solid arrows indicate gene regulation,
and the black straight lines indicate gene suppression.

2. The Vernalization Pathway: Low-Temperature-Induced Flowering
Plants tend to flower when exposed to changing climatic conditions [70]. A period of

chilling or cold exposure from −1 ◦C to 10 ◦C activates the vernalization pathway. Chilling
acts as an external factor for shoot apical meristem dormancy release and promotes floral
transition in plants [71,72]. FT movement via the phloem to the shoot apex is affected at
low temperatures, and plants exhibit late flowering [73]. However, in many horticultural
plants, such as orange (C. sinensis), olive (Olea europaea L.), litchi (Litchi chinensis Sonn.),
mango, and apple, flowering can be induced by exposure to cold or chilling [74–76]. Low
temperatures also influence the timing of bud bursts and flowering in grapevines [77].

The flowering response to low temperatures has also been reported in Satsuma man-
darin (Citrus unshiu Mar.) [78]. The overexpression of Citrus CiFT induces early flowering
in pear (Pyrus communis) [79]. Vernalization works by inhibiting the expression of FLC, a
robust floral repressor of flowering encoded by the MADS-box protein in the shoot api-
cal meristem [80]. The SEPALLATA-like MADS-Box gene (CaSEP5) is highly expressed in
flower organs in peppers (C. annuum). CaSEP5 silencing results in leaf-like sepals and rigid,
straight pedicels (Figure 2) [67]. FD acts as a floral repressor by stimulating the expression
of FLC. However, it acts as an inhibitor in the independent pathway [80]. Cold exposure
degrades the FRI protein and downregulates FLC [81]. Furthermore, FLC suppresses the
expression of SOC1 and inhibits the upregulation of FD in the shoot apical meristem [57].
FLC binds to the promoter of SOC1 and SQUAMOSA PROMOTER BINDING-LIKE 15
(SPL15) and suppresses their expression. Floral transition in mango occurs during late
autumn and early winter. Mango floral induction requires a higher temperature (10 ◦C to
15 ◦C) than vernalization [82,83]. However, M. indica cv. Dashehari promotes flowering
under leaf-bearing conditions during vernalization. The expression patterns of the FRI,
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SUPPRESSOR OF FRIGIDA 4 (SUF4), and FLC EXPRESSOR (FLX) genes are upregulated
in bearing mango leaves.

Other floral regulators such as AG, FUL, FPA, FCA, and FLD are also upregulated
in bearing mango leaves [84]. The MdFLC3-like gene was functionally characterized to
understand how chilling mediates flowering in apples. MdTFL1 overexpression delays
flowering in Arabidopsis and maintains the juvenile phase in apple [85]. PcTFL1 RNAi-based
silencing induces early flowering in transgenic pears [86]. In Citrus, FLC homolog (PtFLC)
overexpression delays flowering in Arabidopsis [87]. Cold treatment upregulates CiFT and
CiLFY expression before flower development in Satsuma mandarin buds and leaves [16,88].
Similarly, CsFT, CsLFY, and CsAP1 are upregulated in the leaves, floral meristem, and buds
of sweet orange under cold treatment (Figure 3) [88,89]. In Citrus, Nuclear Factor YA (CiNF-
YA) activates CiFT expression under low temperatures and drought conditions by binding
to the CiFT promoter. Further, CiFT forms a complex with GOLDEN2−LIKE protein
(CiFE) and stimulates CiLFY to promote flowering [90]. The Arabidopsis HD-ZIP (AtHB13)
homolog PtHB13 binds to the PtFLC promoter and regulates its expression during citrus
floral induction. Low temperatures affect the ectopic expression patterns of PtFLC and
PtHB13 and regulate floral induction (Figure 3). In contrast, the overexpression of PtFLC
and PtHB13 inhibits flowering in Arabidopsis [87]. VIN3 expression positively increases in
bearing mango leaves and flowers [82].

The FT ortholog in tomato SFT plays a vital role in the primary shoot flowering
time and flower morphology [65]. In tomatoes, Nuclear Factor YA3b (SlNF-YA3b) plays an
essential role in floral regulation. The knockout of SlNF-YA3b results in an early flowering
phenotype, whereas the overexpression of SlNF-YA3b delays flowering in tomato plants.
Further study indicates that NF-YA3b binds to the CCAAT motif of the SFT promoter and
represses its expression [91]. In tomatoes, the SlVIN3 gene protein is closely related to the
VvVIN3 gene. The SlVIN3 gene shows high expression during floral organ differentiation
and low expression during fruit development [66]. The Capsicum annuum FT/TFL orthologs
CaFT and CaTFL1 show conserved functioning in floral regulation and plant development
(Figure 2) [68].

The genes involved in the vernalization pathway also act on the florigen marker FT,
inducing downregulation via FLC but upregulation via VRN1. TFL1 represses FT activity,
which maintains an indeterminate meristem [92]. TFL1 represses the floral meristem
identity genes (LFY and AP1) and is expressed only on the edges of meristem-developing
primordia [93]. During the early stages of inflorescence development, latent buds exhibit
a high expression of VvFT/TFL1. Still, this expression pattern is not displayed during
flower development in the following season in grapevines [94]. The overexpression of
VvTFL1, named VvTFL1A in Arabidopsis, causes delays in flowering time and the initiation
of the floral meristem, and it yields a phenotype of complex inflorescence with multiple
co-inflorescences [55,94]. In tomatoes, TERMINATING FLOWER (TMF) mutants cause
early flowering and replace multi-flower inflorescence with a single flower. ANANTHA
(AN) and FALSIFLORA (FA) encode the flowering specification complex and promote early
flowering [64]. Tomato TMF synchronizes flower development with a slow reproductive
phase transition [64]. However, SINGLE FLOWER TRUSS (SFT) regulates floral meristem
identity during floral development [95]. In peppers, the fa mutant causes a reduction in
flowering time, whereas CaAN is essential for floral meristem differentiation, and CaS is
involved in an earlier stage of the transition to floral meristem differentiation [69].
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Figure 3. The flowering regulatory pathways in horticultural perennials (Citrus, grapevine). In Citrus,
PtHB13 binds to the PtFLC promoter and induces early flowering [87]. A low temperature or cold
enhances the expression of CiLFY and CiFT in leaves/buds and promotes early flowering [16,88]. In
contrast, PtFLC represses the expression of CsLFY, CsFT, and CsAP1 [88,89]. The citrus CsWUS gene is
involved in meristem maintenance [11]. TFL1 represses FT activity, which maintains an indeterminate
meristem [92]. TFL1 represses the floral meristem identity (LFY and AP1) genes [93]. The black solid
arrows indicate gene regulation, and the black straight lines indicate gene suppression. The induction
of CcMADS19 (FLC ortholog) represses the Citrus FT ortholog [96]. In grapevine, VFL is highly
expressed in the floral meristem and involved in floral meristem initiation [44]. VAP1 and VFUL-L
are expressed in the uncommitted lateral meristem [46,47]. Short-day (SD) conditions negatively
regulate VvFT and PHYTOCHROME A (VvPHY A) and positively control VvPHY B in buds [97].
VvFT regulates floral induction in latent buds with the development of inflorescence, flowers, and
fruits [94]. SD conditions negatively control VvFT and VvPHY A and positively control VvPHY B
in grapevine buds [98]. PIF4, PIF5, and PIF7 stimulate shade (low R–FR ratio)-induced flowering
through FT [99,100]. The PHY B gene negatively regulates the SAS through PIF genes; PIF4 and
PIF8 act downstream of PHY B. Under SD conditions, the PHY B-PIF8 module inhibits growth by
repressing the expression of the FT2 gene [97]. The PHY B/PIF8 module mediates SD-induced growth
cessation [97]. VvMADS8 shows a high-expression pattern during the early stage of inflorescence
development [101]. VvMADS3 is involved in vegetative organs and flower development [102,103].
The black solid arrows indicate gene regulation, and the black straight lines indicate gene suppression.

3. Autonomous Pathway of Flower Induction
Vernalization and autonomous pathways act opposite to each other (Figure 3). The

autonomous pathway induces flowering independently under day-length conditions by
repressing the central floral repressor and vernalization regulatory gene FLC [104–106].
FLC inhibits the expression of flowering-related genes, such as FT, SOC1, AGL20, LFY,
AG, and APL3, and it delays floral transition [9,107,108]. FLOWERING LOCUS K (FLK),
FY, FLOWERING LOCUS VE (FVE), LUMINIDEPENDENS (LD), FCA, and FLOWERING
LOCUS D (FLD) are redundant genes that ensure the developmental turning of flowering
by inhibiting FLC [55,109]. Mutations inserted in FLC did not promote plant flowering [110].
Meanwhile, mutations in autonomous pathways related to FCA, LD, FVE, FLD, FLK, and
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FY prolonged floral induction under LD and SD conditions. In contrast, vernalization
treatment recovered the phenotype [105].

In star fruit (Averrhoa carambola L.), FCA and FVE suppress SVP. However, they
promote FT and FD expression under low temperatures and regulate flowering [111].
Several previous studies have demonstrated that the EARLY IN SHORT DAYS 4 (ESD4),
Developmentally Retarded Mutant1 (DRM1), Casein kinase II (CK2), RELATIVE OF EARLY
FLOWERING 6 (REF6), ARABIDOPSIS THALIANA SYNTAXIN OF PLANTS 22 (SYP22),
PCF11P-SIMILAR PROTEIN 4 (PCFS4), AGL28, DNA-binding protein phosphatase gene 1
(DBP1), HISTONE DEACETYLASE 5 (HDA5), and HISTONE DEACETYLASE 6 (HDA6)
genes are also involved in autonomous flowering regulatory pathways [50]. In tomatoes,
autonomous pathway-related genes, such as FRI-like protein 3, show a high-expression
pattern at the initial stage of flower bud differentiation and then during flower development.
Thus, FRI may be involved in meristem development at the initial stage of flowering and
may act downstream of the gene to inhibit early flowering [112].

4. Light-Dependent Pathway/Photoperiod Pathway of Flower Induction
Photoperiod is a crucial external factor in the vegetative-to-reproductive phase tran-

sition. Photoperiod is sensed through the leaves in long-day (LD) and short-day (SD)
plants. The role of light intensity in inflorescence formation has been studied in vineyards
regarding the hours of sunshine [113] or shading treatment [114]. Applying high light
intensities under controlled environmental conditions affects the development of inflores-
cence primordia depending on the conditions that depend on the photoperiod [115]. In
grapevines, floral initiation and floral development are delayed by SD conditions. Previ-
ous studies have reported that growth cessation may be SD obligate and SD facultative
depending on the genotype in the grapevine [116]. Flowering-related genes such as FT,
G1, FD, AP1, CRY2 (CRYPTOCHROME2/FHA), ELF3 (EARLYFLOWERING3), and CO play
a central role in the photoperiod pathway [117–119]. The flowering time regulators FD
and FT control photoperiodic seasonal growth. For example, the FD-like 1 (FDL1)/FT2
complex controls the downstream target LAP1 and regulates photoperiodic growth. FLD1
triggers SD-induced transcriptional regulations in these two pathways’ adaptive responses
and bud maturation [120]. ELONGATED HYPOCOTYL 5 (HY5), ATHB7, and PRR7 are
expressed in grapevine buds under different photoperiod treatments and in floral meristem
development, suggesting a vital role in floral and dormancy induction [121]. Grapevine
VvFT is involved in floral induction in latent buds with the development of inflorescence,
flowers, and fruits [34,94]. SD conditions negatively control VvFT and PHYTOCHROME A
(VvPHY A) and positively control VvPHY B in grapevine buds [98]. PHYTOCHROME B
(PHY B) acts as a thermal and light sensor. PHY B (PHY B1, PHY B2, and PHY B3) genes act
as suppressors of shoot elongation, and their downstream targets, PHYTOCHROME INTER-
ACTING FACTOR (PIF) genes (PIF4 and PIF8), are involved in shade avoidance syndrome,
and PIF8 plays a central role in the inhibition of seasonal growth in plants [97]. In V. vinifera.
cv. Thompson seedless, photoperiod drives the transition of buds into endodormancy. It
modifies the expression of the VvPHY A and VvPHY B transcripts in grapevine leaves [122].
PIF4, PIF5, and PIF7 stimulate shade (low R–FR ratio)-induced flowering through a positive
expression of FT and TWIN SISTER OF FT (TSF) [99,100]. The PHY B gene negatively
regulates the SAS through PIF genes; PIF4 and PIF8 act downstream of PHY B. Under SD
conditions, PHY B acts as a negative regulator of growth cessation, and the PHY B-PIF8
module inhibits growth by repressing the expression of the FT2 gene [97]. The PHY B/PIF8
module mediates SD-induced growth cessation in autumn and temperature-regulated bud
break in spring [97].
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Photoreceptors (CRY1 and CRY2) and PHY A act antagonistically to PHY B in order to
stabilize the CO protein and trigger it to upregulate FT [123]. FT and FWA act downstream
of CO and other pathways, whereas GI and CRY2 act upstream [124]. CRY2 interacts with
the CIB1 TF in response to blue light in order to stimulate the transcription of FT, whereas
CIB3 interacts with CIB1, acts synergistically with CIB1, and promotes GI transcription [125].
In tomatoes, CRY2 is significantly involved in flowering time. The PHYB gene regulates
the expression patterns of the FT-like genes SlSP5G2, SlSP5G3, and SlSP5G5 and regulates
flowering [126]. Further, the FT-like gene SlSPD3 encodes mobile florigen signals and
promotes flowering [95].

Clock resetting genes such as FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1), CON-
STITUTIVEPHOTOMORPHOGENIC1 (COP1), KELCHPROTEIN2 (LKP2), and ZEITLUPE
(ZTL) play essential roles in the photoperiod pathway. FKF1 is involved in CO protein
stabilization and directly binds to CO via the LOV domain, which triggers CO accumula-
tion [127]. Recent studies have revealed that CRY1 stabilizes the DELLA protein through
direct interactions, whereas FKF1 degrades the DELLA protein to control diurnal changes
in DELLA protein stability through ubiquitination [128]. DELLA also participates in several
repressor actions. For example, MYC3 not only binds to the FT promoter but also inhibits
the DNA-binding activity of CO through interactions with DELLA proteins [129]. Moreover,
DELLA protein expression levels become low during the night because of GA-dependent
degradation [130]. ZTL and genes also act as blue light receptors that interact with G1
and regulate flowering [56,131,132]. These results indicate the crucial role of photoperiod
and light in floral regulation. In tomatoes, EF (EARLY FLOWERING) is involved in early
floral induction, and ef mutants cause early flowering. The EF-dominant gain-of-function
allele elevates the SlFAF1/2c transcript. The overexpression of SlFAF1/2c also shows a
similar phenotype of early flowering to ef mutants. Moreover, FAF1/2c interacts with
CONSTITUTIVEPHOTOMORPHOGENIC9 (COP9) and reduces its protein stability and
accumulation [133].

5. Gibberellic Acid Pathway: Hormonal Control of Flowering
The gibberellin (GA) pathway is actively involved in floral transition in plants because

the endogenous GA level acts as an inhibitor in floral meristem development under SD
conditions [134]. The GA pathway also participates in floral transition under LD condi-
tions [135]. However, GA-deficient ga1-3 mutants promote timely flowering under LD and
cause delayed flowering in SD [136]. FT and GA express seasonal cues to the shoot apical
meristem. GA acts downstream of FT in seasonal growth regulation and control [137].
The antagonistic factors TFL1 and LAP1 of FT act as promoters or repressors of seasonal
growth [137]. GA3 and 1-amino cyclopropane carboxylic acid [138] treatment delays flow-
ering in Citrus [139]. Before floral induction, the level of bioactive GAs increases in the
shoot apex via the activation of GA2oox1, encoding the GA biosynthetic enzyme GA20
oxidase, which promotes the expression of the floral integrators LFY and SOC1. Under
SD conditions, GA4 is produced in leaves, transported to the meristem, upregulates LFY
and SOC1, and induces flowering [140]. GA acts as a floral repressor in apples without
disturbing shoot elongation—the exogenous treatment of GA results in the downregulation
of GA biosynthesis. The GA transporter, GA receptor, and GA catabolic GA oxidase-related
genes depend on GA feedback and feedforward regulation. Moreover, TFL1-like genes
induce a swift response to GA, while the upregulation of MdTFL1 inhibits flowering in
apples [141]. GA 20 oxidase genes also play a significant role in flower development in
tomatoes [142].

In Arabidopsis GA receptors, GIBBERELLIN INSENSITIVE DWARF1 (GID1) plays a
positive role in GA signaling [143]. GID (Cs3g13110, Cs8g05670, and Cs5g32180) and
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DELLA proteins (Cs6g09040 and Cs6g17530) show differential expression patterns during
citrus-induced floral induction in sweet orange [1]. GA binds to GID1, which then binds to
DELLA in order to form a unique GA-GID1-DELLA complex. DELLA is then recruited to
the SCFSLY1/GID2 E3 ubiquitin ligase for polyubiquitination and subsequent degradation
by 26 proteosomes. This results in the plant exhibiting a GA response [144]. DELLA
proteins are negative regulators in the GA signaling pathway [145,146]. DELLAs are
abruptly degraded in the presence of GA [147]. DELLA mutants in Arabidopsis flower early
under SD conditions. To date, five DELLA proteins have been identified in Arabidopsis,
including GIBBERELLIN INSENSITIVE (GAI), REPRESSOR OF GA1-3, and RGA-LIKE 1
(RGL1) [148,149].

A previous study demonstrated that the DELLA-interacting factor GAI-ASSOCIATED
FACTOR1 (GAF1) explained the role of DELLA as a transcriptional co-activator [150].
GAF1 also interacts with the co-repressor TOPLESS-RELATED (TPR), whereas DELLA and
TPR are co-repressors and co-activators of GAF1. GAs alter the GAF1 complex from a
transcriptional activator to a repressor and promote the expression of FT and SOC1 [145].
The GAFI TF contains a zinc finger motif and belongs to INDETERMINATE1 (ID1). In
Arabidopsis, IDD members are closely related to DELLA. Arabidopsis gaf1 and idd1 mutants
show a late-flowering phenotype compared to the wild type under SD conditions [150]. The
PpIDD family has been identified in peach. The PpIDD family members PpIDD4, PpIDD12,
and PpDD13 interact with PpDELLA1 proteins. This interaction activates PpGA20ox1
promoter transcription. This transcriptional regulation indicates that PpIDD-PpDELLA1 is
involved in GA-mediated feedback regulation in peaches [151].

6. Conclusions and Perspectives
Reproductive phase transition is a critical adaptive developmental switch in plants.

In-depth studies of the floral regulators or repressors will help to understand the conditions
of horticultural plants’ adaptability in the near future. Various studies suggest that a plant’s
genetic mechanism for flowering is highly conserved. Floral promoters or repressors, for
example, the FT/TFL family and encoding proteins such as the phosphatidyl ethanolamine
binding protein (PEBP), are the most promising factors for providing deep insights into
floral regulation. Floral regulators and repressors are intensely studied in many horticul-
tural plants. Biotechnology provides a significant approach to genetic improvement and
speeds up efficient breeding in plants. The advancement in genetic transformation and
gene editing in kumquat (Fortunella hindsii) resulted in short juvenility, with the process
from explant to T1 mutant taking 15 months [18]. The PDS gene was recently successfully
edited in F. hindsii, with five months needed for regeneration from seed to T0 plantlets and
then ten months needed to obtain the T1 generation [18]. F. hindsii could be used as a model
plant to understand the vegetative-to-reproductive phase transition in other citrus species.

In plants, virus-induced gene silencing is widely used to suppress the expression of
endogenous genes [152]. For example, a virus-induced gene silencing vector based on TRV
(tobacco rattle virus) was successfully used to silence the CsWUS gene in lemon [12]. This
vector carries the CsWUS gene from C. sinensis, and it causes thorn development in gene-
silenced plants [12]. A viral vector based on citrus leaf blotch virus (CLBV) carrying the FT
gene predicted flowering in young citrus plants at four months post-infection, depending
on the season and genotype [153,154]. Many researchers have also used the apple latent
spherical virus vector ALSV for gene silencing. The inoculation of ALSV shortened the
juvenile phase and induced early flowering in pears, apples, and grapevines [155,156].
RNA inference (RNAi) technology is extensively used to knock out gene function in order
to promote early flowering in horticultural plants.
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The RNAi-based knockdown of TFL1 reduced the juvenile phase and induced early
flowering in apple and pear trees [86,157]. However, expansion in floral development in
transgenic perennial plants led to reduced vegetative growth, which reduced fruit and
seed production in plants. Early-induced flowers require pollination via native pollinators
(honey bees). In Longan, the early induction of flowering decreased fruit yield due to the
absence of native pollinators [158]. Transgenic plants are often malformed, and fruit settings
are shallow [40]. However, CRISPR/Cas9 has become a prominent and efficient biotechnol-
ogy for genome editing in many plant species, and it has had various success stories in the
past few years [159]. CRISPR/Cas system-based genome editing can also address the early
floral induction of male sterility in vines such as the kiwi vine [160]. A CRISPR/Cas9-based
mutant construction of faf1/2b, faf3/4a, and trfaf3/4b induced early flowering in tomato [161].
To sum up, determining the network regulation of flowering will help us understand how
horticultural plants perceive developmental signals, regulate molecular mechanisms, and
then accelerate flowering, ultimately boosting commercial production.
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