Remote Sensing for Irrigation of Horticultural Crops
Abstract
:1. Introduction
2. Scope of the Review
3. Sensors and Platforms
3.1. Remote Sensing Sensors
3.2. Remote Sensing Platforms
3.2.1. Satellite
3.2.2. Airborne Platforms
3.2.3. UAV (Unmanned Aerial Vehicle)
3.2.4. Ground-Based Platforms
4. Approaches to Precision Irrigation
4.1. ET Estimation
4.2. Infrared Thermography
4.2.1. CWSI
4.2.2. Time-Temperature Threshold (TTT)
4.2.3. Thermography Issue and Critical Aspects
Baselines
Leaf Temperature Variability
Sunlit and Shade Leaves
Time of Measurements
4.3. Remote Sensing and Soil
4.3.1. Vegetation Indices
4.3.2. WUE
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Scheierling, S.M.; Treguer, D.O.; Booker, J.F.; Decker, E. How to Assess Agricultural Water Productivity? Looking for Water in the Agricultural Productivity and Efficiency Literature; Policy Research Working Paper 6982; Water Global Practice Group and Agriculture Global Practice Group, The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050; The 2012 Revision, ESA Working Paper No. 12–03; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed]
- Johansson, R.C. Micro and Macro-Level Approach for Assessing the Value of Irrigation Water; World Bank Policy Research Working Paper 3778; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Geoghegan-Quinn, M. Role of Research & Innovation in Agriculture. European Commission-SPEECH/13/505. Available online: http://europa.eu/rapid/press-releaseSPEECH-13–505%20en.htm (accessed on 4 June 2013).
- Fereres, E. The Future of Irrigation in Horticulture. Chron. Horticult. 2008, 48, 9–11. [Google Scholar]
- Singh, A.K.; Dubey, O.P.; Ghosh, S.K. Irrigation scheduling using intervention of Geomatics tools. A case study of Khedli minor. Agric. Water Manag. 2016, 177, 454–460. [Google Scholar] [CrossRef]
- Dudu, H.; Chumi, S. Economics of Irrigation Water Management: A Literature Survey with Focus on Partial and General Equilibrium Models; Policy Research Working Paper 4556; The World Bank Development Research Group, Sustainable Rural and Urban Development Team: Washington, DC, USA, 2008. [Google Scholar]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for agriculture: Maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Parry, M.; Rosenzweig, C.; Livermore, M. Climate change, global food supply and risk of hunger. Philos. Trans. R. Soc. B 2005, 360, 2125–2138. [Google Scholar] [CrossRef] [PubMed]
- Painter, D.; Carren, P. What is irrigation efficiency? Soil Water 1978, 14, 15–22. [Google Scholar]
- Batchelor, C. Improving water use efficiency as part of integrated catchment management. Agric. Water Manag. 1999, 40, 249–263. [Google Scholar] [CrossRef]
- Wallace, J.S.; Batchelor, C.H. Managing water resources for crop production. Philos. Trans. R. Soc. Lond. B 1997, 352, 937–947. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit Irrigation as a Strategy to Save Water: Physiology and Potential Application to Horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Marino, S.; Cocozza, C.; Tognetti, R.; Alvino, A. Use of proximal sensing and vegetation indexes to detect the inefficient spatial allocation of drip irrigation in a spot area of tomato field crop. Precis. Agric. 2015, 16, 613–629. [Google Scholar] [CrossRef]
- Jones, H.G. Irrigation scheduling advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef] [PubMed]
- Kirnak, H.; Demirtas, M.N. Effects of Different Irrigation Regimes and Mulches on Yield and Macronutrition Levels of Drip-Irrigated Cucumber under Open Field Conditions. J. Plant Nutr. 2006, 9, 1675–1690. [Google Scholar] [CrossRef]
- Çetin, O.; Uyganb, D. The effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency and net return. Agric. Water Manag. 2008, 95, 949–958. [Google Scholar] [CrossRef]
- Ismail, S.M.; Ozawa, K.; Khondaker, N.A. Influence of single and multiple water application timings on yield and water use efficiency in tomato (var. First power). Agric. Water Manag. 2008, 95, 116–122. [Google Scholar] [CrossRef]
- Wright, J. Irrigation Scheduling Checkbook Method. Communication and Educational Technology Services; University of Minnesota: Minneapolis, MN, USA, 2002. [Google Scholar]
- Hoffman, G.J.; Martin, D.L. Engineering systems to enhance irrigation performance. Irrig. Sci. 1993, 14, 53–63. [Google Scholar] [CrossRef]
- Raine, S.R.; Meyer, W.S.; Rassam, D.W.; Hutson, J.L.; Cook, F.J. Soil–water and solute movement under precision irrigation: Knowledge gaps for managing sustainable root zones. Irrig. Sci. 2007, 26, 91–100. [Google Scholar] [CrossRef]
- Köksal, E.S.; Kara, T.; Apan, M.; Üstün, H.; Ilbeyi, A. Estimation of green bean yield, water deficiency and productivity using spectral indexes during the growing season. Irrig. Drain. Syst. 2008, 22, 209–223. [Google Scholar] [CrossRef]
- Moran, M.S.; Inoue, S.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Monaghan, J.M.; Daccache, A.; Vickers, L.H.; Hes, T.M.; Weatherhead, E.K.; Grove, I.G.; Knox, J.W. More ‘crop per drop’—constraints and opportunities for precision irrigation in European agriculture. J. Sci. Food Agric. 2013, 93, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.E. Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agric. Water Manag. 2014, 142, 99–109. [Google Scholar] [CrossRef]
- Jensen, T.; Apan, A.; Young, F.; Zeller, L. Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform. Comp. Electron. Agric. 2007, 59, 66–77. [Google Scholar] [CrossRef]
- Panda, S.S.; Rao, M.N.; Thenkabail, P.S.; Fitzerald, J.E. Remote Sensing Systems—Platforms and Sensors: Aerial, Satellite, UAV, Optical, Radar, and LiDAR; CRC Press: Boca, Raton, FL, USA, 2016. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Jonathan Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data, 2nd ed.; Brand, T., Paul, M., Eds.; CRC Press: Boca, Raton, FL, USA, 2016; p. 379. [Google Scholar]
- Konecny, G. Geoinformation: Remote Sensing, Photogrammetry and Geographic Information Systems, 2nd ed.; CRC Press: Boca, Raton, FL, USA, 2014; p. 472. [Google Scholar]
- Shaw, G.A.; Burke, H.-H.K. Spectral Imaging for Remote Sensing. Linc. Lab. J. 2003, 1, 3–28. [Google Scholar]
- Shia, C.; Wanga, L. Incorporating spatial information in spectral unmixing: A review. Remote Sens. Environ. 2014, 149, 70–87. [Google Scholar] [CrossRef]
- Jawak, S.D.; Devliyal, P.; Luis, A.J. A Comprehensive Review on Pixel Oriented and Object Oriented Methods for Information Extraction from Remotely Sensed Satellite Images with a Special Emphasis on Cryospheric Applications. Adv. Remote Sens. 2015, 4, 177–195. [Google Scholar] [CrossRef]
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation, Principles, Techniques, and Applications; Oxford Press University: Oxford, UK, 2011; p. 384. [Google Scholar]
- Gibson, P.; Power, C. Introductory Remote Sensing Principles and Concepts; Taylor, Francis, Ed.; Routledge: London, UK, 2013; p. 216. [Google Scholar]
- Lucas, R.; Rowlands, A.; Brown, A.; Keyworth, S.; Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 2007, 62, 165–185. [Google Scholar] [CrossRef]
- Langley, S.K.; Cheshire, H.M.; Humes, K.S.A. Comparison of single date and multitemporal satellite image classifications in a semi-arid grassland. J. Arid Environ. 2001, 49, 401–411. [Google Scholar] [CrossRef]
- Sexton, J.O.; Urban, D.L.; Donohue, M.J.; Song, C. Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sens. Environ. 2013, 128, 246–258. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Paruelo, J.M.; Di Bella, C.; Giallorenzi, M.C.; Pacin, F. Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. Int. J. Remote Sens. 2010, 24, 3381–3402. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image; Academic Press: Cambridge, MA, USA, 2006; p. 560. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; The Guilford Press: New York, NY, USA, 2011; p. 667. [Google Scholar]
- Lee, W.S.; Alchanatis, V.; Yang, C.; Hirafuji, M.; Moshou, D.; Li, C. Sensing technologies for precision specialty crop production. Comput. Electron. Agric. 2010, 74, 2–33. [Google Scholar] [CrossRef]
- Ruiz-Altisent, M.; Ruiz-Garcia, L.; Moreda, G.P.; Renfu, L.; Hernandez-Sanchez, N.; Correa, E.C.; Diezma, B.; Nicola, B.; Garca-Ramos, J. Sensors for product characterization and quality of specialty crops a review. Comput. Electron. Agric. 2010, 74, 176–194. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, N.; Wang, M. Wireless sensors in agriculture and food industry—Recent development and future perspective. Comput. Electron. Agric. 2006, 50, 1–14. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Tyc, G.; Tulip, J.; Schulten, D.; Krischke, M.; Oxfort, M. The RapidEye mission design. Acta Astronaut. 2005, 56, 213–219. [Google Scholar] [CrossRef]
- Anderson, K. Integrating multiple scales of remote sensing measurement—From satellites to kites progress. Phys. Geogr. 2016, 40, 187–195. [Google Scholar] [CrossRef]
- Dunn, C.; Bertiger, W.; Bar-Sever, Y.; Desai, S.; Haines, B.; Kuang, D.; Franklin, G.; Harris, I.; Kruizinga, G.; Meehan, T.; et al. Application challenge-instrument of grace-GPS augments gravity measurements. GPS World 2003, 14, 16–29. [Google Scholar]
- Poli, D.; Toutin, T. Review of developments in geometric modelling for high resolution satellite push broom sensors. Photogram. Rec. 2012, 27, 58–73. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns. Precis. Agric. 2006, 7, 33–44. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Evaluating high resolution SPOT 5 satellite imagery to estimate crop yield. Precis. Agric. 2009, 10, 292–303. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Sci. Total Environ. 2001, 268, 197–214. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Kallio, K.; Attila, J.; Härmä, P.; Koponen, S.; Pulliainen, J.; Hyytiäinen, U.M.; Pyhälahti, T. Landsat ETM+ images in the estimation of seasonal lake water quality in boreal river basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Kutser, T. The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic matter concentration in lake waters. Remote Sens. Environ. 2012, 123, 334–338. [Google Scholar] [CrossRef]
- Roussel, N.; Darrozes, J.; Ha, C.; Boniface, K.; Frappart, F.; Ramillien, G.; Gavart, M.; Van de Vyvere, L.; Desenfans, O.; Baup, F. Multi-scale volumetric soil moisture detection from GNSS SNR data: Ground-based and airborne applications. In Proceedings of the 2016 IEEE Metrology for Aerospace (MetroAeroSpace), Florence, Italy, 22–23 June 2016. [Google Scholar]
- Van der Werff, H.; van der Meer, F. Sentinel-2 for Mapping Iron Absorption Feature Parameters. Remote Sens. 2015, 7, 12635–12653. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Saadi, S.; Simonneaux, V.; Boulet, G.; Raimbault, B.; Mougenot, B.; Fanise, B.; Ayari, H.; Lili-Chabaane, Z. Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia). Remote Sens. 2015, 7, 13005–13028. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Quintana-Seguí, P. Comparison of remote sensing and simulated soil moisture datasets in Mediterranean landscapes. Remote Sens. Environ. 2016, 180, 99–114. [Google Scholar] [CrossRef]
- Entekhabi, D.; Yueh, S.; Neill, P.O.; Kellogg, K. SMAP Handbook; JPL Publication JPL 400–1567; Jet Propulsion Laboratory: Pasadena, CA, USA, 2014; p. 182. [Google Scholar]
- Microwave Technologies Review and Strategy; Valinia, A.; Kunkee, D.; Mayo, D. (Eds.) NASA Earth Science Technology Office (ESTO): Washington, DC, USA, 2016.
- Piles, M.; Entekhabi, D.; Konings, A.G.; McColl, K.A.; Das, N.N.; Jagdhuber, T. Multi-temporal microwave retrievals of Soil Moisture and vegetation parameters from SMAP. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Kojima, Y.; Oki, K.; Noborio, K.; Mizoguchi, M. Estimating soil moisture distributions across small farm fields with ALOS/PALSAR. Int. Sch. Res. Not. 2016, 8, 4203783. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Sakai, K.; Manago, M. Prediction of citrus yield from airborne hyperspectral imagery. Precis. Agric. 2007, 8, 111. [Google Scholar] [CrossRef]
- Goel, P.K.; Prasher, S.O.; Patel, R.M.; Smith, D.L.; DiTommaso, A. Use of airborne multi-spectral imagery for weed detection in field crops. Trans. ASAE 2002, 45, 443–449. [Google Scholar]
- Goel, P.K.; Prasher, S.O.; Landry, J.A.; Patel, R.M.; Viau, A.; Miller, J.R. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. Trans. ASAE 2003, 46, 1235–1246. [Google Scholar]
- Milton, E.J. Review article principles of field spectroscopy. Int. J. Remote Sens. 1987, 8, 1807–1827. [Google Scholar] [CrossRef]
- Godwin, R.J.; Miller, P.C.H. A review of the technologies for mapping within-field variability. Biosyst. Eng. 2003, 84, 393–407. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Milne, A.; Lucas, R.; Imhoff, M.; Dobson, C. A review of remote sensing technology in support of the Kyoto protocol. Environ. Sci. Policy 2003, 6, 441–455. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Ustin, S.L.; Whiting, M.L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agric. J. 2005, 97, 641–653. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Airborne hyperspectral imagery and yield monitor data for estimating grain sorghum yield variability. Trans. ASAE 2004, 47, 915–924. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.; Corsi, F.; van Wieren, S.E.; Sobhan, I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 375–391. [Google Scholar] [CrossRef]
- Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187–197. [Google Scholar] [CrossRef]
- Alvino, A.; Zerbi, G. Water-table level effect on the yield of irrigated and unirrigated grain maize. Trans. ASAE 1986, 29, 1086–1089. [Google Scholar] [CrossRef]
- Alvino, A.; Boccia, F.; Amato, M. Root dynamics of peach as a function of winter water table level and rootstock. Sci. Hortic. 1994, 56, 275–290. [Google Scholar] [CrossRef]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; González-Dugo, V.; Fereres, E. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 6. [Google Scholar]
- Zhang, C.; Kovacs, J.M. The application of small-unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693. [Google Scholar] [CrossRef]
- Nebiker, S.; Annena, A.; Scherrerb, M.; Oeschc, D. A light-weight multispectral sensor for micro UAV—Opportunities for very high resolution airborne remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci. 2008, 37, 1193–1198. [Google Scholar]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- DeBell, L.; Anderson, K.; Brazier, R.E.; King, N.; Jones, L. Water resource management at catchment scales using lightweight UAVs: Current capabilities and future perspectives. J. Unmanned Veh. Syst. 2016, 4, 7–30. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Pajeres, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles. Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Sankaran, S.; Khot, L.R.; Zú˜niga Espinoza, C.; Sanaz Jarolmasjed, C.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Anderson, K.; Griffiths, D.; DeBell, L.; Hancock, S.; Duffy, J.P.; Shutler, J.D. A Grassroots Remote Sensing Toolkit Using Live Coding, Smartphones, Kites and Lightweight Drones. PLoS ONE 2016, 11, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- O’Shaughnessy, S.A.; Evett, S.R.; Andrade, A.; Workneh, F.; Price, J.A.; Rush, C.M. Site-specific variable-rate Irrigation as a means to enhance Water Use Efficiency. Trans. ASABE 2016, 59, 239–249. [Google Scholar]
- Aqeel-ur-Rehman, Z.A.; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stan. Interfaces 2014, 36, 263–270. [Google Scholar] [CrossRef]
- Damas, M.; Prados, A.M.; Gómez, F.; Olivares, G. HidroBus system: Fieldbus for integrated management of extensive areas of irrigated land. Microprocess. Microsyst. 2001, 25, 177–184. [Google Scholar] [CrossRef]
- Evans, R.; Bergman, J. Relationships Between Cropping Sequences and Irrigation Frequency under Self-Propelled Irrigation Systems in the Northern Great Plains (NGP); USDA Annual Report; USDA: Washington, DC, USA, 2003.
- Morais, R.; Valente, A.; Serôdio, C. A wireless sensor network for smart irrigation and environmental monitoring. In Proceedings of the EFITA/WCCA Joint Congress on IT in Agriculture, Vila Real, Portugal, 25–28 July 2005; pp. 845–850. [Google Scholar]
- Basu, T.; Thool, V.; Thool, R.C.; Birajdar, A.C. Computer based Drip Irrigation Control System with Remote Data Acquisition System. In Proceedings of the 4th World Congress of Computers in Agriculture and Natural Resources, Orlando, FL, USA, 24–26 July 2006. [Google Scholar]
- Kim, Y.; Evans, R.G.; Iversen, W.M. Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Trans. Instrum. Meas. 2008, 57, 1379–1387. [Google Scholar]
- Kim, Y.; Evans, R.G. Software design for wireless sensor-based site-specific irrigation. Comput. Electron. Agric. 2009, 66, 159–165. [Google Scholar] [CrossRef]
- Evans, R.G.; LaRue, J.; Stone, K.C.; King, B.A. Adoption of site-specific variable rate sprinkler irrigation systems. Irrig. Sci. 2013, 31, 871–887. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; Valdez, L.C.; Fernández, M.D. Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agric. Water Manag. 2007, 88, 147–158. [Google Scholar] [CrossRef]
- Fernández, J.E.; Cuevas, M.V. Irrigation scheduling from stem diameter variations: A review. Agric. For. Meteorol. 2010, 150, 135–151. [Google Scholar] [CrossRef]
- Thorp, K.R.; Gore, M.A.; Andrade-Sanchez, P.; Carmo-Silva, A.E.; Welch, S.M.; White, J.W.; French, A.N. Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics. Comput. Electron. Agric. 2015, 118, 225–236. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; Mainuddin, M.; Kirby, J.M.; Chiew, F.H.S.; McVicar, T.R.; Vaze, J. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling. Sci. Total Environ. 2016, 542, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.; Alchanatis, V.; Cohen, Y.; Meron, M.; Tsipris, J.; Naor, A.; Ostrovsky, V.; Sprintsin, M.; Cohen, S. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 2007, 58, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Alchanatis, V.; Cohen, Y.; Cohen, S.; Moller, M.; Sprinstin, M.; Meron, M. Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Precis. Agric. 2010, 11, 27–41. [Google Scholar] [CrossRef]
- Cohen, Y.; Alchanatis, V.; Meron, M.; Saranga, Y.; Tsipris, J. Estimation of leaf water potential by thermal imagery and spatial analysis. J. Exp. Bot. 2005, 56, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G. Plants and Microclimate, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992; p. 428. [Google Scholar]
- Hsiao, T.C. Plant atmosphere interaction, evapotranspiration and irrigation scheduling. Symposium on Scheduling of irrigation for vegetable crops under field condition. Acta Hortic. 1990, 278, 55–66. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Hyperspectral vegetation indices for predicting onion (Allium cepa L.) yield spatial variability. Comput. Electron. Agric. 2015, 16, 109–117. [Google Scholar] [CrossRef]
- Casa, R.; Rossi, M.; Sappa, G.; Trotta, A. Assessing Crop Water Demand by Remote Sensing and GIS for the Pontina Plain, Central Italy. Water Resour. Manag. 2009, 23, 1685–1712. [Google Scholar] [CrossRef]
- Evett, S. Irrigation Management. In Encyclopedia of Remote Sensing; Njoku, E.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 22–34. [Google Scholar]
- Ha, W.; Gowda, P.H.; Howell, T.A. A review of downscaling methods for remote sensing-based irrigation management: Part I. Irrig. Sci. 2013, 31, 831. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Courault, D.; Sequin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Santos, C.; Lorite, I.J.; Tasumi, M.; Allen, R.G.; Fereres, E. Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrig. Sci. 2008, 26, 277–288. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL): 1 Formulation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. ASCE J. Irrig. Drain. Eng. 2007, 33, 380–394. [Google Scholar] [CrossRef]
- Zhang, H.; Anderson, R.G.; Wang, D. Satellite-based crop coefficient and regional water use estimates for Hawaiian sugarcane. Field Crops Res. 2015, 180, 143–154. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasurmi, M.; Morse, A.T.; Trezza, R.A. Landsat-based Energy Balance and Evapotranspiration Model in Western US Water Rights Regulation and Planning. J. Irrig. Drain. Syst. 2005, 19, 251–268. [Google Scholar] [CrossRef]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified Surface Energy Balance approach to estimate Actual Evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
- Allen, R.G.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Lorite, I.J.; Mateos, L.; Fereres, E. Evaluating irrigation performance in a Mediterranean environment. I. Model and general assessment of an irrigation scheme. Irrig. Sci. 2004, 23, 77–84. [Google Scholar] [CrossRef]
- Trezza, R.; Allen, R.G.; Tasumi, M. Estimation of Actual Evapotranspiration along the Middle Rio Grande of New Mexico Using MODIS and Landsat Imagery with the METRIC Model. Remote Sens. 2013, 5, 5397–5423. [Google Scholar] [CrossRef]
- Elhaddad, A.; Garcia, L. ReSET-Raster: Surface Energy Balance Model for Calculating Evapotranspiration Using a Raster Approach. J. Irrig. Drain. Eng. 2011, 137, 203–210. [Google Scholar] [CrossRef]
- Elhaddad, A.; Garcia, L. Using a Surface Energy Balance Model (ReSET-Raster) to Estimate Seasonal Crop Water Use for Large Agricultural Areas: Case Study of the Palo Verde Irrigation District. J. Irrig. Drain. Eng. 2014, 140, 716. [Google Scholar] [CrossRef]
- Ortega-Farías, S.; Ortega-Salazar, S.; Poblete, T.; Kilic, A.; Allen, R.; Poblete-Echeverría, C. Estimation of energy balance components over a drip-irrigated olive orchard using thermal and multispectral cameras placed on a helicopter-based unmanned aerial vehicle (UAV). Remote Sens. 2016, 8, 638. [Google Scholar] [CrossRef]
- D’Urso, G.; Richter, K.; Calera, A.; Osann, M.A.; Escadafal, R.; Garatuza-Pajan, J.; Hanich, L.; Perdigão, A.; Tapia, B.; Vuolo, F. Earth Observation products for operational irrigation management in the context of the PLEIADeS project. Agric. Water Manag. 2010, 98, 271–282. [Google Scholar] [CrossRef]
- Vanino, S.; Pulighe, G.; Nino, P.; De Michele, C.; Falanga Bolognesi, S.; D’Urso, G. Estimation of Evapotranspiration and Crop Coefficients of Tendone Vineyards Using Multi-Sensor Remote Sensing Data in a Mediterranean Environment. Remote Sens. 2015, 7, 14708–14730. [Google Scholar] [CrossRef]
- López-López, R.; Ramón, A.R.; Sánchez-Cohen, I.; Bustamante, W.O.; González-Lauck, V. Evapotranspiration and Crop Water Stress Index in Mexican Husk Tomatoes (Physalis ixocarpa Brot). In Evapotranspiration—From Measurements to Agricultural and Environmental Applications; Chapter: 10; Giacomo, G., Ed.; In Tech: Rijeka, Croatia, 2011; pp. 187–210. [Google Scholar]
- Kamble, B.; Kilic, A.; Hubbard, K. Estimating Crop Coefficients Using Remote Sensing-Based Vegetation Index. Remote Sens. 2013, 5, 1588–1602. [Google Scholar] [CrossRef]
- Battista, P.; Chiesi, M.; Rapi, B.; Romani, M.; Cantini, C.; Giovannelli, A.; Cocozza, C.; Tognetti, R.; Maselli, F. Integration of ground and multi-resolution satellite data for predicting the water balance of a Mediterranean two-layer agro-ecosystem. Remote Sens. 2016, 8, 731. [Google Scholar] [CrossRef]
- Marshall, M.; Thenkabail, P.S.; Biggs, T.; Post, K. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agric. For. Meteorol. 2016, 218–219, 122–134. [Google Scholar] [CrossRef]
- González-Dugo, M.P.; Mateos, L. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agric. Water Manag. 2008, 95, 48–58. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.R.; Kimball, B.A. Wheat basal crop coefficients determined by normalized difference vegetation index. Irrig. Sci. 2005, 24, 1–14. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Barnes, E.M.; Clarke, T.R.; Fitzgerald, G.J.; Pinter, P.J., Jr. Cotton irrigation scheduling using remotely sensed and FAO-56 basal crop coefficients. Trans. ASAE 2005, 48, 1395–1407. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S.T. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ. 1994, 50, 1–17. [Google Scholar] [CrossRef]
- Romero-Triguerosa, C.; Nortes, P.A.; Alarcón, J.J.; Hunink, J.E.; Parra, M.; Contreras, S.; Droogers, P.; Nicolás, E. Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing. Agric. Water Manag. 2016, 183, 60–69. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suárez, L.; Berni, J.A.J.; Goldhamer, D.; Fereres, E. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
- Kang, Y.; Özdoğan, M.; Zipper, S.C.; Román, M.O.; Walker, J.; Hong, S.Y.; Marshall, M.; Magliulo, V.; Moreno, J.; Alonso, L. How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? Glob. Assess. Remote Sens. 2016, 8, 597. [Google Scholar] [CrossRef]
- Wójtowicz, M.; Wójtowicz, A.; Piekarczyk, J. Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 2016, 11, 31–50. [Google Scholar]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Jackson, R.D. Remote sensing of biotic and a biotic plant stress. Ann. Rev. Phytopathol. 1986, 24, 265–286. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Vidal, A.; Pinglo, F.; Durand, H.; Devaux-Ros, C.; Maillet, A. Evaluation of a temporal fire risk index in mediterranean forests from NOAA thermal IR. Remote Sens. Environ. 1994, 49, 296–303. [Google Scholar] [CrossRef]
- Guilioni, L.; Jones, H.G.; Leinonen, I.; Lhomme, J.P. One the relationships between stomatal resistance and leaf temperatures in thermography. J. Agric. For. Meteorol. 2008, 148, 1908–1912. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 73, 4671–4712. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; Doutheb, C.; Coopmanc, R.E.; Gallegoa, P.P.; Ribas-Carbob, M.; Flexasb, J.; Escalonab, J.; Medranob, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Lyon, J.G.; Huete, A. Hyperspectral remote sensing of vegetation. In Hyperspectral Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, J.G., Eds.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Jones, H.G.; Stoll, M.; Santos, T.; Sousa, C.D.; Chaves, M.M.; Grant, O.M. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. J. Exp. Bot. 2002, 53, 2249–2260. [Google Scholar] [CrossRef] [PubMed]
- Idso, S.B.; Reginato, R.J.; Jackson, R.D. An equation for potential evaporation from soil, water and crop surfaces adaptable to use by remote sensing, Geophys. Res. Lett. 1977, 4, 187–188. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Idso, S.B. Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agric. Meteorol. 1982, 27, 59–70. [Google Scholar] [CrossRef]
- Itier, B.; Flura, D.; Belabbes, K. An Alternative Way for C.W.S.I. Calculation to Improve Relative Evapotranspiration Estimates-Results of an Experiment over Soybean. Acta Hortic. 1993, 335, 333–340. [Google Scholar] [CrossRef]
- Jackson, R.D. Canopy temperature and crop water stress. Adv. Irrig. 1982, 1, 43–48. [Google Scholar]
- Walker, G.K.; Hatfield, J.L. Test of the Stress-Degree-Day Concept Using Multiple Planting Dates of Red Kidney Beans. Agron. J. 1979, 71, 967–971. [Google Scholar] [CrossRef]
- King, B.A.; Shellie, K.C. Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index. Agric. Water Manag. 2016, 167, 38–52. [Google Scholar] [CrossRef]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Rojo, F.; Kizer, E.; Upadhyaya, S.; Ozmen, S.; Ko-Madden, C.; Zhang, Q. A Leaf Monitoring System for Continuous Measurement of Plant Water Status to Assist in Precision Irrigation in Grape and Almond crops. In Proceedings of the 5th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture AGRICONTROL 2016, Seattle, WA, USA, 14–17 August 2016. [Google Scholar]
- Pinter, P.J.; Fry, K.E.; Guinn, G.; Mauney, J.R. Infrared thermometry: A remote sensing technique for predicting yield in water-stressed cotton. Agric. Water Manag. 1983, 6, 385–395. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; Barnes, E.M.; Clarke, T.R.; Choi, C.Y.; Waller, P.M. Estimating soil moisture under low–frequency surface irrigation using Crop Water Stress Index. J. Irrig. Drain. Eng. 2003, 129, 27–35. [Google Scholar] [CrossRef]
- Erdem, Y.; Sehuralu, S.; Erdem, T.; Kenar, D. Determination of Crop Water Stress Index for Irrigation Scheduling of Bean (Phaseolus vulgaris L.). Turk J. Agric. 2006, 30, 195–202. [Google Scholar]
- Yuan, G.; Luo, Y.; Sun, X.; Tang, D. Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agric. Water Manag. 2003, 64, 29–40. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; Barnes, E.M.; Clarke, T.R.; Choi, C.Y.; Waller, P.M.; Haberland, J.; Kostrzewski, M. Water stress detection under high frequency sprinkler irrigation with water deficit index. J. Irrig. Drain. Eng. 2003, 129, 36–43. [Google Scholar] [CrossRef]
- Orta, A.H.; Erdem, Y.; Erdem, T. Crop water stress index for watermelon. Sci. Hortic. 2013, 98, 121–130. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Girona, J.; Gonzalez-Dugo, V.; Fereres, E.; Ustin, S.L.; Zarco-Tejada, P.J. Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards. Remote Sens. 2016, 8, 39. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Di Gennaro, S.F.; Herrero-Langreo, A.; Miranda, C.; Royo, J.B.; Matese, A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Zorer, R.; Meggio, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Testi, L.; Goldhamer, D.A.; Iniesta, F.; Salinas, M. Crop water stress index is a sensitive water stress indicator in pistachio trees. Irrig. Sci 2008, 26, 395–405. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Goldhamer, D.; Zarco-Tejada, P.; Fereres, E. Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrig. Sci. 2015, 33, 43–52. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Berni, J.A.J.; Suárez, L.; Goldhamer, D.; Fereres, E. Almond tree canopy temperature reveals intra-crown variability that is water stress dependent. Agr. For. Meteorol. 2012, 154–155, 156–165. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.; Alarcón, J.; Intrigliolo, D.; Fereres, E. Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Sezen, S.M.; Yazar, A.; Daşganc, Y.; Yucel, S.; Akyıldız, A.; Tekin, S.; Akhoundnejad, Y. Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agric. Water Manag. 2014, 143, 59–70. [Google Scholar] [CrossRef]
- Agam, N.; Cohen, Y.; Berni, J.A.J.; Alchanatis, V.; Kool, D.; Dag, A.; Yermiyahu, U.; Ben-Gal, A. An insight to the performance of crop water stress index for olive trees. Agric. Water Manag. 2013, 118, 79–86. [Google Scholar] [CrossRef]
- Wang, D.; Gartung, J. Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation. Agric. Water Manag. 2010, 97, 1787–1794. [Google Scholar] [CrossRef]
- Taghvaeian, S.; Chávez, J.L.; Hansen, N.C. Infrared Thermometry to Estimate Crop Water Stress Index and Water Use of Irrigated Maize in Northeastern Colorado. Remote Sens. 2012, 4, 3619–3637. [Google Scholar] [CrossRef]
- García-Tejero, F.; Costa, J.M.; Egipto, R.; Durán-Zuazo, V.H.; Lima, R.S.N.; Lopes, C.M.; Chaves, M.M. Thermal data to monitor crop-water status in irrigated Mediterranean viticulture. Agric. Water Manag. 2016, 176, 80–90. [Google Scholar] [CrossRef]
- Kullberg, E.G.; DeJonge, K.C.; Chávez, J.L. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agric. Water Manag. 2017, 179, 64–73. [Google Scholar] [CrossRef]
- Osroosh, Y.; Peters, R.T.; Campbell, C. Daylight crop water stress index for continuous monitoring of water status in apple trees. Irrig. Sci. 2016, 34, 209–219. [Google Scholar] [CrossRef]
- Mangus, D.L.; Sharda, A.; Zhang, N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Comput. Electron. Agric. 2016, 121, 149–159. [Google Scholar] [CrossRef]
- Peters, R.T.; Evett, S.R. Spatial and temporal analysis of crop stress using multiple canopy temperature maps created with an array of center-pivot-mounted infrared thermometers. Trans. ASABE 2007, 50, 919–927. [Google Scholar] [CrossRef]
- Evett, S.R.; Peters, R.T.; Howell, T.A. Controlling water use efficiency with irrigation automation: Cases from drip and center pivot irrigation of corn and soybean. In Proceedings of the 28th Annual Southern Conservation Systems Conference, Amarillo, TX, USA, 26–28 June 2006; pp. 57–66. [Google Scholar]
- O’Shaughnessy, S.A.; Evett, S.R.; Colaizzi, P.D.; Howell, T.A. Soil water measurement and thermal indices for center pivot irrigation scheduling. In Proceedings of the International Irrigation Association Conference, Anaheim, CA, USA, 2–4 November 2008. [Google Scholar]
- Lamm, F.R.; Aiken, R.M. Comparison of Temperature-Time Threshold-and ET-based irrigation scheduling for corn production. In Proceedings of the 2008 ASABE Annual International Meeting, Providence, RI, USA, 29 June–2 July 2008. [Google Scholar]
- O’Shaughnessy, S.A.; Evett, S.R.; Colaizzi, P.D.; Howell, T.A. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agric. Water Manag. 2012, 107, 122–132. [Google Scholar] [CrossRef]
- Osroosh, Y.; Peters, R.T.; Campbell, C.S.; Zhang, Q. Comparison of irrigation automation algorithms for drip-irrigated apple trees. Comput. Electron. Agric. 2016, 128, 87–99. [Google Scholar] [CrossRef]
- DeJonge, K.C.; Taghvaeian, S.; Trout, T.J.; Comas, L.H. Comparison of canopy temperature-based water stress indices for maize. Agric. Water Manag. 2015, 156, 51–62. [Google Scholar] [CrossRef]
- Gausman, H.W.; Allen, W.A. Optical parameters of leaves of 30 plant species. Plant Physiol. 1973, 52, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.Z.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009, 36, 978–989. [Google Scholar] [CrossRef]
- Alvino, A.; Centritto, M.; De Lorenzi, F. Photosynthesis response of sunlit and shade pepper (Caspicum anuum) leaves at different positions in the canopy under two water regimes. Aust. J. Plant Physiol. 1994, 21, 377–391. [Google Scholar] [CrossRef]
- Williams, W.A.; Loomis, R.S.; Duncan, W.G.; Dovert, A.; Nunez, F. Canopy architecture at various population densities and the growth of grain and corn. Crop Sci. 1968, 8, 303–308. [Google Scholar] [CrossRef]
- Alvino, A.; Leone, A. Response to low soil water potential in pea genotypes (Pisum sativum L.) with different leaf morphology. Sci. Hortic. 1993, 53, 21–34. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours. J. Exp. Bot. 1998, 49, 419–432. [Google Scholar] [CrossRef]
- Evett, S.R.; Alchanatis, V.L. Improved Analysis of Thermally Sensed Crop Water Status and Mapping Spatial Variability for Site Specific Irrigation Scheduling; Final Report to BARD and the Texas Department of Agriculture on project TIE04–01; USDA-ARS Conservation and Production Research Laboratory: Bushland, TX, USA, 2007.
- Irmak, S.; Hamman, D.; Bastug, R. Determination of Crop Water Stress Index for Irrigation Timing and Yield Estimation of Corn. Agric. J. 2000, 92, 1221–1227. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Park, S.; Nolan, A.; Ryu, D.; Fuentes, S.; Hernandez, E.; Chung, H.; O’Connell, M. Estimation of crop water stress in a nectarine orchard using high-resolution imagery from unmanned aerial 2015. In Proceedings of the 21st International Congress on Modelling and Simulation, Goald Coast, Australia, 29 November–4 December 2015. [Google Scholar]
- Grant, O.M.; Tronina, L.; Jones, H.G.; Chaves, M.M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J. Exp. Bot. 2007, 58, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, A.; Moazed, H.; Rafie Rafiee, M.; Determining, S. CWSI to estimate eggplant evapotranspiration and yield under greenhouse and outdoor conditions. Broomand NASA Iran Agric. Res. 2015, 34, 49–60. [Google Scholar]
- Nichols, S.; Zhang, Y.; Ahmad, A. Review and evaluation of remote sensing methods for soil-moisture estimation. SPIE Rev. 2011, 2, 1–17. [Google Scholar] [CrossRef]
- Yueh, S.; Entekhabi, D.; O’Neill, P.; Njoku, E.; Entin, J. NASA Soil Moisture Active Passive mission status and science performance. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Marino, S.; Alvino, A. Proximal sensing and vegetation indices for site-specific evaluation on an irrigated crop tomato. Eur. J. Remote Sens. 2014, 47, 271–283. [Google Scholar] [CrossRef]
- Marino, S.; Basso, B.; Leone, A.P.; Alvino, A. Agronomic traits and vegetation indices of two onion hybrids. Sci. Hortic. 2013, 155, 56–64. [Google Scholar] [CrossRef]
- Kalma, J.D.; Mcvicar, T.R.; Mccabe, M.F. Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Zhao, T.; Stark, B.; Chen, Y.Q.; Ray, A.; Doll, D. More reliable crop water stress quantification using small unmanned aerial systems (sUAS). IFAC-PapersOnLine 2016, 49, 409. [Google Scholar] [CrossRef]
- Zúñiga, C.E.; Khot, L.R.; Jacoby, P.; Sankaran, S. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines. In Proceedings of the Proc. SPIE 9866, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping, Baltimore, MD, USA, 17 April 2016. [Google Scholar]
- Siegfried, J.A. Remote Sensing to Quantify In-Field Soil Moisture Variability in Irrigated Maize Production; Colorado State University: Fort Collins, CO, USA, 2016. [Google Scholar]
- Toureiro, C.; Serralheiro, R.; Shahidian, S.; Sousa, A. Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition. Agric. Water Manag. 2016, 184, 211–220. [Google Scholar] [CrossRef]
- Marino, S.; Aria, M.; Basso, B.; Leone, A.P.; Alvino, A. Use of soil and vegetation spectroradiometry to investigate crop water use efficiency of a drip irrigated tomato. Eur. J. Agron. 2014, 59, 67–77. [Google Scholar] [CrossRef]
- Nolz, R.; Cepuder, P.; Balas, J.; Loiskandl, W. Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management. Agric. Water Manag. 2016, 164, 235–242. [Google Scholar] [CrossRef]
- Wang, M.; Ellsworth, P.Z.; Zhou, J.; Cousins, A.B.; Sankaran, S. Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques. Talanta 2016, 152, 531–539. [Google Scholar] [CrossRef] [PubMed]
Satellite | Resolution | Revisit (Days) | Instruments | Field of Application |
---|---|---|---|---|
Aqua | Multichannel Microwave Radiometer (Passive Sensor) | Precipitation, oceanic water vapor, cloud water, | ||
ASTER | VNIR = 15 m, SWIR = 30 m, and TIR = 90 m | 16 | VNIR (Visible Near Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared) | Vegetation and ecosystem dynamics, hazard monitoring, geology and soils, land surface climatology, hydrology, land cover change, and the generation of digital elevation models (DEMs). |
CARTOSAT-1 | 2.5 m | 5 | two panchromatic cameras that take black-and-white stereoscopic pictures in the visible region of the electromagnetic spectrum | Land and water resources management |
Cloudsat | 1.7 km | radar (active sensor) | cloud liquid water and ice water contents | |
Geoeye-1 | 0.46 m panchromatic (B&W) and 1.84 m multispectral resolution | from 2.1 to 8.3 | Simultaneous panchromatic and multispectral (pan-sharpened) Panchromatic only; Multispectral only | It features the most sophisticated technology ever used in a commercial remote sensing system |
GPM | 5–15 km | - | Microwave | Earth’s water cycle; better agricultural crop forecasting and monitoring of freshwater resources. GPM missions are to observe global precipitation more frequently and more accurately than TRMM (Tropical Rainfall Measuring Mission). |
IKONOS | 0.82 | 3 | 3.2 m multispectral, Near-Infrared (NIR) 0.82 m panchromatic resolution at nadir. | Rural mapping of natural resources and of natural disasters, tax mapping, agriculture |
Landsat 7 (ETM+) | 15–30 m | 16 | Radiometer (Passive Sensor) | It detects spectrally-filtered radiation in VNIR, SWIR, LWIR and panchromatic bands from the sun-lit Earth in a 183 km wide swath when orbiting at an altitude of 705 km. |
Landsat 8 | 15–100 | 16 | Two main sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) | It collects images using nine spectral bands in different wavelengths of visible, near-infrared, and shortwave light to observe a 185 km (115 mile) wide swath of the Earth in 15–30 m resolution covering wide areas of the Earth's landscape while providing sufficient resolution to distinguish features like urban centers, farms, forests and other land uses. |
Pleiades-1A | 0.5 m | 1 | 50 cm B&W; 50 cm color; 2 m multispectral. Bundle: 50-cm B&W and 2-m multispectral | It provides color products at 50 cm that deliver an extremely high level of detail. High location accuracy and excellent image quality for precision mapping. |
QuickBird | Pan: 65 cm (nadir) to 73 cm (20° off-nadir) MS: 2.62 m (nadir) to 2.90 m (20° off-nadir) | 1-3-5 (depending on latitude) | Panchromatic and Multispectral | Useful for analyses of changes in land usage, agricultural and forest climates |
Rapideye | 5 m | 1 (off-nadir) 5.5 days (at nadir) | Multispectral | It includes the Red-Edge band, which is sensitive to changes in chlorophyll content |
Sentinel-2 | 10 to 60 m | 5 | MSI (Multispectral Imager) | Generic land cover, land use and change detection maps Maps of geophysical variables for leaf area index, leaf chlorophyll content, leaf water content |
SMAP | 35 km | 3 | radar (active sensor) | It measures the amount of water in the top 5 cm (2 inches) of soil everywhere on Earth's surface. Surface features are used to monitor water and energy fluxes, and play a crucial role in understanding changes in water availability |
SMOS | 35 km | 3 | microwaves radiation (L-bad 1.4 GHz) | Sea Surface Salinity over oceans and Soil Moisture over land for climatologic, meteorological, hydrologic, and oceanographic applications. |
Spot-6 and 7 | 1.5 m | 1 | Multispectral Imagery (4 bands) | SPOT-6 and SPOT-7 are the de facto solution to cover wide areas in record time, making national maps regular updating as well as thematic map creation possible. |
Worldwide-1 | 0.46 m | 1.7 | Panchromatic | Provides highly detailed imagery for precise map creation, change detection, and in-depth image analysis |
Worldwide-2 | 0.46 m | 1.1 | High-resolution panchromatic band and eight multispectral bands; four standard colors (red, green, blue, and near-infrared (1) and four new bands (coastal, yellow, red edge, and near-infrared (2). | It collects very large areas of multispectral imagery in a single pass. It performs precise change detection and mapping. |
|
1 | Scheduling irrigation to replace ET estimated from a reference ET (ETo), calculated from local weather data, which is multiplied by a crop coefficient estimated with a crop coefficient function, Kc (NDVI), where NDVI is the normalized difference vegetative index (NDVI) or a similar index adjusted for reflectance from soil. The NDVI is based on canopy irradiance in the red and near-infrared bands, which can be remotely sensed. |
2 | Scheduling irrigation at a fixed amount of water whenever a trigger to irrigate is generated by the crop water stress index (CWSI), which is estimated using remotely sensed surface temperature (Ts) and local weather data. |
3 | Scheduling irrigation at a fixed amount when triggered by the time-temperature threshold index (TTTI) reaching a crop and region-specific value. The TTTI is calculated using Ts. |
4 | Scheduling irrigation to replace ET estimated with the field surface energy balance (FSEB), which uses remotely sensed surface temperature, Ts, determined from thermal infrared data, and data on canopy cover and surface emissivity deduced from the near-infrared (NIR) and visible bands. |
5 | Sensing of crop and soil characteristics in order to guide timing, placement, and amount of fertilizer and water through irrigation (or fertigation) systems of various orders of precision. The characteristics, including crop cover fraction, nitrogen status of leaves, disease, and pest damage, all of which vary spatially and temporally, are inferred from various remotely sensed vegetative indices. |
1 | Empirically direct methods (remote sensing data are introduced directly in semi-empirical models to estimate ET) |
2 | Residual methods of the energy budget (combining some empirical relationships and physical modules in models such as SEBAL) |
3 | Deterministic methods (more complex models such as Soil–Vegetation–Atmosphere Transfer models (SVAT), which compute the different components of energy budget (ISBA, Meso-NH) |
4 | Vegetation-index methods (remote sensing to compute Kc or Priestley Taylor-alpha parameters). |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvino, A.; Marino, S. Remote Sensing for Irrigation of Horticultural Crops. Horticulturae 2017, 3, 40. https://doi.org/10.3390/horticulturae3020040
Alvino A, Marino S. Remote Sensing for Irrigation of Horticultural Crops. Horticulturae. 2017; 3(2):40. https://doi.org/10.3390/horticulturae3020040
Chicago/Turabian StyleAlvino, Arturo, and Stefano Marino. 2017. "Remote Sensing for Irrigation of Horticultural Crops" Horticulturae 3, no. 2: 40. https://doi.org/10.3390/horticulturae3020040
APA StyleAlvino, A., & Marino, S. (2017). Remote Sensing for Irrigation of Horticultural Crops. Horticulturae, 3(2), 40. https://doi.org/10.3390/horticulturae3020040