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Abstract: Global fruit production costs are increasing amid intensified labor shortages,
driving heightened interest in robotic harvesting technologies. Although multi-arm co-
ordination in harvesting robots is considered a highly promising solution to this issue,
it introduces technical challenges in achieving effective coordination. These challenges
include mutual interference among multi-arm mechanical structures, task allocation across
multiple arms, and dynamic operating conditions. This imposes higher demands on
task coordination for multi-arm harvesting robots, requiring collision-free collaboration,
optimization of task sequences, and dynamic re-planning. In this work, we propose a frame-
work that models the task planning problem of multi-arm operation as a Markov game.
First, considering multi-arm cooperative movement and picking sequence optimization,
we employ a two-agent Markov game framework to model the multi-arm harvesting robot
task planning problem. Second, we introduce a self-attention mechanism and a centralized
training and execution strategy in the design and training of our deep reinforcement learn-
ing (DRL) model, thereby enhancing the model’s adaptability in dynamic and uncertain
environments and improving decision accuracy. Finally, we conduct extensive numerical
simulations in static environments; when the harvesting targets are set to 25 and 50, the
execution time is reduced by 10.7% and 3.1%, respectively, compared to traditional methods.
Additionally, in dynamic environments, both operational efficiency and robustness are
superior to traditional approaches. The results underscore the potential of our approach to
revolutionize multi-arm harvesting robotics by providing a more adaptive and efficient
task planning solution. We will research improving the positioning accuracy of fruits in the
future, which will make it possible to apply this framework to real robots.

Keywords: multi-arm harvesting robots; target planning; multiple constraints; deep
reinforcement learning

1. Introduction
Fruit harvesting is labor-intensive, heavily reliant on seasonal workers, and results

in high production costs [1]. The growing labor shortage and rising expenses have made
this challenge more acute. Autonomous harvesting by robots has emerged as a promis-
ing solution, attracting significant attention for its potential to enhance efficiency, reduce
labor dependence, and lower costs. Robots offer a crucial solution to the growing need
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to replace human labor in agriculture. For more than three decades, research has focused
on robotic harvesters that autonomously detect fruits, plan paths, and execute picking [2];
these were made possible by the advent of computer vision and sensor technology and
the automated detection of fruits in the early 1990s; path planning and navigation tech-
nologies, with GPS and SLAM technologies helping robots navigate autonomously, in
the 2000s; and breakthroughs in robotic arms and intelligent control systems that made
harvesting operations more accurate and efficient in the 2010s. In recent years, driven
by rapid advancements in disciplines such as sensor technology, materials science, and
computer science, harvesting robots have achieved significant breakthroughs in key areas.
These include decision-making, perception and localization [3], structural optimization [4],
intelligent control [5], and operational control [6], all of which are critical to improving
harvesting operations. These advancements led to a wide range of harvesting robots for
fruits such as apples [7], citrus [8], and tomatoes [9].

As the commercialization and practical application of harvesting robots accelerate,
operational efficiency has become a key performance indicator and is gaining increasing
attention. Multi-arm robots have the potential to significantly enhance efficiency, leading to
numerous studies and the commercialization of robots like the 4-arm kiwifruit robot [10],
the 24-arm strawberry robot [11], and the 12-arm apple robot [12].

According to the number of manipulators that can be driven, there are currently
two types of harvesting robots: single-arm robots and multi-arm robots. For crops such
as strawberries and tomatoes cultivated in greenhouses, the robot’s workspace is rela-
tively confined, leading to the common use of single-arm designs. However, in orchard
harvesting, especially for fruits like apples, which are distributed within tall canopies,
robots require larger working areas and higher harvesting efficiencies. Multi-arm robots
are more frequently employed in such scenarios. In contrast to single-arm robots, the
cooperative operation of multi-arm robots is pivotal for efficiency [13]. Cooperative op-
eration refers to the coordination and collaboration between robotic arms, including task
allocation, synchronized actions, and the efficient utilization of spatial resources. A parallel
collaboration mode has emerged for multi-arm robots like FFR [12], AGROBOT [14], and
Harvest CROO [15]. Within this framework, each arm operates independently, working
in parallel to reduce the time required per fruit harvest. However, under actual working
conditions, the fruits to be harvested may not be evenly distributed across each arm’s
working area. Instead, the fruits may be sparsely distributed in some areas and occur in
clumps in other areas. When designing multi-arm harvesting robots, the working space
of individual arms may overlap to cover a broader harvesting area. Additionally, many
robotic arms are structurally designed to maintain a minimum distance between arms to
prevent physical collisions and interference [16]. Moreover, the coupling between joints
restricts the independent operating space of each arm. As a result, in large-scale operations,
physical interference, motion constraints, and uneven fruit distribution can result in some
arms entering a state of vacancy, meaning that the arm is unable to perform harvesting
tasks for a period of time. This results in a decrease in overall harvesting efficiency.

To address the issue of reduced harvesting efficiency caused by some arms entering
a state of vacancy in the multi-arm collaboration of harvesting robots, a new cooperative
harvesting mode for multi-arm robots is proposed. This mode involves overlapping work-
ing zones, allowing arms to be assigned targets based on fruit distribution. Considerations
for interference, coverage, and efficiency are crucial in this cooperative approach. Barnett
et al. conducted an in-depth study on a multi-arm kiwifruit harvesting robot, focusing on
task partitioning and reachability. Their work aimed to ensure uniform fruit distribution
across the harvesting area while simultaneously reducing task completion time, which is
crucial for enhancing overall operational efficiency in agricultural robotics [17,18]. Building
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on this, Mann et al. optimized the task assignment for each manipulator to maximize
harvest yield. They conducted a comprehensive analysis of the optimal robot configuration,
considering factors such as the number of arms, manipulator capabilities, and operational
speed [19]. Despite these advancements, a notable gap remains in the existing literature.
The aforementioned studies primarily addressed task allocation and robot configuration,
but they did not explore the impact of the picking sequence on operational efficiency. The
order in which fruits are harvested can significantly influence overall productivity and
resource utilization, making this an important consideration in the design of harvesting
strategies. Thus, while Barnett et al. and Mann et al. contribute valuable insights into
the optimization of robotic harvesting systems, the limited focus on picking sequences
indicates a critical area for further research. Addressing this gap could lead to substantial
improvements in the efficiency and effectiveness of autonomous harvesting solutions.

Addressing the picking sequence is crucial, and rationally assigning targets and se-
quences to each arm can be considered a multi-objective task planning problem [20]. The
objective of this problem is to allocate tasks to the manipulators under certain constraints
to optimize overall system performance. Such problems are highly challenging in the field
of cooperative operations and have garnered extensive attention across diverse sectors,
such as workshop scheduling [21], traffic signal control [22], and energy management [23].
Some researchers have defined these problems as optimization problems, aiming to find
the optimal solution for an objective function under given constraints [24]. Linear pro-
gramming [25] is a classic method that transforms actual task allocation problems into
mathematical models to apply optimization techniques. However, certain optimization
problems cannot be solved by polynomial-time algorithms, and such problems are known
as NP-hard problems [26]. Currently, many task planning problems, including multi-arm
harvesting, which is the focus of this study, fall under the category of NP-hard problems.
Heuristic methods [27] are considered effective means for solving NP-hard problems; they
are heuristic stochastic optimization algorithms that can quickly find near-optimal solu-
tions. Swarm intelligence algorithms are particularly widely used in the field of multi-robot
task planning, such as in intelligent warehousing [28], vehicle routing [29], multi-robot
assembly [30], and UAV planning [31]. Tao et al. applied a Multi-Traveling Salesman
Problem to model the task planning of a multi-arm apple harvesting robot. By considering
asynchronous overlapping constraints and using a double-chromosome genetic algorithm
to calculate picking sequences, they potentially increased harvesting efficiency by up to
4.25 times [32]. However, heuristic algorithms may not be able to effectively respond to
future disturbances, such as picking failures.

In real-world orchard harvesting operations, a high success rate for each target pick is
not guaranteed. Additionally, rigid collisions between the robot and tree branches, cou-
pled with the inherent uncertainties of outdoor environments, can render certain targets
unpickable before the harvesting action is executed. Therefore, task planning for multi-
arm harvesting must effectively address picking failures and variations in the positions
and quantities of target fruits. These capabilities significantly influence the operational
efficiency of multi-arm harvesting robots, underscoring the challenges posed by dynamic
environmental changes to the robots. In dynamic environments, robots must use historical
information from themselves and other robots to learn how to navigate interruptions and
enhance system robustness [33]. In recent years, with the breakthroughs of artificial intel-
ligence, researchers have endeavored to apply AI methods to multi-robot task allocation
problems. Reinforcement learning, a quintessential machine learning technique, allows
systems to learn how to act in diverse environments based on past information. Wilson et al.
applied reinforcement learning methods to multi-task allocation problems, significantly
expediting the convergence to the optimal task allocation strategy [34]. Sun et al. inves-
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tigated adaptive batching strategies to address environmental adaptation and dynamic
batching in task allocation [35]. Choudhury et al. considered the dynamic assignment of
tasks to multiple robots under time window constraints and uncertainty of task completion,
proposing a multi-robot stochastic conflict model with a deep learning allocation algorithm
that improved scalability with increasing robot numbers [36]. It is evident that algorithms
based on deep reinforcement learning (DRL) are effective solutions for complex dynamic
task planning problems. For multi-arm harvesting robots, modeling the time optimization
problem is highly complex due to multiple mechanical constraints, including mechanical
interference, joint freedom degree coupling, and multi-arm interaction. Additionally, the
need to adjust plans in response to picking failures and newly generated targets highlights
the requirement for dynamic planning capabilities. This suggests that heuristic search-
based methods are unable to address the aforementioned issues, while deep reinforcement
learning methods are not directly applicable; yet, there is a lack of research on task planning
for multi-arm harvesting robots.

Accordingly, a framework of dynamic task planning for multi-arm harvesting robots
is proposed in this study. These robots are mainly used for harvesting tasks in dwarf
and high-density orchards. Due to the uniform planting layout and the relatively narrow
canopy of the fruit trees in such orchards, the robots have a high degree of reachability and
are very suitable for multi-arm collaborative operations. Moreover, the structural design of
the robots has been significantly simplified, which not only improves operational efficiency
but also greatly reduces hardware costs. The contributions in our study are as follows:

1. To minimize the overall operational time of the robot, we modeled the problem of
task planning as a Markov game and designed the states, actions, state transition, and
reward function of the model.

2. To optimize the technical challenges of slow model convergence and insufficient
stability, we introduced a self-attention mechanism and a centralized training and
execution strategy into the design and training of the deep reinforcement learning
(DRL) model. This approach aims to accelerate the model’s convergence process and
enhance its overall stability.

3. To address the dynamic task planning challenges of multi-arm robots, we propose a
task planning framework based on deep reinforcement learning (DRL). Numerical
simulation results demonstrate that the framework is both effective and superior.

2. Preliminary Model and Problem Statement
2.1. Robot Model Description

The harvesting robot in this paper comprises four mechanical arms, labeled Arm-1
to Arm-4, as shown in Figure 1. Additionally, this robot comprises subsystems such as
a fruit transportation device, an illumination system, and a wheeled mobile platform.
Specifically, the robot consists of four robotic arms and grippers, four stereo cameras, a
mobile platform, and subsystems of fruit conveyors and illumination. Each robotic arm
has a 3-degree-of-freedom Cartesian configuration. Each gripper has three fingers and
performs grasping and rotating movements.

The cameras and the computing platform use the USB protocol for communication.
The ECMs and the host communicate efficiently via Ethernet for image data transfer, and
a switch is used to ensure transmission efficiency. Communication between the host and
the servo motors occurs through the CAN bus. Additionally, this paper employs the relay
with CAN support and corresponding I/O interfaces to achieve effective control of the host
with actuating components such as cylinders, lights, and conveyor belts.
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Figure 1. The overview of multi-arm harvesting robots.

Before task planning, each stereo camera captures the color and depth images of
the fruits. The color image is processed through a recognition model to determine the
position of the target in the image. Combined with the depth image, the three-dimensional
coordinates of the fruit are obtained. Then, through coordinate transformation, they are
translated from the camera coordinate system to the base coordinate system, yielding all
the distribution information about the fruits. This information is used to carry out task
planning.

To ensure that each arm covers the entire working space, as shown in Figure 1, Arm-1
and Arm-2 share a horizontal guide, causing their movements along the vertical direction
to be coupled. The movements of Arm-3 and Arm-4 are also coordinated, thus dividing the
four arms into two groups: upper and lower. Furthermore, these two horizontal guides
move on the same vertical guide, providing them access to the middle zone. The aim is to
enhance the operational scope of each arm while simultaneously reducing the weight and
minimizing hardware and software costs.

It can be seen that these four robotic arms do not operate independently. Due to factors
such as joint coupling and mechanical interference, the cooperative operation mechanism
of multi-arm harvesting is relatively complex. To express the overall harvest time more
efficiently, we first outline the operational behavior of a single robotic arm, as shown in
Figure 2. A complete harvest operation for each arm consists of five sequential movements:

1. Approaching: The process of moving the horizontal and vertical joint positions from
the initial location to the desired one.
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2. Extension: The process of moving the extending joint positions from the initial location
to the desired one.

3. Grasp: The process of grasping a fruit using a flexible three-finger gripper and rotating
the arm.

4. Retraction: The process of moving the extending joint positions from the desired
location to the initial one.

5. Placement: The process of releasing a fruit and rotating the arm.

Next, we consider the collaboration of the multi-arm harvesting robot. Due to the
coupling of the horizontal guide, only one arm of a group can execute harvesting operations
at the same time. This means that the alternation of harvesting is the main form of multi-
arm collaboration; an example of this is shown in Figure 2. At first, the four arms were at
their ready positions; then, Arm-1 and Arm-4 started to execute their harvest operation
(Figure 2a). However, due to the interference of the mechanism, Arm-1 needed to wait
until Arm-4 finished the grasping movement (Figure 2b). Arm-1 continued its operation
(Figure 2d), which is the alternation of the two groups. To prevent a collision, Arm-4 needed
to avoid Arm-1 and allow it to finish its grasping movement first (Figure 2c). Furthermore,
the two arms in the same group also perform alternation. In Figure 2e, Arm-1 retracted to
place the fruit while Arm-2 approached its target. The coupling of the horizontal guide for
Arm-1 and Arm-2 was released when Arm-1 finished the grasping movement. As a result,
Arm-2 could access the horizontal guide and perform the approach without waiting for
Arm-1 to finish the placement, saving much operating time for the robot.
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2.2. Picking Time Analysis

The objective of this study is to harvest the maximum number of targets within a
limited time frame by optimizing task planning for the robot. The approach is based on the
following considerations:

■ Additional attempts may be required due to the failure to pick the fruit.
■ Mechanical limitations require safety distances in both horizontal and vertical direc-

tions. This means that any two joints in the same direction must be at least a certain
distance apart.

■ The motors driving the joints in the horizontal, vertical, and extension directions
rotate at different speeds, resulting in different joint velocities in the three directions.

■ The total harvesting time is determined by the longer operating time of the lower or
upper group.

Therefore, in conjunction with the picking behavior described in the previous sub-
section, we analyze the time consumed by the robot’s picking actions. Prior to this, it is
necessary to understand the kinematics of the robot. Consider a Cartesian robotic arm
moving from a position pn to the next position pn+1; the distance in each direction is
calculated as follows:

∆pn = pn+1 − pn (1)

where pn = [x, y, z] denotes the coordinates of the position with respect to the base frame
and ∆pn represents the distance vector of the n-th position to the next. Then, the distance
required to accelerate to maximum speed and decelerate to a speed of zero in each direction
is calculated as follows:

s =
v ⊙ v

2a
(2)

where s = ⟨si⟩i=x denotes the vector of acceleration/deceleration distance in three direc-
tions and v and a are the maximum velocity and acceleration, respectively. The required
time ti based on the distances from the current position to the next one, in each direction, is
determined as follows:

ti =

 2
√

∆pi
amax,i

, if ∆pi ≤ 2sa,i
vmax,i
amax,i

+
∆pi−2sa,i

vmax,i
, otherwise

(3)

The transitional time ttrans of the two positions is the maximum of the required times
in each direction:

ttrans = max
(
tx, ty, tz

)
(4)
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There are four positions for the end effector of the arm during a complete harvest
operation: start and end of the approach, grasp, and placement, meaning that the end
effector has three translations, which are approach, extension, and retraction. In addition,
the movements of the grasp and placement can also be time-consuming, which are denoted
as tgrasp and tplace, respectively. Overall, the picking time for an individual fruit, denoted
as twhole, can be obtained using the following formula:

twhole = ttrans + t̂trans + tgrasp + ťtrans + tplace (5)

where ttrans, t̂trans, and ťtrans denote the translation time of approaching, extending, and
retracting.

3. Multi-Arm Task Scheduling Framework
3.1. Problem Statement

Our goal is to compute an optimal task planning strategy for multi-arm robots, min-
imizing the idle time of each manipulator during harvesting tasks to maximize overall
harvesting efficiency. To achieve this, we need to optimize the controller to dynamically
adjust each manipulator’s target allocation and picking sequence. This task planning
problem can be viewed as a sequential decision-making process. We model it as a Markov
Decision Process (MDP) and aim to solve it using reinforcement learning (RL) methods.

The main challenges of this problem stem from the mechanical coupling between the
arms and their overlapping workspaces, which necessitate sequential operations of the
arms (i.e., approach, extend, grasp, retract, and place). Additionally, due to the natural
growth characteristics of apples, the fruit distribution within each arm’s workspace is
uneven. Furthermore, during the harvesting process, picking failures or accidental fruit
drops may occur. Considering these factors, this paper aims to propose a dynamic task
planning method suitable for multi-arm and multi-target harvesting scenarios.

3.2. Markov Game Model
3.2.1. State

The state space is defined by Sk =
(

G, wk, uj
k

)
, where G ∈ Rn×3 represents the

coordinates of the targets with respect to the base frame; each element in wk ∈ Nn is an
integer of 0 to 9, representing the state of the target at step k: 0 indicates that this target
has not been visited yet, 1~4 indicates that a target has been visited and picked by Arm-
1~Arm-4 respectively, 5~8 indicates that a target has been visited by an arm but failed, and
9 denotes an invalid target. uj

k =
[
uj

k,1, uj
k,2, uj

k,3

]
is a vector that contains the state variables

of group j in step k, where uj
k,1 is the previous target that group j visited using the arm

represented by uj
k,2 and uj

k,3 is the operational time of agent j from the start to the end of
step k − 1.

3.2.2. Action

The action for agent j at step k is defined as aj =
[

aj
1, aj

2

]
, where aj

1 is the index of the

target to harvest, ranging from 1 to n and aj
2 denotes which arm to use to visit the target aj

1,
where 0 represents the left arm and 1 represents the right arm. The action spaces of the two
agents are identical.

3.2.3. State Transition

We divide the agents’ picking process into several intervals, with the total operational
time of the agents being the sum of these intervals. The sequential actions of the robotic



Horticulturae 2025, 11, 88 9 of 20

arms during picking include approach, extend, grasp, retract, and place, denoted as A,
E, G, R, and P, respectively. Since the AEG stages occupy the shared degrees of freedom
of the robotic arms; two arms within the same group cannot execute the AEG stages
simultaneously. However, the AEG and RP stages can be executed concurrently. By
partitioning the robotic arms’ actions into two stages—AEG and RP—we enhance efficiency
and minimize idle time.

At each state transition point, each robotic arm can choose from three action sets: AEG,
RP, and idle, where idle represents the inactive state. For the two robotic arms within
an agent group, there are theoretically nine possible combinations. However, due to the
specific characteristics of this robot, scenarios where both arms simultaneously execute
AEG or both execute RP do not occur. Therefore, there are seven valid action combinations.
Each interval can thus be described by one of the following seven combinations: (AEG, RP),
(RP, AEG), (idle, RP), (RP, idle), (idle, AEG), (AEG, idle), and (idle, idle), as illustrated in
Figure 3.
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In the figure, transitions between states are denoted by T1 to T17. For example, in transition
T1, during the previous interval, the left arm sequentially completed the approach–extend
–grasp (AEG) actions, while the right arm executed the retract–place (RP) actions. In the
subsequent interval, the left arm performed the RP actions, and the right arm remained
idle. In transition T10, the left arm executed the RP actions in the previous interval, while
the right arm was idle. In the next interval, the left arm completed the AEG actions, while
the right arm continued to remain idle. Another example is transition T14: the left arm
completed the grasping action in the previous interval and retracted in the next interval.
Meanwhile, due to interference, the right arm remained idle, while the left arm executed
the AEG actions. When the left arm retracted, the longitudinal joint coupled with the left
arm was released and became available for the right arm’s AEG movement. This represents
a typical state transition involving alternating operations between the left and right arms.

3.2.4. Reward Function

The design of the reward function leverages several key factors: the time each agent
spends executing actions, the exploratory information obtained from each agent’s attempts
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to grasp the target fruits, and the conflict information arising between agents. The reward is
structured to suppress undesirable scenarios while encouraging beneficial actions, thereby
guiding the policy towards the optimization of our objectives. Specifically, since the
primary goal of this study is to reduce the total operational time required for harvesting,
time cost serves as a crucial component in the reward function design. By incorporating
these elements, the reward function aims to balance efficiency and coordination among
agents, ultimately steering the reinforcement learning policy towards minimizing the
overall harvesting duration.

Additionally, let the exploration reward function be denoted as ri
exp. If an agent

attempts to grasp a new fruit target, a positive reward ri
exp = 0.05 is provided, which can be

obtained by observing the changes in the fruit distribution information; otherwise, ri
exp = 0.

If an agent attempts to grasp a new fruit target, a positive reward ri
exp = 0.05 is provided,

which can be obtained by observing the changes in the fruit distribution information;
otherwise, ri

exp = 0.
It should be noted that in this case, conflicts refer solely to conflicts between different

agents and do not include conflicts within a single agent between its left and right arms.
This is because assigning the same target to both arms within a single agent does not result
in additional time costs. Since the left and right arms operate alternately, when assigned
the same target, the two arms sequentially grasp the same fruit instead of waiting for each
other. The conflict reward primarily considers situations where agents wait for each other.
The time wasted due to the sequential grasping of the same target by the left and right
arms of an agent is accounted for in the overall operational time reward.

Furthermore, let the time reward function be denoted as ri
tk+1
k

. The working time of an

agent comprises the time spent executing actions. The time reward can be expressed as:

ri
time =


ri

tAGE
if Tk+1

k = T1, T2, T3, T4, T8, T9, T13, T14,
ri

tRP
if Tk+1

k = T5, T6, T7, T10, T11, T12

ri
tidle

if Tk+1
k = T15, T16, T17

(6)

where ri
tAGE

represents the time required for agent III to complete the approach, extend, and
grasp actions, ri

tRP
denotes the time required for agent III to complete the retract and place

actions, and ri
tidle

indicates the time agent III spends in an idle waiting state. Furthermore,
the overall reward function ri(sk, ai

k
)

can be defined as:

ri(sk, ai
k) =


−50 if k = kmax

100 if all targets are harvested
ri

exp + ri
con f 1 + ri

time

(7)

where ri(sk, ai
k
)

represents the reward received by agent I at time step k when executing
action ai

k in environment state sk, which denotes the preset maximum number of decision
steps. For instance, if k exceeds 2000, it is considered that the agent may be engaged in
meaningless exploration, and the current episode is forcibly terminated with a reward of
−50.

Proximal policy optimization (PPO) is a model-free method with online on-policy
and policy gradient reinforcement. It works in both discrete and continuous action spaces,
which can be used in our environment. At the same time, compared with the Deep Q-
Learning (DQN) method, which is also used in a discrete environment, PPO is more stable
and efficient. PPO is an actor-critic type DRL algorithm; so, there are two networks in PPO:
the policy network πθ and the value network Vϕ. πθ is the actor network; in other words,
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it maps the observations received by the agents to the actions and is parameterized by θ,
which is obtained as follows:

θnew = arg max
θ

E
s,a∼πθold

[L(s, a, θold, θ)] (8)

where θold represents the old parameterized policy. L is given by

L(s, a, θold, θ) = min(ρk Aθold
k , clip(ρk, 1 − ϵ, 1 + ϵ)Aθold

k ) (9)

where ρk =
πθ(ak ,sk)

πθold
(ak ,sk)

is a ratio coefficient between the updated policy and the old one and

π is a small hyperparameter, which controls the policy deviation that is allowed. Aθold
k is

the advantage function and can be calculated as follows:

Aθold
k = E

sk+1 : ∞
ak : ∞

[∑∞
l=0 γlrk+l ]− Vθold(sk) (10)

In Equation (9), the clip function is to keep ρk in the range [1 − ϵ, 1 + ϵ], which can be
interpreted as a regularizer of the policy network. So, Equation (9) can be reduced to the
value of π(ak | sk) and will be increased during the update process if Aθold ≥ 0. However,
to prevent the policy from being over-updated, ρk will be forced to stay at 1 + ϵ by the
min operator. Similarly, the minimum of ρk will be enforced to 1 − ϵ by the clip function if
Aθold < 0.

L(s, a, θold, θ) =

{
min(ρk, 1 + ϵ)Aθold

k , Aθold
k ≥ 0

max(ρk, 1 − ϵ)Aθold
k , Aθold

k < 0
(11)

Another network that needs to be trained is the value function network, which is
updated through the following regression:

ϕ = argmin
ϕ

[(
Vϕ − Rk

)2,
(
clip

(
Vϕ, Vϕold − ϵ, Vϕold + ϵ

)
− Rk

)2
]

(12)

where rk = ∑k′−k rk(sk′ , ak′ , sk′+1) is the reward.

4. Experiential Results
4.1. Model Optimization and Training

We utilized Stable-Baselines3, a set of reliable implementations of reinforcement learn-
ing algorithms in PyTorch, to train and validate our algorithm [37]. In Stable-Baselines3, the
policy of PPO is typically composed of a set of neural networks. These networks achieve
deep feature extraction of the state space through multiple fully connected layers and map
the extracted features to the action space. Therefore, the core of policy optimization lies in
the training process of the neural networks.

4.1.1. Self-Attention

The feature extraction of the state space usually relies on multi-layer and fully con-
nected networks. These networks can map input states to the action space, but their
limitation lies in the difficulty of capturing the intrinsic connections between multiple
related features in the input. To address this issue, self-attention has been introduced into
DRL models.

The core advantage of the self-attention mechanism is its ability to enable the model to
recognize and focus on the relationships between different parts of the input sequence. This
mechanism allows the model to not only capture local features but also effectively integrate
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global contextual information. In this way, the model can make more comprehensive and
accurate judgments during the decision-making process.

In our study, self-attention meticulously computes the correlation matrix that de-
lineates the weight relationships among distinct features. Subsequently, it employs this
correlation matrix to encode the features, thereby assigning significance to each feature
based on its interaction with others within the dataset.

The mathematical function of this process can be succinctly articulated as follows:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (13)

where Q, K, and V represent the query, key, and value matrices, respectively. The division
by

√
dk is a normalization step to stabilize the gradients during training, with

√
dk being

the dimension of the key vectors. The softmax function ensures that the output weights
add up to one, facilitating the interpretation of the attention weights as probabilities.

Si =
ei

∑
j

ej (14)

where ei refers to the exponential operation on the i-th element. In the function (13), Q
multiplied by K results in the internal correlation of the features; then, the attention scores
between the input features are obtained through the softmax function, and finally, the
attention scores are multiplied by the value matrix V to obtain the final output weighted by
the attention scores.

We incorporated a self-attention module into the PPO feature extraction network
according to the aforementioned paradigm, as shown in Figure 4. First, the state space
is flattened into a vector, which is then passed through a fully connected layer and an
activation function Selu, and the output feature vector is sent to the self-attention module.
Subsequently, the attention vector goes through another fully connected layer and an
activation function to complete feature extraction. Finally, a fully connected function is
used to map the features to the action vector space and the value vector space, respectively.
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4.1.2. Training Progress

We created a Python-based harvest simulator to streamline model training. This
simulator replicates the harvesting trajectories of robot groups, including target locations,
arm trajectories, and collaborative actions like avoidance, waiting, and competition. This
simulator is integrated into the environment to execute agent-published actions, alter
the environment state, and facilitate dynamic interaction. The multi-agent task planning
method using PPO is detailed in Algorithm 1, which can be used to obtain a picking
sequence. Subsequently, a harvesting time is obtained by the simulator using the sequence,
which is then fed back into Algorithm 1 as an input to the reward function for policy
optimization. This iteration trains the task planning strategy.

In addition, a centralized training and centralized execution (CTCE) strategy is used
for our policy network due to the global nature of the environment states and the shared



Horticulturae 2025, 11, 88 13 of 20

actions of the agents. To ensure training convergence, a gradual training approach is
employed. Initially, we acquire a basic pre-trained model by training it for 1e8 steps in
an environment with a static layout containing 50 targets. The training process, depicted
in Figure 5, shows that the cumulative rewards and total steps per episode stabilize after
training. Subsequently, we train for an additional 1e6 steps with varying target numbers.
Finally, we randomly adjust the target count and environment layout at each reset, and the
final policy network model is obtained after 1e8 training steps. All training steps are set
according to the strategy model’s ability to converge sufficiently.
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We verified the performance of our algorithm through the following steps. First, our
method was trained using a varied number of layouts generated randomly, ranging from 20
to 50, in the working space. Then, our method was evaluated by comparing it to a method
that uses only four layouts. Each layout was run five times to ensure the reliability of the
results. Finally, a real-world environment was built to evaluate our method and further
verify its stability.

Algorithm 1 Multi-arm Task Planning and Cooperative Control

Require: the location of each target
1: Initialize the layout
2: Initialize the state tuple Sk based on the layout
3: Initialize the policy π

4: Initialize the number of targets n
5: while Ω ≤ n do
6: if the status of Group-U is waiting, then
7: Have bU

k decoded by the action aU
k received from π

8: if bU
k is unavailable, then

9: Pass
10: else
11: Execute picking bU

k using Group-U
12: Set the status of Group-U as working
13: end if
14: else
15: if the status of Group-D is waiting, then
16: Have bD

k decoded by the action aD
k received from π
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Algorithm 1 Conts.

17: if bD
k is unavailable, then

18: Pass
19: else
20: Execute picking bD

k using Group-D
21: Set the status of Group-D as working
22: end if
23: end if
24: end if
25: if Group-U has finished picking, then
26: Calculate tU

k
27: Set the status of Group-U as waiting
28: end if
29: if Group-U has finished picking, then
30: Calculate tD

k
31: Set the status of Group-D as waiting
32: end if
33: Update rk by tU

k and tD
k

34: Update Sk

35: Update π by Sk and rk

36: Update k and Ω

37: end while

4.2. Simulation of the PPO Framework

Our method was compared to [32], which is based on swarm intelligence heuristic
search. Both methods were implemented in Python and run on a computer with an AMD
Ryzen R5 2600 processor, 16 GB RAM, and Windows 10 operating system.

The parameters are listed in Table 1, where “lr” denotes the learning rate. Additionally,
the parameters used in [32] were population quantity, iteration, crossover ratio, and muta-
tion ratio, which were set to 50, 500, 0.8, and 0.3, respectively. In this context, the values
of parameters ‘γ’ and ‘lr’ were determined through testing to achieve good convergence
performance.

Table 1. The profile of parameters for the multi-arm harvesting robot.

Parameter Value Parameter Value Parameter Value

vx 0.25 m/s vy 0.1 m/s vz 0.30 m/s
tgrasp 3 s tplace 2 s - -

γ 0.95 lr 0.0005 - -

4.2.1. Static Environment

We initiated our evaluation with simulations to assess the performance of the random
method, Tao’s proposed method [32], and our method across various static layouts. The
findings are summarized in Table 2.

The random planning method markedly underperformed compared to heuristic search
and reinforcement learning, suggesting the efficacy of optimization algorithms in task
scheduling. Reinforcement learning outperformed heuristic search on all metrics, showcas-
ing its superiority. Notably, reinforcement learning reduced execution time by 10.7% and
3.1% for the 25 and 50 layouts, respectively. This improvement may stem from heuristic
search’s susceptibility to local minima in these scenarios, resulting in suboptimal outcomes.
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The heuristic algorithm’s instability for these layouts was evident in its higher variance
compared to reinforcement learning across all layouts, highlighting its reduced robustness
to optimization variations.

Table 2. The results of the two methods in a static environment with different layouts.

Quantity
of Fruits Method Max.(s) Min.(s) Mean(s) Var. Calc.(s)

25
random 320.6 220.0 265.2 581.6 —

[32] 173.60 159.3 165.3 36.7 6.3
ours 164.5 150.8 156.7 33.5 1.0

50
random 591.1 449.1 535.1 1536.5 —

[32] 303.6 284.9 296.0 64.5 13.1
ours 291.2 279.8 286.2 22.7 1.16

Additionally, heuristic search proved to be more computationally intensive, and its
processing time increased nearly linearly with the number of layouts. In contrast, reinforce-
ment learning required significantly less computational time and remained unaffected by
the number of layouts. This efficiency is attributed to reinforcement learning’s capability to
optimize policies within an autonomous model, leading to more stable planning outcomes,
which is a significant advantage of this method.

4.2.2. Dynamic Environment

In the real-world harvesting environment, errors in fruit location and end-effector
slippage are inevitable, often necessitating multiple attempts to successfully pick a fruit.
We reflected this real-life scenario in our simulations to test the superiority of our method
in a dynamic situation; to achieve this, we used the same distributions but with fruits that
could require up to two attempts to be picked. Methods by Tao [32] and our method were
tested three times on each layout, and total running time, average visit time, and number
of missed targets were recorded. The results are detailed in Table 3.

Table 3. The results of the two methods in a dynamic environment with different layouts.

Quantity of
Fruits Round

Total Time (s) Average Time (s) Remaining Fruits
[32] Ours [32] Ours [32] Ours

25
I 153.4 189.3 6.1 6.5 4 0
II 181.2 185.2 7.2 6.4 4 0
III 166.7 193.9 6.7 6.7 4 0

50
I 283.3 335.8 5.7 5.7 9 1
II 294.4 299.5 5.9 5.1 9 2
III 304.9 318.8 6.1 5.4 9 2

The heuristic search follows a fixed harvest sequence and does not account for picking
failures, leading to fruits being overlooked. In contrast, reinforcement learning’s dynamic
decision-making allows it to adapt to such failures. When a pick fails, the target remains
unpicked and another arm is dispatched according to the policy, significantly reducing the
number of missed picks. Our results underscore the superiority of reinforcement learning
over heuristic search. Notably, most fruits missed on the first attempt were successfully
picked on the second try with reinforcement learning.

Additionally, due to the occurrence of repeated picking, the total picking time is no
longer the sole metric for evaluating the performance of task planning algorithms. In terms
of average single visit time, our method is generally superior to that of [32], although there
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are instances within a scale of 25 fruits where our method lags behind that of [32]. This is
partly because our method’s decision-making capability is superior to that of [32], and on
the other hand, the heuristic search of [32] requires recalculation for each planning, with
computation time increasing linearly as the number of targets grows. Regardless of changes
in target scale, our method, based on the reinforcement learning paradigm, can form a
stable planning strategy through training, thus significantly reducing computational load.
As the scale of picking increases, the advantage of our method over that of [32] becomes
more pronounced.

Furthermore, the paper presents the joint trajectories of the four mechanical arm ends
in the simulation tests, as shown in Figure 6. It can be observed that the trajectories of
the ends are relatively reasonable after being scheduled by the reinforcement learning
strategy, with no large spans and shorter trajectory lengths. In contrast, the trajectory
quality optimized by [32] is relatively poor, exhibiting some counterintuitive detours. This
is also visually manifested as relatively messy. Under 25 targets, the gap between the two
algorithms may not be significant, but when considering a larger scale of fruit distribution,
such as 50 targets, there is a substantial performance gap between our method and that
of [32]. These findings further highlight the heuristic search’s lack of robustness.

Horticulturae 2025, 11, x FOR PEER REVIEW 16 of 20 
 

 

III 166.7 193.9 6.7 6.7 4 0 

50 
I 283.3 335.8 5.7 5.7 9 1 
II 294.4 299.5 5.9 5.1 9 2 
III 304.9 318.8 6.1 5.4 9 2 

The heuristic search follows a fixed harvest sequence and does not account for 
picking failures, leading to fruits being overlooked. In contrast, reinforcement learning’s 
dynamic decision-making allows it to adapt to such failures. When a pick fails, the target 
remains unpicked and another arm is dispatched according to the policy, significantly 
reducing the number of missed picks. Our results underscore the superiority of 
reinforcement learning over heuristic search. Notably, most fruits missed on the first 
attempt were successfully picked on the second try with reinforcement learning. 

Additionally, due to the occurrence of repeated picking, the total picking time is no 
longer the sole metric for evaluating the performance of task planning algorithms. In 
terms of average single visit time, our method is generally superior to that of [32], 
although there are instances within a scale of 25 fruits where our method lags behind that 
of [32]. This is partly because our method’s decision-making capability is superior to that 
of [32], and on the other hand, the heuristic search of [32] requires recalculation for each 
planning, with computation time increasing linearly as the number of targets grows. 
Regardless of changes in target scale, our method, based on the reinforcement learning 
paradigm, can form a stable planning strategy through training, thus significantly 
reducing computational load. As the scale of picking increases, the advantage of our 
method over that of [32] becomes more pronounced. 

Furthermore, the paper presents the joint trajectories of the four mechanical arm ends 
in the simulation tests, as shown in Figure 6. It can be observed that the trajectories of the 
ends are relatively reasonable after being scheduled by the reinforcement learning 
strategy, with no large spans and shorter trajectory lengths. In contrast, the trajectory 
quality optimized by [32] is relatively poor, exhibiting some counterintuitive detours. This 
is also visually manifested as relatively messy. Under 25 targets, the gap between the two 
algorithms may not be significant, but when considering a larger scale of fruit distribution, 
such as 50 targets, there is a substantial performance gap between our method and that of 
[32]. These findings further highlight the heuristic search’s lack of robustness. 

(a) (b) 

Horticulturae 2025, 11, x FOR PEER REVIEW 17 of 20 
 

 

(c) (d) 

Figure 6. A deep reinforcement learning network with self-attention: (a) [32] under 25 fruits; (b) 

ours under 25 fruits; (c) [32] under 50 fruits; and (d) ours under 50 fruits. 

Table 4 offers a detailed breakdown of the second round of 25 targets. It shows that 
the heuristic search-based approach had 13 instances where picking took over 10 s, mainly 
in the middle segment. This suggests frequent robotic arm interference, leading to 
significant waiting times. In contrast, our method’s scheduling resulted in significantly 
fewer arm interference, with only six instances exceeding 10 s. Our method also has the 
capability to reassign arms in the event of a failed grasp, ensuring successful picking. Our 
method increased attempts to pick fruits by two but still managed to reduce the total 
operational time by 48.2 s compared to [32]. This fully validates the superiority of our 
strategy over heuristic search and demonstrates its fault tolerance. 

Table 4. Detailed results of the second round of the real-world environment test. 

Number of Fruits 
Arm of Picking Picking Time (s) 

[32] Ours [32] Ours 
1 1 2 8.2 8.4 
2 3 3 8.6 12.7 
3 2 1 7.4 7.2 
4 4 4 8.1 8.8 
5 1 2 7.6 8.0 
6 2 2 7.9 8.3 
7 2 1 8.7 8.1 
8 3 3 14.6 16.2 
9 1 2 14.7 8.5 
10 4 1 12.8 8.4 
11 2 4 15.3 17.1 
12 1 2 16.4 16.3 
13 3 3 15.2 10.8 
14 1 4 13.8 8.9 
15 2 1 17.1 8.7 
16 4 3 10.8 16.9 
17 2 2 8.6 8.7 
18 1 1 8.2 7.6 
19 3 2 15.3 7.8 
20 2 1 14.2 6.9 
21 1 2 7.6 7.2 
22 3 1 18.4 7.5 
23 4 4 8.3 20.7 

Figure 6. A deep reinforcement learning network with self-attention: (a) [32] under 25 fruits; (b) ours
under 25 fruits; (c) [32] under 50 fruits; and (d) ours under 50 fruits.

Table 4 offers a detailed breakdown of the second round of 25 targets. It shows that the
heuristic search-based approach had 13 instances where picking took over 10 s, mainly in
the middle segment. This suggests frequent robotic arm interference, leading to significant
waiting times. In contrast, our method’s scheduling resulted in significantly fewer arm
interference, with only six instances exceeding 10 s. Our method also has the capability
to reassign arms in the event of a failed grasp, ensuring successful picking. Our method



Horticulturae 2025, 11, 88 17 of 20

increased attempts to pick fruits by two but still managed to reduce the total operational
time by 48.2 s compared to [32]. This fully validates the superiority of our strategy over
heuristic search and demonstrates its fault tolerance.

Table 4. Detailed results of the second round of the real-world environment test.

Number of
Fruits

Arm of Picking Picking Time (s)
[32] Ours [32] Ours

1 1 2 8.2 8.4
2 3 3 8.6 12.7
3 2 1 7.4 7.2
4 4 4 8.1 8.8
5 1 2 7.6 8.0
6 2 2 7.9 8.3
7 2 1 8.7 8.1
8 3 3 14.6 16.2
9 1 2 14.7 8.5

10 4 1 12.8 8.4
11 2 4 15.3 17.1
12 1 2 16.4 16.3
13 3 3 15.2 10.8
14 1 4 13.8 8.9
15 2 1 17.1 8.7
16 4 3 10.8 16.9
17 2 2 8.6 8.7
18 1 1 8.2 7.6
19 3 2 15.3 7.8
20 2 1 14.2 6.9
21 1 2 7.6 7.2
22 3 1 18.4 7.5
23 4 4 8.3 20.7
24 3 1 8.1 9.3
25 2 2 9.2 8.1

1 (repeat) - 1 - 7.8
3 (repeat) - 2 - 7.4

13 (repeat) - 4 - 8.5
24 (repeat) - 2 - 7.9

4.2.3. Real-Word Testing

Finally, we saved the aforementioned simulation trajectories and reproduced the
harvesting process on our robot to test the effectiveness and energy consumption of the
algorithm when running it on a real robot. We recorded the energy consumption from the
start to the end of each harvest task using a power cost; the results are as shown in Table 5:

Table 5. The results of power costs for the two methods applied to the robot.

Quantity of
Fruits Method

Power Cost (Wh)
Round I Round II Round III

25
[32] 76.7 88.9 80.3

Ours 78.9 86.4 80.1

50
[32] 146.3 143.4 161.2

Ours 142.6 133.1 142.0

It can be observed that although our method generally requires a longer working time
than the method of [32] due to the presence of secondary grasping, it has better energy
consumption. This may be because the method of [32] spends more time on mechanical
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arm mutual avoidance, resulting in unnecessary energy expenditure, while our method has
a longer duration of parallel operation, leading to less energy loss. This further illustrates
the superiority of our method. Additionally, the simulation trajectories were perfectly
reproduced on the robot, with no physical bugs occurring.

However, due to the limitations in recognition and positioning accuracy, there are still
significant challenges in achieving complete perception, planning, and picking, which will
be the focus of our subsequent research.

5. Conclusions
This paper explores the application of deep reinforcement learning to task scheduling

for multi-arm harvesting robots. We examine the parallel, interference, and competitive
behaviors exhibited by each arm during the harvesting process in a robot with coupled
joints. We break down the fruit-picking process into five distinct movements and develop a
formula to calculate their operational time. We then frame the task scheduling problem as a
sequential decision-making process using a Markov game model. Our proposed framework
is based on the deep reinforcement learning technique Proximal Policy Optimization (PPO)
and incorporates a self-attention mechanism into the state feature network, enabling the
model to converge rapidly.

Numerical simulations show that our method surpasses random search and heuris-
tic approaches in terms of execution time, stability, and computational cost. Moreover,
our method is capable of adapting to dynamic harvesting environments, affirming its
effectiveness, which increased performance by 6.9%. Overall, our approach enhances the
operational efficiency of multi-arm harvesting robots in complex scenarios. The results of
fruit detection have a significant impact on the application of our task planning algorithm in
real environments. Improving the accuracy of fruit recognition while mitigating the impact
of inaccurate fruit positioning is a major challenge, which we will consider in the future.
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