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Abstract: The ceteris paribus assumption that all features are equal except the one(s) being
examined limits the reliability of nutrient diagnosis and fertilizer recommendations. The
objective is to review machine learning (ML) and compositional data analysis (CoDa) tools
to make nutrient management feature specific. The average accuracy of the ML methods
was 84% across the crops. The additive and orthogonal log ratios of CoDa reduce a D-parts
soil composition to D-1 variables, alleviating redundancy in the predictive ML models.
Using a Brazilian onion (Allium cepa) database, the combined CoDa and ML methods
returned crop response patterns, allowing feature-specific fertilizer recommendations to be
made. The centered log ratio (clr) diagnoses plant nutrients as a compositional nutrient
diagnosis (CND). Using a Quebec database of vegetable crops, the mean variance of clr
variables (VAR) allowed comparing total variance among species and growth stages. While
clr is the summation of equally weighted dual log ratios, dual nutrient log ratios may show
unequal importance regarding crop performance. The RReliefF scores or gain ratios can
provide weighting coefficients for each dual log ratio. The widely contrasting coefficients
of weighted log ratios (wlr) improved the accuracy of the ML models for a Quebec muck
onion database. The ML models, VAR and wlr, are advanced tools to improve the accuracy
of nutrient diagnosis.

Keywords: compositional data analysis; nutrient diagnosis; fertilizer recommendations;
machine learning; model accuracy; centered log ratio (clr); weighted log ratio (wir);
crop performance

1. Introduction

Nutrient diagnosis relies on soil and plant tissue analyses, crop surveys, field trials,
deficiency symptoms, and growth factors impacting crop productivity. The results of a
limited number of fertilizer trials conducted under the ceteris paribus assumption provide
the basic information to build fertilizer recommendation models [1]. This assumption
bypasses the complexity of agroecosystems too easily. As databases get larger and more
diversified, modern mathematical and statistical tools can simultaneously process several
growth-impacting features.

Supervised machine learning (ML) models relate a target variable to a set of explana-
tory variables, such as soil physical, chemical, and biological properties, soil classification
and hydrology, plant tissue composition, sensor data, and weather conditions, as well as
soil and crop management features documented in a database. This avoids relying entirely
on the ceteris paribus assumption for data collected in different years and at different lo-
cations. The explanatory variables are related to plant yield and quality [2] or to defense
mechanisms (trophobiosis) [3-5] as target variables. The ML models generally outperform
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parametric models as the training size increases [6]. The accuracy of crop ML models
ranged from 0.65 to 0.93, averaging 0.84, depending on the crop, the size and diversity
of the database, the ML model, the target variable, and the selected features (e.g., [7-12],
amongst others).

Compositional data analysis (CoDa) tools have been developed to process composi-
tions statistically [13]. Compositional data, such as geological data, are subject to spurious
correlations [14] because, due to sum closure, as in a ternary diagram, there are D-1 de-
grees of freedom for a D-parts composition [15]. In agronomy, such data include tissue
analyses [16] and soil [17] and water [18] compositions.

Tissue testing is thought to integrate all the effects of growth-impacting factors and
their interactions [19]. The first tissue diagnostic model combined N, P, and K interac-
tively in a ternary diagram [20]. Later, the critical nutrient approach diagnosed nutrients
separately [21] and did not consider the myriads of nutrient interactions impacting plant
metabolism and performance [22-25]. Ratios are convenient expressions for nutrient di-
lution [26] and interactions [27]. The diagnosis and recommendation integrated system
(DRIS) expanded the interactive approach by integrating several dual ratios into nutrient
indices [28]. The DRIS procedure has been modified on several occasions [29] and was
revisited by CoDa tools such as compositional nutrient diagnosis (CND) [16]. Although
each dual ratio may impact crop performance differentially, the DRIS and CND weighted
equally the dual ratio expressions integrated in their formulation.

The objectives of this review were (1) to present CoDa tools for use in crop ML models,
and (2) to account for the importance of each nutrient dual log ratio in CoDa expressions
using ML tools.

2. Methods
2.1. Closure of Compositions

The CoDa concept addresses the intrinsically multivariate, strictly positive, composi-
tional data close to an entity [13]. A composition made of D components, x1.x2..... Xp, and
adding up to x (=1, 100%, 1000 g kg’l, ...) is defined by the simplex SD as follows:

sP = {x = [x1,x2,....xp]|x; >0,i=1to D;Zil X; = K}

The filling value xp is computed as the difference between « (generally the measure-
ment unit) and the sum of the quantified components. The tissue dry matter simplex
contains all the information on tissue components, including the one that dilutes the others
(xp) into the residual biomass. The xp comprises C, H, O, and elements that have not been
quantified. There are D-1 degrees of freedom in a D-parts composition [15] because one
component can be computed as the difference between x and the sum of the others.

The tissue simplex is an enclosure wherein nutrients accumulate and interact. Any
change in the proportion of one nutrient in the confined sample space must ‘resonate” with
the other proportions through interactions and dilution. Examples of ‘resonance” among
components also exist in soil science. The closed textural diagram includes the proportions
of sand, silt, and clay that add up to 100%. The exchangeable cations and acidity are
constrained to the cation exchange capacity. The sum of the relative air, water, and solid
volumes in soils is also closed at 100%.

The statistical analysis of raw compositional data returns distorted results if not
transformed beforehand into log ratios [13]. Indeed, confidence intervals about means may
miss the limits of the sample space of proportions (less than zero or more than 100%) after
conducting statistical analyses. The sum of the means of the proportions may also differ
from 100%, leading to physically absurd results [29,30].



Horticulturae 2025, 11, 161

3o0f14

Log-ratio transformations, like additive log ratios (alr), dual log ratios (dIr), centered
log ratios (clr), orthogonal log ratios (olr) such as isometric log ratios (ilr) and pivot log
ratios (plr), and the summated or amalgamated log ratio (slr), were propounded to free
compositional data from their constrained sample space [31,32]. Log ratios project raw
compositional data into the real space (£o0) required to conduct statistical analyses. Indeed,
log(a/b) — o0if a — co or b — 0, and conversely.

The geometric mean is most often used to compute log ratios, but it is impacted by
errors of measurement, outliers, and results below the detection limits. Data below the
detection limit may be replaced by a small value like 2/3 of the detection limit, or they can be
amalgamated with other components [31,32]. Nevertheless, including compositional data
that are moderately variable but informative contributes to solving complex systems [33].

2.2. Machine Learning Models

The ML decision tree models are non-parametric, have few parameters and good
scalability, and can detect multivariate effects among variables in high-dimensional
databases [34,35]. Several features, such as soil chemical, physical, and biological proper-
ties, weather conditions, management practices, soil hydrology, and sensor data can be
documented and processed and related to a target variable. This avoids relying solely on
the ceteris paribus assumption of equal or optimal growing conditions. To facilitate model
adoption, features should be easy to collect by stakeholders and verified for their capacity to
generalize. The models surveyed in this review are decision tree models, like random forest
and boosting models, the Gaussian [7], and the KNN (k-nearest neighbors) [12] models.

2.3. Databases

The first objective of this paper was addressed using a Brazilian onion (Allium cepa)
database retrieved from the web [8]. Crop yield was related to soil variables previously
reduced to D-1 additive or orthogonal log ratios. For the second objective, crop yield was
related to tissue analyses using a Quebec vegetable database, where total N was analyzed
by micro-Kjeldahl, and other nutrients were quantified by plasma emission spectroscopy
after acid digestion [36].

3. CoDa Tools to Alleviate Redundancy in ML Crop Response Models

3.1. Log-Ratio Transformations
3.1.1. Additive Log-Ratio (alr) Transformation

The alr is defined as follows:
alr = In(x;/ x;)

where x; is any component, and x; is a reference component common to all components.
If xj; = xp, and xp is large, the alr transformation resembles the ordinary logarithmic
transformation [37]. The alr is easy to compute and interpret, but its geometry is non-
Euclidean. The KNN may require Euclidean geometry.

Nitrogen (N) has been used as the reference component to monitor fertilization in tree
nurseries [38]. The alr is also useful to model soil compositional data. The clay may be used
as a common denominator for soil organic matter, soil test P, and soil test K because kaolinite
clay contributes to cation exchange capacity and to P fixation by oxyhydroxides in tropical
and subtropical soils and interacts with soil organic matter to build soil structure [39].

3.1.2. Orthogonal Log-Ratio (olr) Transformations

Orthogonal log ratios are useful in running multivariate analyses unbiasedly [31,32].
The isometric log ratio (ilr) and its simplified version, the pivot ratio (plr), are orthonormal
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log ratios that return D-1 variables, the exact number of degrees of freedom available in
a D-parts composition. The olr variables have Euclidian geometry. The ilr is defined as

follows [40]:
ilry = \/Wln § L2 =
k Ty + Sk si /H;il X

where 1 and s; are the numbers of components in the numerator and denominator, re-

spectively; i and j refer to components in the numerator and denominator, respectively;

TSk 3 . . . . LT Tk i Sk . .
Fops, sa normalization coefficient; (/ [[£; xiand Sﬁ/]—[ j—1 Xj are geometric means of the

components in the numerator and denominator, respectively.

The number of combinations of components in the ilr expressions is enormous:
(2D —2)1/[2P71(D — 1)!] [41]. Thanks to orthogonality, the results of multivariate analy-
ses remain the same whatever the combination of components. The number of combinations
is reduced to D! using the plr [42]. The plr sequentially contrasts one component against
the others, facilitating the interpretation compared to the ilr.

The ilr transformation has been applied to plant nutrition studies [28]. However, ilr-
transformed data are difficult to interpret. In soil science, compositions comprise a smaller
number of variables, making the interpretation easier. It has been shown that ilr axes are
related to the fractal dimension of soil aggregates, providing a more detailed description of
aggregate disruption or building [17].

The olr variables are conceptualized in a sequential binary partition (SBP) [40]. Soil
compositional data impacting soil structure as soil quality indicators can be contrasted as
‘balances’ between soil organic matter and textural components; then, clay as a binding
agent can be contrasted against silt and sand; the remaining contrast is silt against sand
(Table 1). The SBP is illustrated in Figure 1.

Table 1. The sequential binary partition of the compositional soil simplex made of organic matter,
sand, silt, and clay proportions adding up to 100%.

ilr oM Clay Silt Sand r s Equation (ilr)
1 1 —1 -1 ~1 1 3 137, MO
1+3 3/Sandx Siltx Clay
2 0 1 -1 -1 1 2 127, (__Clay
2" ( \Z/Silthand)
— Sil
3 0 0 1 1 1 1 Ly ( Salntd)

SOM Clay Silt Sand

Figure 1. Balance scheme to compute ilr contrasting organic matter (SOM) with textural components,
then clay with silt and sand, and, finally, silt with sand.
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3.1.3. Summated Log-Ratio (slr) Transformation

Parts can be amalgamated to avoid dealing with zeroes or to facilitate the interpretation
of the results based on domain knowledge [31,32]. For example, silt and clay could be
amalgamated as soil’s capacity to protect organic C physically [43].

3.2. CoDa Tools to Run ML Models

The Brazilian database was retrieved from the web [8]. Crop yield was related to soil
variables reduced to D-1 additive log ratios. The target variable was marketable bulb yield.
The categorial variables were stratified to avoid model overfitting. The ML regression
model was run using the Orange Data Mining freeware vs. 3.37 (University of Ljubljana,
Slovenia).

The R? coefficient, root mean square of error (RMSE), and mean absolute error (MAE)

are measures of model accuracy, as follows:

R2=1— M
i — v
1 2
RMSE = \/ ~Y i Wi = 91) (1)
1 2
MAE = -3 0 lyi = 51 @)

The coefficient of determination (R?) is interpreted as follows: R? < 0.25, very weak;
0.25 < R? < 0.50, weak; 0.50 < R? < 0.75, moderate, and R? > 0.75, substantial [44]. The
Catboost model was accurate (Table 2).

Table 2. Accuracy of the Catboost machine learning (ML) models using NPK fertilization data, pH,
and alr-transformed soil data.

R? Coefficient Root Mean Square Error Mean Absolute Error

Mg marketable onion bulbs ha~!
0.929 4739 3662

A universality test [45] was conducted to verify the model’s capacity to generalize.
The set of features from the unseen site was related to marketable bulb yields to predict
the crop response pattern (Figure 2). Thereafter, a response function can be fitted to the
response pattern to assess the economic optimum rate of fertilization. The followed a
polynomial linear plateau model levelling off near 200 kg N ha™!.

=)
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Figure 2. Relationship between onion bulb yield and N dosage predicted by the Catboost model for a
site unseen by the model.



Horticulturae 2025, 11, 161

6 of 14

The right choice of the response function is critical because several non-linear functions
return comparable R? coefficients while recommending very different optimum economic
doses (OED). Indeed, the OED depends on the slope of the function [46]. The environmental
costs of fertilization, such as GHG emissions as nitrous oxide (N,O) [47] or loss in water
quality [48], may be considered as additional constraints of the non-linear functions.

4. Combining CoDa and ML Tools
4.1. The clr Transformation
The centered log ratio (clr) is commonly used to diagnose nutrients as a compositional
nutrient diagnosis (CND) [16]. The clr is the integration of equally weighted dual log ratios.
The clr is defined as follows [30]:
clri = In(x;/g[x])

1
where ¢[x] = (x1x;...xp)D is the geometric mean across components including xp. There
are D clrs in a D-parts composition. Their sum is zero.
The clr is the mean of D equally weighted dual log ratios, computed as follows for

nutrient x;:
1
X: xX: xX: X: D
ln( ! ): n(lx’x...x’)
g(x) X1 X Sp

"(5) = oln(5) rn(5) =i,

The clr has Euclidean geometry, as follows [30]:

£ =[50, (clr — elry)’

where ¢ is the Euclidean distance between two compositional vectors of equal length, cl7; is
the jth clr value of the diagnosed specimen, and clr;-‘ is the corresponding reference clr value.
This allows the comparison of abnormally to normally growing plants in an otherwise
comparable neighborhood to diagnose apparent or hidden deficiency symptoms in plants
under the ceteris paribus assumption. The nutrient indices are the differences between
the clr; of the abnormal plant and the corresponding Clr;-k of the normal plant. They are
illustrated in a histogram to facilitate the interpretation.

Using population statistics (mean and standard deviation) instead of a normal plant
as reference, the CND index for nutrient x; is computed as follows [16]:

clry, —clry,

Index x; = -y
" standard deviationy,

4.2. Mean clr Variance Among Species and Sampling Stages

Tissue nutrient concentration and variability in the diagnostic tissue depend on species,
cultivars, sample position on the plant, the sampling period, plant age, season, and the
cropping system [49] and the application of pesticides containing cationic micronutrients
like Cu, Zn, and Mn [28]. The diagnostic tissue should be easy to identify and collect. Total
variance across the clr variances is a complementary selection criterion for the sampling

period. The mean variance VAR across the centered log ratio is averaged as follows [31,32]:

N 1 «—D
VAR = 5Zj:1 VAR (clr))
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The mean clr variances of three crops were computed at four growth stages, as shown
in Table 3. The smallest mean variance occurred at the flower bud stage for potato (Solanum
tuberosum), bulb enlargement for onion (Allium cepa), and the 8-10 leaf stage for carrot
(Daucus carota).

Table 3. The clr standard deviation at high-yield level of 11 foliar components for potato (Solanum
tuberosum), onion (Allium cepa), and carrot (Daucus carota) tissues sampled at four growth stages (data
from the Quebec, Canada, database).

Mean
Crop Growth Stage N P K Ca Mg B Cu Zn Mn Fe xp T Standard
Deviation
Potato Plant 20 cm high 0.315 0.296 0.274 0.393 0.294 0.313 0.461 0.371 0.476 0.535 0.290 0.375
(Solanum Flower bud 0.213 0.246 0.124 0.314 0.177 0.176 0.407 0.357 0.475 0.452 0.138 0.305
tuberosunm) 10% flowering 0.181 0.233 0.172 0.34 0.210 0.332 0.511 0.564 0.546 0.416 0.144 0.364
Tuber initiation 0.169 0.270 0.247 0.307 0.275 0.430 0.415 0.584 0.555 0.317 0.138 0.364
2-3leaves 0.269 0.258 0.248 0.167 0.173 0.226 0.426 0.263 0.760 0.496 0.199 0.360
Onion (Allium 4-51eaves (leek stage) 0.241 0.239 0.198 0.168 0.189 0.181 0.336 0.522 0.786 0.521 0.214 0.378
cepa) 6-8 leaves 0.208 0.237 0.153 0.165 0.205 0.134 0.505 0.297 0.636 0.365 0.200 0.321
Bulb enlargement 0.176 0.178 0.198 0.147 0.147 0.172 0.392 0.452 0.585 0.348 0.238 0.309
4-5leaves 0.196 0.230 0.277 0.163 0.212 0.210 0.304 0.273 0.582 0.616 0.154 0.329
Carrot (Daucus 6-7 leaves 0.144 0.156 0.137 0.125 0.175 0.172 0.252 0.274 0.654 0.366 0.140 0.280
carota) 8-101eaves 0.129 0.155 0.106 0.137 0.153 0.137 0.359 0.244 0.568 0.330 0.110 0.260
Root enlargement 0.143 0.190 0.158 0.181 0.234 0.167 0.403 0.343 0.564 0.278 0.160 0.304

t Filling value between measurement unit and the sum of nutrients.

4.3. Weighted log Ratio (wlr)

Although mathematically sound, the clr weights the dual log ratios equally. However,
dual ratios may impact crop performance differentially. We modified the clr by assigning
a coefficient to each dual log ratio before its integration into a ‘weighted log ratio” (wlr)
formulation. The coefficients account for the importance of each dual log ratio for the target
variable. The wlr accounts for the importance of each log ratio regarding the target variable,
as follows:

1D X\ .,
wlry, = 52}.:1 pln x—; JFE ]

where x; is the common numerator for nutrient 7, X;j represents other components, and Qj
is a coefficient to each log-transformed dual ratio. The clr is thus a special case of the wlr,
where all ¢;s are equal. The ML models can provide ¢; coefficients as RReliefF scores in a
regression mode [50] or gain ratios in a classification mode. To maintain nutrient x; in the
numerator to compute wlry; across dual log ratios containing x;, ¢;In (i—:) is multiplied by
—1 to relocate x; in the numerator, recovering ¢;/n (%)

4.4. The Quebec Database to Compare clr and wlr

The Quebec onion database comprises 275 observations on tissue N, P, K, Ca, and
Mg raw concentrations collected at the ‘leek’ stage (4-5 leaves). With six components,
including the filling value, there are D(D — 1) /2 = 15 dual log ratios. The importance of
log-transformed dual log ratios regarding bulb yield classification (< or >50 Mg bulbs ha™1)
is presented as gain ratios in Figure 3. The dual log ratio P/K showed the highest gain
ratio. The Ca/xp, Ca/Mg, and Mg/xp dual log ratios were not contributive to yield
classification, indicating that their importance is null for classification purposes using that
database. Other log-transformed dual log ratios were important. Dual ratios thus unequally
impacted onion yield classification using that database because several dual ratios showed
negligible importance for bulb yield.

The wir N was poorly related to the corresponding raw N concentration values but
closely related to the clr N (Figure 4). Raw concentrations inject white noise into the wir by
not addressing the “resonance” in the simplex that is attributable to nutrient interactions
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and dilution within the confined sample space of the measurement unit. The clr N variables
injected white noise into the wir by not addressing the unequal importance of dual log
ratios regarding crop yield.

Log ratio

P/K
K/i&D
P/xD
N/Ca
K/Ca
P/Mg
P/Ca
N/K
N/Mg
K/Mg
N/P
N/xD

Mg/xD
Ca/Mg
Ca/xD

0.000 0.040 0.080 0.120 0.160 0.200 0.240 0.280 0.320 0.360
Gain ratio

Figure 3. Gain ratio of log-transformed dual ratios regarding bulb yield classification using the Quebec

onion

(Allium cepa) database. The Ca/xD, Ca/Mg, and Mg/xD dual log ratios are unimportant;

xD = filling value.

Weighted log ratio (wlr N)

Weighted log ratio (wlt N)
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Figure 4. Relationships between weighted log ratio for N (wlr N) and N concentrations (upper graph)
or centered log ratios for N (clr N) (lower graph). White noise is shown by point dispersion.
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4.5. Tissue Nutrient Diagnosis Using ML Models

Tissue tests collected in field experiments and during crop surveys can be related to
the target variable using classification ML models to derive nutrient standards about a
cutoff yield. The specimens are classified in a confusion matrix (Figure 5) as true negative
(TN = population of high-yielding and nutritionally balanced specimens), true positive
(TP = population of low-yielding and nutritionally imbalanced specimens), false negative
(FN = population of low-yielding yet nutritionally balanced specimens), and false positive
(FP = population of low-yielding but nutritionally imbalanced specimens due to luxury
consumption or contamination).

Predictive target variable

True negative False positive

False negative True positive

Measured target variable

Figure 5. Confusion matrix classifying specimens into four categories.
The accuracy of ML classification models is measured as follows:

TN+ TP
TN+ TP+ FN+FP

Accuracy =

A model may not be so informative if most of the correctly classified specimens are
true positive specimens. As a result, true negative specimens are too poorly documented to
derive nutrient standards. The area under the curve (AUC) is the probability that the ML
model ranks the classification correctly.

In the following examples using the Quebec onion database, ML classification models
were run using the Orange Data Mining freeware vs. 3.37 (University of Ljubljana, Slovenia).
The accuracy of the classification ML models differed between raw concentrations, with the
dual Ir, clr, and wir used as features (Table 4). The classification models were accurate. The
wlr outperformed raw concentration or the clr expressions. Indeed, some dual ratios were
much less important than others regarding onion yields (Figure 3). Moreover, the number
of TN specimens was higher using the wlr.

The means and standard deviations of the wlr values for the 109 TN and 132 TP
specimens are presented in Table 5. The wir expression showed significant differences
between the TN and TP specimens across the nutrients. In contrast, the clr expression
showed no significant differences for P, K, and Ca, and significant differences for N, Mg,
and sp. The wlr transformation not only enhanced the accuracy of the ML models but also
discriminated all means between the TN and TP populations.
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Table 4. Accuracy of regression and classification models for the relationships between onion yield or
yield class and tissue features. The true negative (TN) specimens are high-yielding and nutritionally
balanced specimens.

Model Area Under Curve Accuracy Ng?i?;‘;fnZN
Raw concentration
Random Forest 0.673 0.646 64
Catboost 0.689 0.664 62
Centered log ratio (clIr)
Random Forest 0.657 0.635 68
Catboost 0.686 0.657 61
Weighted log ratio (wlr)
Random Forest 0.930 0.880 109
Catboost 0.926 0.879 107

Table 5. Means and standard deviations (SD) of weighted log ratios (wlrs) and centered log ratios
(clrs) for 109 true negative (TN) and 132 true positive (TP) specimens classified by the Catboost model.

Log Ratio TN Specimens TP Specimens T Test
Mean SD Mean SD

Weighted log ratio (wlr)

wlr N 0.090 0.055 4127 1.996 **
wlr P —0.571 0.076 —1.279 1.202 **
wlr K 0.244 0.038 3.713 1.275 >
wlr Ca —0.012 0.044 —0.919 0.372 **
wlr Mg —0.276 0.041 —5.632 1.998 **
wlr xD 0.525 0.024 —0.010 0.102 >
Centered log ratio (cIr)
clr N 0.297 0.189 0.220 0.201 **
clr P —1.742 0.241 —1.744 0.331 ns
crK 0.706 0.114 0.712 0.149 ns
clr Ca —0.305 0.238 —0.259 0.210 ns
clr Mg —2.158 0.231 —2.080 0.194 o
clr xD 3.202 0.177 3.151 0.200 *

ns, ¥, **: non-significant and significant at the 0.05 and the 0.01 levels, respectively.

The interpretation of the results may also differ between the wir and clr indices where
the weighting coefficients vary widely. The wir showed the relative excess of N and K and
the relative shortage of Mg and xp in the TP specimens, while P and Ca were close to the
zero balance (Figure 6). The clr diagnosed the relative excess of K, Ca, and Mg and the
relative shortage of N and xp in the TP specimens, while P was close to the zero balance.
In both cases, the xp was negative, indicating insufficient carbon accumulation relative
to other components. Combining CoDa with the gain ratios generated by ML methods is
promising to conduct nutrient diagnosis.
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Figure 6. Diagnosis of the mean wlr and clr values of the true positive (low-yielding and nutritionally
imbalanced) population using the wlr and clr means and standard deviations of the true negative
(high-yielding and nutritionally balanced) population as nutrient standards.

5. Conclusions

The additive and orthogonal log ratios reduce information redundancy in composi-
tional data without information loss. Those log ratios return the exact number of degrees of
freedom available in a composition for use in ML predictive models. While accurate crop
response patterns can be derived from the ML models, the most appropriate non-linear
response curve must still be selected carefully, combining economic and environmental
costs and judgment on the outcomes.

The centered log ratio is a sound mathematical and nutrient diagnostic tool. The
variance of the clr provides an additional means to select the proper sampling time and
growth stage to elaborate nutrient standards. However, the importance of each dual log
ratio regarding the target variable is still neglected in the formulation of the clr (as well
as the DRIS) but may vary widely depending on the database. The weighted log ratio
(wlr) formulation proposed in this paper can account for the unequal importance of each
dual log ratio regarding crop productivity and plant health. The gain ratios generated
by the ML classification methods are specific to each dual log ratio. The wlr expression
was found to increase the accuracy of the ML models compared to the clr expression
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using a Canadian onion database. The wlr increased ML model accuracy and returned
more nutritionally balanced and high-yielding specimens to derive nutrient standards.
Nevertheless, the weighting may vary widely among databases and result in different
outcomes. The RReliefF scores provide weighting coefficients in the regression mode.

Compared to traditional methods, CoDa and ML tools offer great potential to decrypt
yield-impacting features simultaneously, diagnose plant nutrition, and make fertilizer rec-
ommendations. This paper presented crop nutrition models in relation to crop productivity.
Because crop fertilization and tolerance to pests are also closely related, a key challenge in
sustainable agriculture is to search for and maintain the right combination of nutrients, not
only to tackle the most limiting nutrients for crop productivity but also to support plant
defense mechanisms (trophobiosis).
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