
Academic Editors: Chenglin Wang,

Lufeng Luo, Juntao Xiong and

Xiangjun Zou

Received: 12 December 2024

Revised: 18 January 2025

Accepted: 23 January 2025

Published: 26 January 2025

Citation: Gutiérrez-Castorena, E.V.;

Silva-Núñez, J.A.; Gaytán-Martínez,

F.D.; Encinia-Uribe, V.V.; Ramírez-

Gómez, G.A.; Olivares-Sáenz, E.

Evaluation of Statistical Models

of NDVI and Agronomic

Variables in a Protected Agriculture

System. Horticulturae 2025, 11, 131.

https://doi.org/10.3390/

horticulturae11020131

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Evaluation of Statistical Models of NDVI and Agronomic
Variables in a Protected Agriculture System
Edgar Vladimir Gutiérrez-Castorena * , Joseph Alejandro Silva-Núñez, Francia Deyanira Gaytán-Martínez,
Vicente Vidal Encinia-Uribe, Gustavo Andrés Ramírez-Gómez and Emilio Olivares-Sáenz

Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco I. Madero S/N, Ex. Hacienda el
Canadá, General Escobedo 66050, Mexico; joseph.silvanu@uanl.edu.mx (J.A.S.-N.);
francia.gaytanmrt@uanl.edu.mx (F.D.G.-M.); vicente.enciniaur@uanl.edu.mx (V.V.E.-U.);
gustavo.ramirezgmz@uanl.edu.mx (G.A.R.-G.); emilio.olivaressn@uanl.edu.mx (E.O.-S.)
* Correspondence: edgar.gutierrezcs@uanl.edu.mx

Abstract: Vegetable production in intensive protected agriculture systems has evolved due
to its intensity and economic importance. Sensors are increasingly common for decision-
making in crop management and control of environmental variables, obtaining optimal yields,
such as estimating vegetation indices. Innovation and technological advances in unmanned
vehicle platforms have improved spatial, spectral, and temporal resolution. However, in
protected agriculture systems, the use is limited due to the assumption of having controlled
environmental conditions for indeterminate vegetable production. Therefore, sequential
monitoring of NDVI is proposed during the 2022 and 2023 agricultural cycles using the Green
Seeker® sensor and agronomic variables. This has created a database to generate predictive
models of development and yield as a function of nutrient status. The results obtained indicate
high significance levels for the development and NDVI curves in all phenological stages;
in contrast to the yield predictive models, this is due to the maximum values (close to one)
recorded for NDVI inside the greenhouse in comparison to the yield prediction obtained from
the 18th week of harvest. Evaluating the models between NDVI and agronomic variables is not
an index that offers certainty in predicting yield in indeterminate crops in protected agriculture
production systems. This is due to the constant optimal development in response to controlled
environmental conditions, nutrient status, and water supply inside the greenhouse, without
the sustainability of yield, which decreases in the final stages of production until production
becomes economically unprofitable.

Keywords: Green Seeker®; predictive models; greenhouse; indeterminate crops

1. Introduction
Protected agriculture is an agricultural production technique that provides controlled

conditions of temperature, humidity, CO2 concentration, airflow, radiation, irrigation, and
nutritional status of the crop, avoiding physiological affectations due to environmental
adversities or attacks by pests and diseases, achieving optimal yields compared to air-
field production [1]. External and internal factors present a changing interrelationship in
a short time and region. Such is the case between the speed and direction of the wind
from outside and the temperature and relative humidity distributions inside due to the
internally forced airflow; the higher the flow, the lower the temperature and the higher the
relative humidity [2]. Alternatively, lowering indoor temperature by evaporative cooling
with forced ventilation provides optimal conditions at the cost of rapid deterioration in
ventilation systems [3] or the correct application of irrigation as the main factor affecting
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crop yield [4], understanding that yield is determined by the ability to accumulate dry
matter in organs, of which some factors have limited the production system due to poor
planning on agronomic management, soil, and water contamination, excessive use of syn-
thetic fertilizers, or economic implications mainly due to excessive energy consumption [5].
One of the main issues identified in the literature is the high cost of multispectral images
from satellite platforms, as well as their low capture frequency, which limits their use
in scenarios requiring a faster response, such as nutrient and irrigation management [6].
Furthermore, to date, few studies have employed direct NDVI measurements to quantify
the yield stability of common wheat, thereby constraining selection efficiency and our
understanding of specific phenotypic adaptations in the target environment [7].

To avoid production decreases, producers have implemented sequential monitoring
strategies for efficient water use, involving the nutritional status of the crop through the
application of synthetic fertilizers in irrigation [8], which has been modified from the type
of intensive agricultural production system considered high-tech [9], to obtain optimal
yields in each cycle, of which the economic is not a constraint. To this end, agronomic
management is being implemented with the use of remote sensing of digital images
on various observation platforms in unmanned aerial vehicles [10] with the purpose of
quantifying agronomic variables [11]. One of them is the radiation absorbed and reflected
by the cultivars at various wavelengths of the visible electromagnetic spectrum of the
RGB or near-infrared image [12]; other managements refer to the integral monitoring of
soil components [13], irrigation monitoring [14], or biophysical and biochemical changes,
which together provide results for the timely detection of nutritional anomalies in soil
development crops [15,16].

Five decades ago, digital sensors were developed and implemented to assess plant
cover, soil moisture, and surface radiant temperature as microclimatic variables [17] that,
through statistical analysis, can predict future values due to the initial characteristics of
the surface. Given the current technological development of sensors, the autonomous
recording of microenvironmental values has been implemented in a timely and specific
manner in the vegetable production system, in addition to implementing strategies in the
usual disease detection methods to reduce time and resources through automatic detection
as a complementary tool to determine crop health [18]. The goal is to generate greater
food production per unit of surface area, which the protected agriculture system takes for
granted by restricting and limiting entry with anti-aphid nets. However, these agronomic
management practices are neither unique nor exclusive. To this end, actions have been
established to promptly identify foliar chlorosis caused by some nutrient deficiencies in
plants in real time, which is essential to optimize the use of fertilizers [19]. Since obtaining
nutritional information in a standard assessment still faces challenges due to the difficulty
of identifying deficiencies in both species and environments, RGB image analysis processes
have been proposed from sensors on satellite platforms [20] and unmanned aerial vehicles
(UAVs) [21]. However, imaging technology to monitor specific phenotypic changes (from
leaf to canopy) related to plant feeding during development is limited, even more so in
obtaining adequate spectral information to track chemical components in plants directly.
References [19,22,23] point out that climatic variability influences accelerated crop growth,
resulting in differences in the different crop stages within the same productive cycle,
limiting yield estimation due to the wide range of NDVI values. Yield models based on
linear regressions that use NDVI as a predictor have been applied to crops such as rice and
wheat [24], as well as maize [25]. For these purposes, different types of sensors have been
employed, including those attached to unmanned vehicles (UAFs), mounted on tractors, or
used manually. The latter instrumentation allows continuous and point measurements in
the field, which provides information on soil and vegetation characteristics at less than 2 m
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distance with respect to the object [25], counteracting the drawbacks of sensors at higher
altitudes [26–28] used to perceive changes in land use or changes in vegetation through
vegetation indices [29] at different scales of observation [30].

Vegetation indices indicate the components of vegetation cover on the land surface [31]
or identify the crop type [11]. However, it depends on specific characteristics, such as sensor
tilt angle, focal length, measurement hours [32], or the type of sensor to obtain the digital
image and thus generate the statistical models. The Normalized Difference Vegetation
Index (NDVI) is the most used indicator because it denotes permutations in vegetation,
with better statistical certainty in relation to the nutrient status of the plant [33], with
different moisture gradients in unmanned vehicles [34], in great diversity and numerical
variability of crops [35], or even more, employed in the elaboration of thematic maps of
vegetative development graphically between the relationship of NDVI with agronomic
variables at ambient temperature [36].

Currently, there are proximity sensors with the ability to obtain NDVI without the
atmospheric drawbacks recorded by satellite platforms, such as Crop Circle ACS [37],
RapidScan CS-45 (Holland Scientific Inc., Lincoln, NE, USA) [38], and finally, Green
Seeker® [39,40], which solved the atmospheric interference problem [41] by possessing
their own emission source (light-emitting diodes) that replaces the radiation emitted by
the sun [42]. However, these, in turn, register limiting factors of focal distance, tilt angle,
and inference with other components of the study area, affecting the index with another
type of plant without economic importance [43] or environmental irradiation in specific
conditions [40], or coupling to mobile platforms [44] without affectation by the incidence
of artificial light [45].

On the other hand, in Mexico, 6.82% of the agricultural area (31,191.39 ha) is under
some protected agriculture system, of which 7300.00 ha are used for greenhouse tomato
cultivation, with an average annual yield of 1.35 M tons, of which the state of Nuevo
León contributes 25,000 tons distributed over 112 ha [46]. To this end, the private initia-
tive, state government, and small producers formalized alliances with the various sectors
and socioeconomic levels of the population, creating models of social entrepreneurship
called Agroparques horticultural with an entrepreneurial vision (Secretaria de Desarrollo
Agropecuario). This partnership has led to a steady expansion of the tomato production
system in protected agriculture systems directly in soil or semi-hydroponics.

The food production system through protected agriculture has constantly imple-
mented new and innovative technologies with multidisciplinary tools, artificial intelligence,
or the use of the internet to communicate neural networks in low-power areas [47], focusing
on intensive vegetable production with sustainable development. However, detecting and
timely correcting adverse factors such as soil moisture, water stress, ambient tempera-
ture, and light intensity involves specific studies and techniques of consecutive sequential
monitoring to obtain optimal production yields.

Some innovations carried out are aimed at determining crop evapotranspiration (ET),
with improvements in simulation accuracy to optimize fertigation and water resource
saving [48] to avoid water stress as a sign of root system functions [49], providing irrigation
doses and frequencies to obtain good yields and fruit quality [50], all focused on the sequen-
tial monitoring of nutrient uptake, phyto-sensing, smart technologies, and sustainability of
water and nutrient supply by crops [51] by using real-time sensors inside the greenhouse
at a commercial scale [52].

Monitoring the nutritional status of the indeterminate crop in real time with proxim-
ity sensors must include phenological phases and historical yield data, with the purpose
of establishing the end-of-harvest date due to the continuous vegetative development,
which is challenging to identify in the field with vegetation indices. Therefore, establish-
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ing it requires a previous instrumental calibration, specific conditions of the production
system, agronomic management, temperature, and humidity, as well as crop variety
because they reveal a leaf area index by the differential percentage of sunlight in the
photosynthetic capacity [53].

To this end, specific crop management techniques have been proposed, such as stem
management to influence plant physiology, yield, and fruit quality [54,55] by stopping the
indeterminate development of the plant or after a limited number of bunches by cutting
the terminal bud of the plant [56], or modification of the crop canopy architecture as a
central component of yield. Consequently, the present research proposes generating growth
and yield estimation models by correlating NDVI values (Green Seeker®) and agronomic
variables from the generation of databases at different stages of the indeterminate-type
tomato crop established in an intensive protected agriculture production system.

2. Materials and Methods
2.1. Study Area

The experiment was set up in a semi-automatic greenhouse of the Israelite type without
forced ventilation in an area of 1000 m2; the fertigation system consists of water flow doses
by tape. The soil preparation (Figure 1a) consists of semi-conventional tillage (subsoiling,
plowing, and harrowing every 3 agricultural cycles) and tillage with roto-cultivation; the
border is of the seedbed type; the varieties of indeterminate tomato (Solanum lycopersicum L.)
were ¨El Potosí¨ of the saladette type and ¨El Arameo¨ of the beef type (Figure 1b). Seed
propagation was carried out in propagation trays, with transplanting 35 days after sowing; the
seedling was treated with fungicide (carbendazim), insecticide (imidacloprid) and fertilizer
(propamocarb hydrochloride) in doses of 1, 1.5, and 1 mL L−1, respectively, as well as 1 g L−1

of 12-43-12 fertilizer (to the seedling root beef) in 10 L of water.
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2.2. Sampling Sites

The greenhouse was divided into 11 beds (1.80 m from center to center); each bed was
subdivided into nine sections (3.8 m long) with planting in double lines in the north–south
direction (Figure 1c). Systematic sampling was carried out, giving a point value of NDVI
central to the section, from the sweep of readings (plant line, section, and bed) obtaining
198 data per week, in addition to selecting plants at random per section to record agronomic
variables throughout the agricultural cycle, such as plant height (PH), leaf length (LL), leaf
width (LW), stem diameter (SD), number of clusters (NC), and number of fruits (NF).

2.3. Sensor Calibration

The sensor calibration consisted of monitoring the tomato crop established in a 5 m long
strip in a controlled environment by sweeping it every 15 days, with inputs of foliar fertilization
of macro- and microelements during the development stages until the first products.

According to the operator’s manual [57], maintaining measurement accuracy involves
keeping a consistent distance above the crop canopy to avoid variations in the fraction
of light reflected back to the sensor—this distance depends on the extent of the plant’s
coverage—positioning the sensor parallel to the ground and directly toward the crop to
ensure uniform light capture, avoiding any tilt or inclination, moving the sensor at a steady
pace to prevent abrupt changes that might affect data collection, recording the precise
location of each measurement for easier comparison at various growth stages, and using
supports when crops exceed the operator’s height to maintain the proper distance between
the sensor and the plant surface. In this last case, a reference point should be marked to
ensure consistency; for indeterminate tomato crops, a clearance of 60 cm is recommended.

2.4. Normalized Differential Index (NDVI)

A database was generated with the information obtained from NDVI values acquired
by the Green Seeker® TM optical sensor (Model HCS-100, 2012, Trimble Inc., Sunnyvale,
CA, USA). Systematic monitoring was initiated 5 days after transplanting, repeated every
7 days, and ended 211 days later (28 weeks). NDVI values were plotted on thematic maps
using the simple Kriging method of plant growth between beds and yield per section.

2.5. Statistical Analysis

The statistic used to evaluate the NDVI values of the tomato crop by beds, section, line,
and week of development after transplanting was an analysis of variance (ANOVA) and
Tukey’s comparison of means; in addition, a Pearson correlation matrix was performed to
estimate the relationship between the agronomic variables of the plant and the reflectivity
values. Finally, multiple regression predictive models were created to create a development
curve and a predictive yield model by beds using the values of the variables obtained
during sampling. The proposed multiple regression model with successive steps allows
only statistically significant variables to be included in the equation.

The base formula is as follows:

Yi = β0 + β1X1i + β2X2i + . . . + βnXni + ei i = 1, 2, . . . n

where

− Yi: dependent variable;
− β0: constant of the ordinate of origin;
− βn: partial coefficients in the regression;
− Xni: sampled agronomic variable (PH, LL, etc.);
− ei: uncontrolled error.
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2.6. Vegetation Index Thematic Maps

NDVI thematic maps were created using qGis v.3.38.2 software and the simple Kriging
method. This allows for calculating a specific point’s value based on neighboring points’
values. Each section is represented by the average NDVI value readings on a color scale
ranging from 0.0 (red color) to a shade of dark green (representing values close to 1),
through orange and yellow for average values (at 0.05 intervals). At the same time, yield
values were extracted in kg per week for each bed, being classified as no yield (no color),
0.0–39.9 kg (green), 40–79.9 kg (blue), and 80 kg (red). In addition, all values were used to
correlate NDVI with yield in both varieties of tomato.

3. Results and Discussion
3.1. Statistic Study

ANOVA statistics, Pearson’s correlation, and comparison of means were performed on
a database with 17,500 values of NDVI and agronomic variables obtained weekly (15 days
after transplanting) for 28 consecutive weeks during the entire agricultural cycle. The
analysis of variance shows the variability of NDVI values by bed, section, and week,
which denotes the heterogeneity of the plants even when maintained in an intensive
production system in a controlled environment and agronomic management, which reports
a statistically significant difference (p < 0.05) for both the beef and saladette tomato varieties
at the bed, section, and time (week of development) scales (Table 1).

Table 1. Analysis of variance (ANOVA) of NDVI in beef and saladette tomato by bed, section,
and week.

Beef Tomato Saladette Tomato

Components Sum of Squares Significance Sum of Squares Significance

Planting bed 1.370 0.000 1.059 0.000
Section 0.294 0.000 0.595 0.000
Week 11.387 0.000 10.653 0.000
Error 3.807 6.176
Total 16.857 18.532

Regarding the means by Tukey’s method, a statistically significant difference (p = 0.05)
was detected between beds, of which beds 1 and 2 in the beef tomato variety reported
high NDVI values that ranged between 0.71 and 0.69, respectively. Meanwhile, in saladette
tomato varieties, beds 8 and 11 had index values between 0.66 and 0.65, motivated by
higher soil moisture supplied in irrigations during the first weeks, which favored crop
development, contrary to the values recorded in bed 7, which registered a lower canopy
cover, and therefore, the index was lower during the experiment, with a value of around
0.57 (Table 2).

The comparison of NDVI means between sections does not show a statistically sig-
nificant difference (p = 0.05) (Table 3). However, the first three sections in both varieties
have the highest means in response to the greater amount of water available at the time of
irrigation due to a combination of factors, such as the slope of the land and water flow.

The correlation coefficient between variables (Table 4) evidenced the relationships
with influence on the NDVI value, which are plant length with R = 0.81 between the beef
variety tomato and R = 0.93 between the saladette variety tomato. With respect to the
leaf width variables, the value reported was R = 0.75 between the beef variety tomato and
R = 0.89 for the saladette variety tomato. This is due to the plant alveolus with greater
plant cover.
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Table 2. Comparison of NDVI means between beds using Tukey’s method.

Beef Tomato Saladette Tomato

Planting Bed N
Subset

Planting Bed N
Subset

a b c d a b c

6 252 0.61 a 7 252 0.57 a
5 252 0.65 b 10 252 0.62 b
3 252 0.66 b 9 252 0.63 b
4 252 0.67 bc 0.67 bc 11 208 0.65 bc 0.65 bc
2 252 0.69 cd 0.69 cd 8 252 0.66 c
1 252 0.71 d

Alpha = 0.05

Note: a, b, c, and d = subsets; N = number of samplings of each during the 28 weeks.

Table 3. Tukey mean comparison of NDVI.

Beef Tomato Saladette Tomato

Section N
Subset

Section N
Subset

a b c a b c

8 168 0.64 a 5 138 0.59 a
6 168 0.65 ab 0.65 ab 8 138 0.61 ab 0.61 ab
7 168 0.66 abc 0.66 abc 0.66 abc 6 138 0.61 ab 0.61 ab
9 168 0.67 abc 0.67 abc 0.67 abc 7 138 0.62 abc 0.62 abc 0.62 abc
5 168 0.67 abc 0.67 abc 0.67 abc 4 138 0.62 abc 0.62 abc 0.62 abc
4 168 0.67 abc 0.67 abc 0.67 abc 9 112 0.64 abc 0.64 abc 0.64 abc
1 168 0.68 abc 0.68 abc 0.68 abc 2 138 0.65 abc 0.65 abc
3 168 0.68 bc 0.68 bc 1 138 0.65 abc 0.65 abc
2 168 0.69 c 3 138 0.66 c

Alpha = 0.05

Note: a, b, c = subsets, N = number of samplings of each bed during the 28 weeks.

Table 4. Pearson correlation matrix between values of agronomic variables and NDVI for beef and
saladette tomato.

Beef Tomato Saladette Tomato

PH LL LW SD NC NF NDVI PH LL LW SD NC NF NDVI

PH
R 1 0.19 0.38 0.91 −0.22 −0.28 0.29 1 0.27 0.41 0.90 −0.16 −0.17 0.33

Sig. 0.31 0.04 0.00 0.33 0.21 0.12 0.08 0.02 0.00 0.24 0.23 0.04

LL
R 0.19 1 0.96 0.52 0.29 0.36 0.81 0.27 1 0.98 0.60 0.43 0.44 0.93

Sig. 0.31 0.00 0.00 0.21 0.11 0.00 0.08 0.00 0.00 0.03 0.03 0.00

LW
R 0.38 0.96 1 0.65 0.35 0.45 0.75 0.41 0.98 1 0.68 0.46 0.47 0.89

Sig. 0.04 0.00 0.00 0.12 0.04 0.00 0.02 0.00 0.00 0.02 0.02 0.00

SD
R 0.91 0.52 0.65 1 −0.00 −0.06 0.61 0.90 0.60 0.68 1 −0.27 −0.27 0.64

Sig. 0.00 0.00 0.00 0.98 0.79 0.00 0.00 0.00 0.00 0.12 0.12 0.00

NC
R −0.22 0.29 0.35 −0.00 1 0.95 0.66 −0.16 0.43 0.46 −0.27 1 0.96 0.69

Sig. 0.33 0.21 0.12 0.98 0.00 0.00 0.24 0.03 0.02 0.12 0.00 0.00

NF
R −0.28 0.36 0.45 −0.06 0.95 1 0.55 −0.17 0.44 0.47 −0.27 0.96 1 0.67

Sig. 0.21 0.11 0.04 0.79 0.00 0.01 0.23 0.03 0.02 0.12 0.00 0.00

NDVI
R 0.29 0.81 0.75 0.61 0.66 0.55 1 0.33 0.93 0.89 0.64 0.69 0.67 1

Sig. 0.12 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00

Note: PH = plant height (cm), LL = leaf length (cm), LW = leaf width (cm), SD = stem diameter (mm),
NC = number of clusters, NF = number of fruits, NDVI = Normalized Difference Vegetative Index, R = Pearson’s
correlation coefficient, and Sig = significance.

According to the correlation matrix, the agronomic variables show a moderate to
high correlation with the variables of interest (yield and NDVI). The correlation coefficient
indicates that, at least in the range of data analyzed, the assumption of multivariate linearity
is reasonable and allows a more straightforward interpretation of the effects of each variable
on the responses of interest. Likewise, using linear models implies coefficient βis that
represent the direct marginal effect of each independent variable, avoiding overfitting
and reducing complexity, which translates into a parsimonious approach. However, if
subsequent studies detect that the relationship between the variables is not strictly linear, it
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would be convenient to test other types of models (non-linear) or more flexible statistical
models to determine whether the conclusions are still valid in these cases.

To use the Pearson correlation coefficient, one must first check whether there is a linear
relationship between the independent and dependent variables. As noted by [58], there is
evidence of a significant linear relationship between NDVI and yield (R2 = 0.78), which
supports the use of this coefficient in these cases. The Pearson coefficient is used precisely
to verify this linear relationship, as seen when relating NDVI with PH, LL, LW, SD, NC,
and NF, obtaining moderate to high correlation values (Table 4). However, when yield is
considered an independent variable, the correlation with the covariates is more moderate,
suggesting the need to evaluate whether this linear approach is the most appropriate in
this case or whether another analysis method should be applied.

3.2. Regression Models

Linear multiple regression models with successive steps were obtained in groups of
consecutive weeks, the vegetative stage between weeks 1 and 8, and the reproductive stage
between weeks 9 and 28. Models were created to predict and project weekly yields per bed,
using the statistically significant variables for each variety. These models are represented
by variety as follows.

3.2.1. Beef Tomato

The model obtained for the beef variety has R2 values of 0.982 between the first and
eighth weeks (Figure 2). In contrast, for the following weeks (between 9 and 28) (Figure 3),
the model yielded a coefficient of determination of 0.445, which indicates the complexity
of predicting reproductive stage development based on the agronomic variables used.
Generally, higher correlation values are observed when sensors are used in UAVs since
they can cover larger areas and avoid these types of factors [21].
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However, the coefficient of determination is relatively low at some stages of the model.
For example, for beef tomatoes between weeks 9 and 28, the R2 is 0.445, which indicates a
limited predictive capacity. In addition, the article does not compare this model with other
regression models to validate its suitability.
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A value similar to that described by [59] was found using other, more complex models
on aerial images of NDVI and agronomic variables to increase the coefficient, such as
random forest, ridge regression, and support vector machines, 0.08 to 0.45, or the growth
curves of the different organs of the tomato plant reported by [60] that were generated from
growth analysis, finding three well-defined phases: an exponential one in the first four
weeks after transplanting, a linear one from the fourth week, and a final decreasing trend
when crop growth stopped, similar to the vegetative development found. The coefficients
obtained for the equation corresponding to the beef tomato are shown in Table 5.

Table 5. Unstandardized coefficients between weeks for the variety of beef tomato.

Beef Tomato

Weeks 1–8 Weeks 9–28

Model
Non-Standardized Coefficients

t Sig. Model
Non-Standardized Coefficients

t Sig.
B B

(Constant) 0.086486 2.142 0.085 (Constant) 0.576650 19.296 0.000
Week −0.025659 −2.609 0.048 NC 0.014973 3.797 0.001

SD 0.071309 8.632 0.000
Independent variable: NDVI

Note: Week = week number, SD = stem diameter (mm), NC = number of clusters, t = calculated t, and
Sig = significance.

The statistical model obtained for the NDVI is presented in Equation (1) below:

NDVI (weeks 1–8) = 0.086486 + (−0.025659 × WEEK) + (0.071309 × SD) (1)

where

− WEEK = number of weeks after transplanting;
− SD = stem diameter.

The statistical model obtained for the NDVI between weeks 9 and 28 based on the
number of clusters is represented in the following equation:

NDVI (weeks 9–28) = 0.576650 + (0.014973 × NC) (2)

where

− NC = number of clusters.

The agronomic variable stem diameter had a statistically significant difference with
the number of weeks in Equation 1. This corresponds to the vegetative stage between
the first and eighth weeks, showing a high degree of correlation (R2 = 0.982), which
indicates a high predictive value of the model during the first stage of the crop. This
phase was highlighted by the pronounced increase in the NDVI, which started with values
of NDVI = 0.32, increasing to its maximum point in the eighth week with a value of
NDVI = 0.74, according to values from the Green Seeker® sensor. The maximum NDVI
value was in the seventh week, with a value of NDVI = 0.75, with only a difference of 0.01
index points.

From the ninth week after transplanting, the NR variable presented a statistically
significant difference compared to the other variables due to its correlation with yield.
However, the model presented a decrease in its coefficient of determination R2= 0.445, as
represented in Equation 2; this indicates the complexity of predicting plant development
during the reproductive stage, according to the model created. However, the coincidence of
the predictions of the generated model with the real values of NDVI obtained from Green
Seeker® is observed (Figure 3).
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3.2.2. Saladette Tomato

The models for the saladette variety had a coefficient of determination of 0.974 between
the first and eighth weeks, also showing a great adjustment of the variable to the equation.
The following model yielded a coefficient of determination of 0.764 between the ninth and
twentieth weeks, showing an improvement with respect to the formula used in the same
period of development in the beef tomato. The coefficients obtained for both equations
corresponding to the beef tomato are presented in Table 6.

Table 6. Coefficients of determination for tomato variety saladette.

Saladette Tomato

Model
Non-Standardized Coefficients

t Sig. Model
Non-Standardized Coefficients

t Sig.
B B

(Constant) 0.096468 2.933 0.026 (Constant) 0.315427 6.427 0.000
SD 0.056048 15.006 0.000 LL 0.004771 4.514 0.000

NT 0.012435 3.386 0.004

Note: Dependent variable: NDVI; SD = stem diameter (mm), LL = leaf length, t = calculated t, and
Sig = significance.

The statistical model obtained for the NDVI is presented in the following equation:

NDVI = 0.096468 + (0.056048 × SD) (3)

where

− SD = stem diameter.

Meanwhile, the statistical model obtained for the NDVI between weeks 9 and 28,
based on leaf length and number of clusters, is represented by the following equation:

NDVI = 0.315427 + (0.004771 × LL) + (0.012435 × NC) (4)

where

− LL = leaf length;
− NC = number of clusters.

Equation (3) presents a high coefficient of determination with R2 = 0.974, demonstrat-
ing a great predictive capacity. In the case of the beef variety tomato, it can be observed
that, starting from NDVI values of 0.29, it reaches a value with a maximum point of 0.72, as
recorded by the Green Seeker® sensor and the predictive mathematical model, marking the
end of this stage and the maximum point of vegetative development.

From week 9 onwards, the crop began to develop, reaching NDVI values ranging from
0.66 to 0.70, indicating that vegetative development of the plant was no longer a priority.
The predictor equation generated at this stage obtained a coefficient of determination of
R2 = 0.764 using the NR variable, and unlike its equivalent in beef tomato, LH acted as
a statistically significant variable. The curves generated based on the equations showed
almost identical development to the model based on Green Seeker® sensor readings,
demonstrating that the sensor could be used for development prediction in subsequent
cycles. Multiple regression models were used to predict the yield of the two tomato varieties
(beef and saladette tomato) using NDVI and the measured agronomic variables; only the
variables that showed statistical significance were included in the equations.

With respect to the beef tomato, a statistically significant model was obtained (p = 0.95)
at a level of α = 0.05 and a coefficient of R2 = 0.397, which indicates a 39.7% explanation
of the variation in Y given by the values of X, with the remaining 61% of the variation in



Horticulturae 2025, 11, 131 11 of 20

production given by other factors. The variables that are not included in this model are not
necessarily inefficient for the calculation; however, they do not provide more information
for the estimation, so they are discarded.

The model obtained for the performance prediction was as follows:

Yield = 40.810 + (0.144 × PH) + (−1.663 × LL) + (1.842 × NF) (5)

where

− PH = plant height;
− LL = Leaf length;
− NF = number of fruits.

3.2.3. Saladette Tomato Yield

The saladette tomato generated a statistically significant relationship (p = 0.95) at
a level of α = 0.05 and a coefficient of R2 = 0.265, indicating a 26.5% explanation of the
variation in Y given by the values of X, with the remaining 73.5% of the variation in
production given by other factors not included in the model, as was the case with the
previous model.

The model obtained for performance prediction was as follows:

Yield = −130.8 + (0.249 × PH) + (1.478 × LW) (6)

where

− PH = plant height;
− LW = leaf width.

The accuracy of the model is low compared to other models [61] when using similar
variables (number of fruits) with accuracies ranging from 0.7 to 0.8; however, the results
show possible outliers and a very high variance, which agrees with the values of the metrics
for Equations (5) and (6). Likewise, the models based on the NDVI obtain results with low
correlations (0.44) for yield (kg/plant) [62], with both equations discarding the NDVI due
to the low explanation of the variance of the yield (Table 7).

Table 7. Performance model accuracy metrics.

Variety MAE MSE RMSE R2

Beef 21.2 817 28.6 0.397
Saladette 15.8 462 21.5 0.265

3.3. Thematic NDVI and Yield Maps

The thematic maps generated by the simple Kriging model through the exploratory
analysis of data distribution indicate a normal distribution of the information captured
by the sensor and agronomic variables, corroborating the choice of Kriging as a method
for point data interpolation since it minimizes the error variance, using a weighted linear
combination of the data similar to that reported by [63]. This is due to the large number of
sampling points captured and the spatial distribution of them within the greenhouse, and
the model minimized the variance error.

The maps generated show how the vegetation index increases as the weeks go by,
reaching its peak in week 8 (Figure 4). The Green Seeker® sensor has been considered
a promising tool for predicting yield in various crops, especially in grain crops such
as wheat [33]. It also obtained a high level of correlation with the significant variables
for each model during the first weeks of the tomato crop. Therefore, its use allows
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for predicting vegetative development and assessing nutritional status in real time,
as proposed by [64]. As [65] points out, the Green Seeker sensor is very useful for
estimating biomass during the vegetative stage of crops, which explains its effectiveness
in modeling that phase. Nevertheless, in this study, the model developed for calculating
yield in both varieties does not include NDVI as a statistically significant variable,
indicating that it does not have much relevance in the equation for estimating the yield
of indeterminate-type tomatoes. This difference in results is likely because most of
the studies for yield calculation have been carried out on determinate crops, whose
productive cycle does not extend for months. The authors of [66] mentioned that the
sensor can monitor crop growth, correlate with production traits of the barley plant, and
predict yield; however, due to the low significance of NDVI within the statistical model
generated with the variables studied for yield calculation, it was not possible to obtain
this prediction in tomato. The multiple regression model allowed the modeling of the
development curve using the agronomic variables and NDVI. These NDVI time series
are helpful for producers since they allow them to observe crop development, taking
into account some variables related to soil properties, such as maximum rooting depth,
water content at field capacity, and permanent wilting point of the soil, as mentioned
by [67] when proposing a methodology to predict time series using data from previous
cycles in soybean cultivation.

This methodology can significantly improve the model generated for tomato yield
prediction by including these variables in future agricultural cycles. However, some
drawbacks of the sensor are the NDVI readings that vary according to the angle and
height of the instrument during its use [41], becoming a disadvantage, which is paramount
to standardizing a protocol for the use of the sensor that decreases these variations in
the measurement [68]. Therefore, there is a zenith angle perpendicular to the canopy
(90 degrees) between the emission and reception of the sensor in the sweep of the cultivars
section, regardless of the solar declination or tilt angle regarding the time of day. This is
due to the ease of erroneously recording mean values of continuous sections and modifying
the NDVI point readings and, thus, thematic maps within the greenhouse.

The results of the present research can be compared with previous agronomic research
since sensors for agriculture have accelerated the digitization of farms in intensive produc-
tion systems, as reported by [69], who, according to a previous calibration and validation of
the optical sensor, after obtaining a yield prediction equation, substantially reduced produc-
tion costs. Consequently, data analysis was fundamental in evaluating crop health status
and planning specific nitrogen fertilization actions at the commercial level in development
stages employing mathematical diagnostic models [70]. However, in indeterminate crops,
this variable no longer reflects the benefits in yield projection due to the very nature of the
tomato crop, which continues to develop its canopy indeterminately with similar index
values without obtaining those proportional to the yield, as was presented in the first weeks
of production. As reported by [71], changes in vegetation, monitored through NDVI, can
influence agricultural productivity. This fact aligns with our observations that NDVI is an
excellent indicator of vegetative progress but not necessarily of final yield under protected
agriculture conditions.
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If a variety is selected in the production system, how the environment influences
the efficient use of resources will be seen. At the end of the cycle, yield is the static and
final result of a crop’s behavior. As mentioned by [72], this event does not reflect the
interactions existing during the cycle between agronomic management and the production
environment, which makes it challenging to evaluate the relationships existing during the
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cycle between agronomic management and the production environment, resulting in a
decrease in yield, as observed in our research, which from week 18 onwards declined to
become economically unprofitable.

NDVI maps are crucial tools for examining tomato crop conditions, as they allow for
visualization of the spatial distribution of vegetation and detection of problem areas related
to leaf cover, foliage density, and disease presence, factors that directly influence vegetation
indices [73]. Likewise, using NDVI and other indices is fundamental to evaluating yield and
agronomic variables of tomatoes through spectroradiometry and Ordinary Kriging, which
contributes to detecting areas with water stress and its influence on fruit productivity [74].
On the other hand, [75] points out that NDVI is fundamental to examining the spatial and
temporal variability of industrial tomato yield, evidencing a high correlation between the
index and productivity in both terrestrial and orbital measurements, thus reinforcing the
ability to use NDVI maps at various scales and consolidating its relevance in precision
agriculture. Ultimately, the use of spatiotemporal data in maps makes it possible to
identify the spatial variability of the crop under various conditions, and by combining
vegetation spectral indices with agronomic variables, its growth over time can be evaluated,
contributing to the management and planning of the productive system, the planning of
activities such as irrigation scheduling, or constant monitoring of phenology and crop
development [76,77].

Plant height showed high variance during the first week, indicating more significant
initial heterogeneity. Throughout the weeks, height values remained in medium to high
ranges, which reached their most extraordinary heterogeneity until week 28. About the
length and width of leaves, a decrease in the behavior of the beef tomato variety compared
to the saladette was observed. However, during the ninth week, values increased in both
varieties, showing a greater length and width in beef compared to saladette, the latter
being the one with the most excellent vegetative development recorded during week 28.
However, the diameters of the two varieties do not reflect a dominant trend because similar
values were recorded between both varieties, except in the previous week for the saladette
variety (Figure 5 and Table 8) (with a reduced size).

Table 8. Minimum, medium, and maximum values of the agronomic variables.

Variables/Week
Low Medium High

1 9 28 1 9 28 1 9 28

Height 17 58 283 22 159 532 24 214 532
Length leaf 4 45 31 15 52 38 21 57 41
Width leaf 1 33 32 11 49 39 14 58 41

Stem 2.5 10 14.5 3 11.5 15.7 3.5 12.2 15.9
Number of bunches 5 7 0 6 9 1 6 9 4

Number of fruits 9 21 1 12 21 1 13 29 2

Note: Average point values of the lines of each section of the beds.

Regarding the number of bunches and fruit per plant, the beef variety experienced a
reduction during the week, while the saladette experienced more bunches and fruit during
the same period (Figure 6 and Table 8).
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4. Conclusions
NDVI-based models were unreliable for predicting the yield of indeterminate tomatoes

in protected agriculture systems due to a drop in yield at later stages of production. Other
variables that can improve the accuracy of predictive models should be examined, and
additional sensors should be adopted for a more complete monitoring of leaf development
with a certainty of higher yield.

The Green Seeker® NDVI field sensor is a useful tool that provides accurate informa-
tion on the absence or absence of chlorosis in plant leaves caused by a nutrient deficiency.
However, it is necessary to consider the costs of investment and support personnel for
its interpretation, as well as the fact that the Green Seeker® field sensor has limitations
that can affect its reading, such as the angle of the sensor in relation to the plants during
sample collection. Since its area of action is conical, any change in position could result in a
different interpretation in terms of the continuous vegetation of the target. It is important
to monitor by sections or zones within the greenhouse, not as a single unit.

The equations and statistical models evaluated only apply to cultivating tomatoes
of indeterminate variety under protected agriculture and intensive production system
conditions, which should be contrasted with agronomic variables in each agricultural cycle.
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